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Abstract

A Behavior-based Approach Towards Statistics-Preserving Network Trace

Anonymization

Yingbo Song

In modern network measurement research, there exists a clear and demonstrable need for

open sharing of large-scale network traffic datasets between organizations. Beyond network

measurement, many security-related fields, such as those focused on detecting new exploits

or worm outbreaks, stand to benefit given the ability to easily correlate information be-

tween several different sources. Currently, the primary factor limiting such sharing is the

risk of disclosing private information. While prior anonymization work has focused on traf-

fic content, analysis based on statistical behavior patterns within network traffic has, so far,

been under-explored. This thesis proposes a new behavior-based approach towards network

trace source-anonymization, motivated by the concept of anonymity-by-crowds, and condi-

tioned on the statistical similarity in host behavior. Novel time-series models for network

traffic and kernel metrics for similarity are derived, and the problem is framed such that

anonymity and statistics-preservation are congruent objectives in an unsupervised-learning

problem. Source-anonymity is connected directly to the group size and homogeneity un-

der this approach, and metrics for these properties are derived. Optimal segmentation of

the population into anonymized groups is approximated with a graph-partitioning prob-

lem where maximization of this anonymity metric is an intrinsic property of the solution.

Algorithms that guarantee a minimum anonymity-set size are presented, as well as novel

techniques for behavior visualization and compression. Empirical evaluations on a range

of network traffic datasets show significant advantages in both accuracy and runtime over

similar solutions.
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In the year 2004, a hacker known as “Stakkato” broke into Terragrid, a large world-

distributed research computing platform. The attacks spanned a total of 19 months, and

resulted in the successful infiltration of thousands of university, corporate, and military

machines, in both the United States and Europe. Forensics revealed that the attacks were

quick but consistent, however, collaborative mitigation and defense efforts were hampered

by the inability of the individual effected organizations to easily share data amongst each

other. This was due to the fact that, among the attack-fingerprints that forensic experts

would want to extract from this traffic, such network data also contained private, sensitive

communications information which could not be released without harm to the individual

organizations – this data was not easily removable, at the time.

This thesis proposes a novel technique for enterprise-scale network packet-trace source

anonymization, motivated by behavior-based crowd-anonymity. The methodology describes

herein is designed to provide source-anonymity for individual host identities while minimiz-

ing the information-loss within the aggregate network characteristics. The primary moti-

vation for this work is to facilitate the distribution of anonymized network traffic between

organizations without risk of privacy-loss.

1.1 The need for network trace anonymization

Stakkato’s attack pattern is a familiar one in the security community: a vulnerability is

discovered in a service, potential targets are scouted through scans and probes, vulnerable

targets are exploited and subsequently used as a platform to identify and exploit further

targets. Recovering the logs of such events is therefore of great interest to the security

community, in providing insights into where failures in security – whether technical or

procedural – may reside, especially if the same attack span heterogeneous networks.

Beyond the forensic-security setting, it is a common goal of all scientific communities to

share data, for purposes of cross-environment testing of proposed algorithms, as well as re-

sults -verification and -reproduction, and the network research community is no exception.

It is because of this need that organizations such as openpackets.org [Bejtlich et al., 2011],

and the more recent U.S. Department of Homeland Security-sponsored predict.org [PRE-
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DICT, 2011], were recently created. However, unlike other disciplines, raw network traffic

data often include sensitive information. A packet capture of all network traffic, for exam-

ple, would include web traffic showing which websites users visited, where they transfer files

to and from, the locations of their email, banking, and other private accounts, as well as any

credentials not protected by encryption. In addition to personal information, the disclosure

of network profiles such as vulnerability fingerprints in existing machines, firewall policies,

details of existing security services, location of database and other sensitive servers, and

network infrastructure in general, can all lead to unintended negative consequences for the

releasing party.

A 2008 survey by Mirkovic showed that out of a total of 144 papers published in Special

Interest Group on Data Communication (SIGCOMM) and Internet Measurement Confer-

ence (IMC) in 2006 and 2007, 49 of these had utilized network traces in their evaluations,

but only 10 had used publicly available datasets [Mirkovic, 2008]. This result, along with

other published opinions of a similar nature [Alllman and Paxson, 2007], reflect a deficiency

in the current network and security research fields of publicly available large traffic-capture

datasets.

In modern network research, there exists a clear and demonstrable need for open sharing

of large-scale network traffic datasets between research organizations. Many security-related

research fields, such as those focused on detecting exploits, DDoS attacks, or worm out-

breaks, would stand to benefit given the ability to easily correlate information between

several different resources, thus allowing them to extend their scope beyond their own orga-

nization’s networks. This would encourage both collaboration, and facilitate confirmation

of research results. To date, however, sharing of large-scale network traffic datasets, such as

packet or Netflow captures, have been relatively limited. This is due primarily to the fact

that such datasets often contain sensitive content, including but not limited to, personally

identifiable information of third parties not directly involved in the research – where the

inadvertent release of such information may cause damage to the releasing entity. As a

result, researchers often evaluate their technologies solely on their own organization’s own

traffic, making certain research goals, such as reproducibility-of-results, difficult to achieve.

Network Data Anonymization (NDA) is emerging as a field that is dedicated to this
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problem, with its first workshop organized in 2008 [NDA, 2008]. The predominant direction

in NDA is content removal and masking, which includes deletion of packet payloads and

masking of packet headers; such as the removal of flags, and one-way transforms on IP

addresses. The most well known tool in this area, for example, is tcpmkpub [Pang et al.,

2006], which is a policy-driven framework for utilizing a range of such transformations. Tools

such as these facilitate the removal of human-identified signatures that might fingerprint

users, hosts, or services that should otherwise remain anonymous.

However, recent research has demonstrated that beyond superficially observable datums

such as usernames and IP addresses, more subtle statistical artifacts are also present in these

traces which may yield fingerprints that are just as differentiable as the former. Further,

statistical models trained on these artifacts may be used to breach confidentiality. For

example, previous work with hidden Markov models (HMM) trained on packet timings for

network protocols demonstrate that, even of the traffic traces are encrypted, HMMs were

still able to reliably isolate these protocols from the encrypted dataset [Wright et al., 2006].

This examples, and others discussed in § 2.6, highlight certain shortcomings in current

anonymization frameworks – in particular, ignoring the statistical idiosyncrasies of network

protocol-, application-, and user-behavior. As the field of network traffic anonymization

progress, is certain that behavioral fingerprints should receive a more prominent role.

1.2 Contributions of this thesis

The purpose of this thesis is to develop a framework for behavior-based source-anonymization

for hosts within offline network trace data, in an approach that follows the mixnet principle

of anonymity-by-crowds. This is achieved through time-series modeling of host behavior

conditioned on their traffic samples, and matching hosts with similar behavior. Anonymiza-

tion is achieved partially through replacement of individual identities with group-identities.

Group assignment is based on the similarity of hosts with other members. In addition,

the methodology for statistics-driven traffic perturbation and shaping is demonstrated, as

well as the methodology for synthesizing data for targeted behaviors. The intermixing

(or “clustering”) of host traffic effectively anonymizes each member of that cluster (pro-
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viding k-anonymity) while simultaneously preserving, in the aggregate, the statistics that

characterize the members of that group. Other approaches to traffic-mixing without such

constraints naturally causes information-loss in the aggregate statistics. However, behavior-

based matching allows us to drive these transformations such that information-dilution is

minimized. As this process is independent of other anonymization transforms, it is compat-

ible with existing frameworks [Pang et al., 2006; Gamer et al., 2008] and can be conceptu-

alized as an additional layer in existing anonymization chains.

Our techniques follow a kernel-based approach to learning and therefore extend naturally

into a range of learning algorithms. These include derivations of support vector machine

(SVM)-like classifiers, kernel-based data compression and visualization techniques, as well

as incorporation of measurements from different feature sets using kernel combinations.

Primarily, the kernel approach allows us to utilize graph-partition methods that are robust

when the underlying distribution of the dataset does not conform to easily parameterized

models, as is often the case with network-behavior. A more exact enumeration of the

contributions of this thesis is as follows:

1. Time-series model for network behavior A new and efficient time-series model

for host behavior is presented; one that is trainable using high-level flow-layer meta-

data, and whose training and likelihood-evaluation times maintain linear growth in

the number of data samples.

2. Kernel metric for model-similarity A new kernel, motivated by the concept of

probability product kernels, is derived for comparing similarity between models in

an efficient and scalable manner. This proposed kernel is efficient in both runtime

and memory costs, requiring orders of magnitude less computation than the closest

competitors. An approach for incorporating other similarity metrics, such as those

based on network structure, is provided.

3. Clustering and partitioning of models New algorithms for clustering host be-

havior are derived, based on graph-partition methods. The spectral algorithms are

shown to outperform comparable parametric methods in the same category. Dramatic

improvements in both accuracy and runtime over existing methods are demonstrated.
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4. Data compression and visualization of behavior Kernel principal component

analysis (KPCA) and similar data compression and embedding techniques extend

naturally from our model. We propose new methods of network behavior visualization

based on these techniques and demonstrate their utility.

5. Data synthesis with targeted behavior Algorithms for sampling network traffic

from our models, according to targeted behavior, are proposed. Behavior-interpolation,

regression, and shaping are presented, as well as the techniques for translating statis-

tical samples back into packet trace data. This leads to potentially new avenues for

privacy-driven network data sharing.

6. Network traffic anonymization These previously described methods are combined

to form a framework for behavior based network trace anonymization. The stability

and accuracy of this approach is demonstrated and connections to existing anonymiza-

tion theory are shown as we show how anonymization requirements may be inferred

from the data.

While data anonymization has been a topic of research for several decades, prior ap-

proaches have focused on very restricted domains such as statistical databases, referred

to as “microdata” and it is in this area were most progress has been made [Dwork et

al., 2010; Dwork, 2006; McSherry and Mahajan, 2010; Kifer and Machanavajjhala, 2011;

Kelly et al., 2008]. Network traffic datasets, such as packet or netflow captures, repre-

sent a fundamentally different challenge – containing information that is both unfiltered

and multifaceted. The context of source-anonymization which we study is a comparably

new field, and have focused largely on policy-driven frameworks with sets of obfuscation

primitives [Gamer et al., 2008; Mogul and Arlitt, 2006; Minshall, 2005; Blanton, 2008;

Pang et al., 2006]. Online source-anonymization has been researched in the concept of mix-

nets and onion routing [Dingledine et al., 2004; Freedman and Morris, 2002; Syverson et

al., 2001].

Unlike micro-data, network trace anonymization does not have a significant focus on

reducing statistical information-loss. Our proposed approach applies the intuitive concept of

anonymity-by-crowds to offline traffic, while reducing information-loss by selectively mixing
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traffic with similar behavior characteristics, measurable by novel machine learning methods.

Our transformations are compatible with related obfuscation primitives found in similar

frameworks, and is driven by the same statistics-preservation motivation as those found in

microdata anonymization. As such, our methods draw from the best aspects from all of

these fields to produce a new approach towards network-trace source anonymization.

1.3 Thesis outline

This thesis is distributed across eight chapters. The background and related work for

network trace anonymization is presented in Chapter 2. Chapter 3 provides a formalization

of the threat model along with our proposed solution, and specifies the parameters and

scope of this research. The main components of our solution are independently described

in Chapters 4 (behavior modeling), 5 (similarity measurement) and 6 (traffic synthesis).

Chapter 7 (anonymization) shows how these previously described components fit together

in a behavior-based source-anonymization system. Discussions on the limitations of our

approach and how these are address, along with future work are presented in Chapter 8.
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Chapter 2

Background and Related Works
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Introduction

This chapters provides a more detailed summary of related works in the field of network

data anonymization (NDA). While “anonymization” is a broad term, the citations con-

tained herein focuses on topics related specifically to network-trace source-anonymization.

The chapter begins with a description of source-anonymization and the type of network

data we focus on. Further citations include works on existing paradigms in network-trace

anonymization, utility and privacy measurements, de-anonymization attacks, and other re-

lated challenges. Citations and comparisons with microdata anonymization are included to

provide a comparison of similarities and differences between these two related fields. To

make the distinction, where appropriate in this chapter, we use the term “sanitization”

to refer to the process of removing sensitive (potentially privacy-piercing) artifacts from

network traffic. This process typically entails modifications of packet headers and payload

contents. We the term “anonymization” in a more broader sense to refer to the process of

erasing individual host identities from the network trace. Sanitization can be a component

of an anonymization methodology.

2.1 The nature of network trace data

Our study focuses on enterprise-level network environments and packet-capture (PCAP)

data as well as Netflow data. PCAP data is assumed to be captured at the network scale,

captured through a SPAN port at a border gateway. Packet payloads are not required as our

techniques do not make use of content information, however we expect the layer-3 packet

headers to be mostly complete and unmodified – though IP addresses may be obfuscated.

Our methodology utilizes statistical features on network connections, therefore the same

techniques apply to Netflow data as well, since it naturally encapsulate this information.

Given that such data represents an overview of a network’s communication structure, it

represents many different categories of behavior – some of which may be independent of

one another – thus, it is necessary to delineate tiers of behavior. Particularly, we breakdown

traffic behavior into the following layers:
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1. Protocol This refers to the data-transfer protocol layer (i.e. HTTP, SSH,.... This

layer encompasses such features as: size, frequency, and timing of packet exchanges.

Behavioral characteristics at this layer is implementation-driven and not influenced by

user actions. For example, the negotiation of TCP window sizes is operating-system

driven, and not determined by the user per connection. Characteristics such as packet

sizes, timings, port values, and measurements based on re-transmission are available

at this layer.

2. Application The application behavior layer is measured by the patterns within the

protocol-layer. An application may use different sets of protocols, in different patterns.

An example of this is a web browser, which may initiate invoke both HTTP (port 80)

and HTTPS (port 443) connections. This layer encompasses details such as type and

frequency of protocols used. One characteristic of web browsers, for example, is the

typical behavior of sending a single small outbound connection which represents the

web request, followed by a larger incoming connection to the same ephemeral port

which represents the response from the web server.

3. User/Host The host layer is measured as a collection of application behaviors. This

layer represents the behavior of machines and is closely related to the roles that

such machines fulfill. The characteristics of behavior at this layer incorporate usage

statistics such as time of use, frequency, and duration. Users, network daemons, and

other devices, are identified and distinguished amongst each other at this level.

4. Network The network layer behavior incorporates a collection of user/host layer

behaviors profiles and defines the characters for a network as a whole. This includes

additional information such as the distribution of hosts on the network, the overall

distribution of services, protocols, as well as the layer-2 infrastructure used (Ethernet,

ATM) and network topology. Identities at this layer attribute the dataset to specific

providers such as businesses, universities, and government networks. This layer is

considered in the context of providing provider anonymity.

A more exact specification of packet trace characteristics in large enterprise networks

can be found in related studies [Pang et al., 2005; 2006]. Previous work have demonstrated
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classification results on each of these layers individually. This includes Wright et al. [Wright

et al., 2006] in demonstrating that protocol-level behavior is measurably distinct, and that

individual protocols such as HTTP and FTP can be uniquely identified even when the

contents of these channels are encrypted. Role-based prediction based on isomorphism in

the traffic dispersion graph [Iliofotou et al., 2007] has been studied by in the context of

identifying similar types of servers within a network [Tan et al., 2003]. Similar works such

as identifying communities of interest within a network focuses specifically on unsuper-

vised learning based on application-layer characteristics. Host-behavior profiling has also

been studied in the context of identifying network profiles based on the distribution of

services [Dewaele et al., 2010]. These citations focus primarily on those works that have a

focus on role-identification and prediction. Specialized network measurements such as mod-

eling hosts or networks for anomaly detection are numerous, their enumeration is omitted

due to relevant; these techniques typically focus on specific aspects of the application-layer

behavior and are not designed to generalize to the context of host-layer behavior.

2.2 Source anonymization

This thesis focuses on the problem of offline source-anonymization for network traces. More

specifically, we focus on layer-3 (Internet layer) host anonymization, where the principle

entity is any device with an IP address that can send and receive layer-3 traffic. In this

setting, the IP address is the primary – though not exclusive – identifier (or “label”) for

each device.

One of the earliest examples of source anonymization goes back to 1981, when Chaum

proposed the concept of a “mixnet” [Chaum, 1981]. In a mixnet, a user’s traffic is routed

through a network of multiple independent nodes, where it is mixed among traffic from other

users, before ultimately exiting the network from a set of specific “exit nodes” to reach its

destination. From the perspective of the end point, all users of the mixnet would appear

to originate from the same set of exit nodes, regardless from where they truly originate.

Thus, the system provides anonymity by hiding the true origin of the traffic from the end

point. Anonymous web proxies such as anonymouse.org prevent the end point – and any
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entity listening in between the two end-points – from identifying the source origin of web-

site requests. Currently, in the year 2012, this technology is often used in countries where

Internet filtering is performed, to allow dissidents to access foreign websites which would

normally be blocked by their government. Tor [Dingledine et al., 2004; Tor, 2011] is the most

well-known example of a modern mixnet implementation. A user’s traffic (not restricted

to any particular protocol) enters the Tor network and exits through a set of specific exit

nodes. Internally, Tor establishes a circuit between a set of independent pass-through nodes

to further aid in masking the origin of the traffic. A virtual private network (VPN) can

serve the same purpose. Many organizations allow individuals to connect to a VPN in

order to access protected internal networks, and while anonymity might not be the main

motivation, all Internet-bound traffic sent through a VPN will also exit through a set of

VPN exit nodes, thus providing a similar anonymization transformation.

Mixnets typically share two common design goals: 1) they mask the IP of the originator

and 2) they provide cover-traffic by way of traffic mixture, by aggregating connections

through a set of common exit nodes. The second point is particularly relevant to this thesis

as it demonstrates the strategy of “anonymity by crowds.” The motivation behind this is

intuitive: if the source and end point connections were always distinct one-to-one pairings,

then if one segment of traffic is successfully de-anonymized, all traffic from that session

can be attributed back to a particular origin without ambiguity. Further, without mixing

traffic from multiple sources at the exit nodes, de-anonymization is essentially the problem

of traffic-matching, and attacks, such as timing analysis, can be used to infer the originator;

the traffic from a particular origin might be the only activity leaving an exit-node, therefore

it is not challenging to match the source and destination.

Mixnets, such as Tor, are widely-used and reliable methods of anonymization. However,

these are real-time solutions for live traffic. Analogous systems, based on this mixnet

principle, currently do not exist for anonymization of pre-captured network traffic. The

main focus of this thesis is to apply this concept of anonymity-by-crowds to develop a

obfuscation methodology that would allow existing datasets to be similarly anonymized.
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2.2.1 Pitfalls of synthetic data

Use of synthetic data for network trace anonymization has been relatively unexplored. The

reason for this is that generating realistic and useful synthetic data is, at best, an art that

has yet to be perfected. Achieving realism for certain research purposes is a lofty goal

that can sometimes fail badly. One example is the 1998 DARPA KDD dataset which was

synthetically generated to test intrusion detection systems. After several papers and results

were published, it was discovered that all benign packets in this dataset had a TTL entry

of 127 or 254, whereas all malicious packets had a TTL of 126 or 253. It is unknown

how many methods might have unwittingly locked onto this unintentional hidden label,

leading researchers to declare this dataset as “fundamentally broken,” and subsequently all

submitted papers using this dataset as the basis of their work were rejected [Brugger, 2007].

While this is an extreme example such problems, it nevertheless highlights a pitfall in this

particular approach.

Synthetic generation of large datasets is not an alien concept – many well known traffic

synthesizers exist, including very powerful enterprise-level generators provided by companies

such as BreakingPoint [BreakingPoint Systems, 2011] and Spirent [Spirent, 2011]. These

solutions typically serve purposes such as testing loading-balancing, routing, or firewall

systems. In these settings, low emphasis is placed on achieving “realism” in the dataset

– it matters less that these traffic streams were not generated by human operators, or

capture/preserve actual security incidents.

This thesis describes one of the first machine learning driven techniques for synthesizing

network traffic with measurable accuracy.

2.3 Network packet traces vs. microdata

Currently, much of the progress in information-theory-based data-anonymization has been

undertaken in the domain of microdata anonymization research. “Microdata” is a term

used to describe information that is presented in the form of statistical tables. This domain

include examples such as patient surveys in medicine, where each row may represent a

patient and each column a particular disease – the entries being one or zero, representing
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whether a patient had that disease or not. This would allow computations such as total

number of patients with a particular disease, statistical means and standard deviations, and

other related measurements. Another example would be United States census data, where

each row may represent a particular household and each column represents a certain census

metric such as family income, or number of people in the house. This section describes the

main similarity and differences between network packet traces and microdata.

Many successful anonymization paradigms have emerged based on studies of micro-

data. Differential privacy [Dwork, 2006], for example, is regarded as ones of the most

well-developed measurement for microdata anonymity. This theory presents many attrac-

tive features such as bounds for privacy risk. It is relevant to wonder why these theories

do not naturally carry over to the network traffic anonymization as well. The reason for

this is simply because the two classes of information are fundamentally very different. The

distinguishing properties of microdata are that it is both processed and structured. We

refer to this data as “processed” in the sense that a human operator, or human-designed

system, took the collected unfiltered response and extracted the useful information from

the raw data, further and summarized this information into measurable quantities. For

example, a human census surveyor would take the given response “there are five members

of this house-hold” and enter “5” into the corresponding entry in the table. In this case, the

number of house-hold members is the pre-determined unit of measurement, and the (often

difficult) challenge of “feature extraction” is being performed by the human operator.

We refer to the data as “structured” in the sense that the boundaries of the information

are constrained by the nature of the statistical representation, and are well defined in this

representation. For example, given two sentences “five people live in this house-hold” and

“there are two persons living here,” the surveyor would enter “5” into the entry for the

first house-hold and “4” for the second. When one wishes to compute which house-hold

held more members, one does not compare the first sentence to the second directly and

perform a language processing step to infer the semantic meaning of each phrase; rather,

the extracted statistical features are compared. The meaning of each element of the table

is similarly well-defined, and the types of comparisons undertaken on the table elements

(minimum, maximum, means, standard deviations, etc) are intuitive.
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Network trace data, on the other hand, exists in a significantly different format than the

prior example. “Network trace” is a term typically used to describe packet-capture data

– snapshots of raw packet-level network activity – typically retrieved from tools such as

Tcpdump [tcp, 2011]. This reference may also include other data, such as Cisco Netflow

records. In this thesis, we make the distinction explicitly, and use “network trace” to refer

specifically to packet data, and refer to Netflow by this name directly.

In contrast to microdata, the form of network-trace data examined in this thesis (Netflow

and packet-capture (PCAP)) do not have intuitive mappings into a mathematical space –

in the sense that one cannot intuitively measure the difference between two packets, or

– what is a more fundamental challenge – even establish intuitive units of measurement

for a collection of data. The challenge of measurement is fundamental: can a packet be

considered a basic unit of measurement? can a session? In the same sense that the meaning

of different sentences cannot be measured by the similarity of individual words, there are no

definitive methods to measure the similarity of two network sessions based on comparisons

made between the individual packets that comprise these sessions. Furthermore, trace data

represents a low-level view of a multi-tiered communication medium, i.e. the TCP/IP

stack. Transmission Control Protocol (TCP) is a state-full, full-duplex channel that is

designed to carry information over the state-less datagram routing Internet Protocol (IP)

layer. Application-layer data (the “content” of the TCP session) is broken into smaller

individual datagrams of varying sizes during transport. In practice, these datagrams emerge

across networks as “packets,” with maximum sizes negotiated based on the path’s maximum

transmission unit (Ethernet, for example, has a default MTU of of 1500 bytes.)

In general, network data is different from microdata in that it is inherently multifaceted,

and encompasses the raw information of the network environment without prior feature

extraction. It is not always possible to enumerate the desired features from the network

data a priori. An obvious example of this would be forensic-analysis environments, where

the security researcher might not know the signatures of the exploit being investigated,

thus it is not possible to enumerate the desired measurements ahead of time. Coull et al.

provides a general summary of the differences between these two types of data as well as

their respective anonymization paradigms [Coull et al., 2009].
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Though microdata represents a different domain of information, some of the theoretical

results from this field are relevant and can be applied to network-trace anonymization.

These measurements such as k-anonymity, anonymity set size, l-diversity, etc, are described

in later sections within this chapter.

2.4 Paradigms for network data sharing and anonymization

Existing network-trace-anonymization techniques typically fall into one of two paradigms.

The first is the class of query-based systems which control the data on a protected server

and allow users to make restricted queries. The second is based on utilizing one-way trans-

formations on the original data to sanitize it of sensitive information. The former model

has been studied more frequently in the domain of statistical databases, such as medical

and health records, while the latter standard is more applicable to dissemination of net-

work traffic traces where the value of the data is not so easily broken down and quantified

into independent datums (such as statistical means and deviations.) Often, especially in

the security context, the utility of the data is unknown until researcher had a chance to

examine it. Therefore, in these settings, raw, minimally-tampered data is often desired.

This section explores previous work in network-data anonymization, discuss the important

of policy-driven systems, and concludes with some discussion on relevant attacks against

modern anonymization systems.

2.4.1 Query-based systems

Query-based systems have been well researched in the past, and has observed the most

progress in theoretical developments among the different approaches. Their success owes

to the underlying assumptions and restrictions that form the foundation for this approach;

specifically, that the value of the data can be broken down, and re-represented to the

outside world as a closed set of quantifiers that users may makes queries against. This

representation is fundamentally congruent with microdata assumptions. For example, one

may ask for the count, mean, or standard deviation for a particular entry in set of records;

or they may ask for the range of a field, or the size of a set, whether or not a value is
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set in a packet header, etc. More quantifiers allow greater flexibility in processing; though,

regardless of how expansive this range of queries may be, this paradigm remains depends on

a priori specifications of these quantifiers. More subtle is the assumption that the operator

fully understands the full value and scope of the data, a priori. As discussed in the case of

forensics, the artifact of interests are usually not known until the data is examined. The

secure query-based approach proposed by Mirkovic [Mirkovic, 2008] is representative of the

query-based paradigm. In this approach, an SQL-like query language is presented to the

user, and security policy enforcement is maintained on the server. Parate et al. [Parate

and Miklau, 2009; 2008] advocates for an exchange of meta-level constraints and options

between the provider and user where the user sets the constraints for utility such as port-

consistency, and the server offers transformation policies such as encryption, re-ordering,

etc, and reconciliation is handled server-side. The SC2D system is a rather novel approach,

the authors call for the exchange of open-sourced feature-extraction algorithms. The data

owner runs foreign feature extraction code, and returns on the results to the requesting

party [Mogul and Arlitt, 2006].

The benefit of having a restricted system such as this is that metrics for diversity,

entropy, and related measurements are often simple to derive and as a result, theoretical

guarantees on anonymization are achievable. The downside to this approach is that central-

ized server side solutions are not scalable to large problem sets, where network traffic traces

for just one enterprise-level environment may span terabytes [Pang et al., 2005]. Hosting

all of the query-processing for such a massive dataset in one central location is logistically

difficult, if not impossible. The second problem is that the value of the trace data is often

not immediately known, especially in the security domain. Often, it is only through careful

forensic examination of the data that any insight into utility can be obtained. Values such

are signatures for intrusions are hard to define a priori. In domains where the value of the

information is more clearly defined, though, such as health records, the statistical-database

model is more appropriate.

Arguably the strongest benefit to using query-based systems is the availability of strong-

privacy guarantees – specifically “Differential Privacy.” Differential privacy [Dwork et al.,

2010; McSherry and Mahajan, 2010] is an analysis-based anonymization platform where a
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set of measurements is specified a priori ; the measurements of these specified analytics can

then be modified in a way that is guaranteed to provide a quantifiable level of anonymity.

As a specific example, in McSherry and Mahajan [McSherry and Mahajan, 2010], a set of

measurements (worm fingerprinting, stepping-stone detection, etc) is specified, and differ-

ential privacy serves as an anonymization procedure in a mediated analysis platform where

measurement results, not modified data, is return to the user.

2.4.2 Sanitization-based systems

The second paradigm, which is more applicable for network-trace data, relies on applying

sets of transformations to the data to sanitize it of sensitive information. This process

ideally cleanses the dataset of discriminative identifiers, such as IP addresses, packet-payload

content, etc, which might pierce privacy when released. For network traffic specifically,

sanitization-based approaches is, in our opinion, a less precise but more general approach

to anonymization. Sanitization removes potentially privacy-piercing information from the

data, ideally in a way that minimizes the information lost. This approach is more practical

in network traffic analysis when the data is multifaceted and analytics cannot be specified

a prior. Several notable works in this area are worth mentioning; these are listed here

in the chronological order of their release. Tcpdpriv [Minshall, 2005] is one of the earliest

traffic-anonymization tools. A simple packet-header sanitization tool, it was invented before

modern de-anonymization attacks were known. It allowed the user to modify certain header

values such as the IP address. Tcpurify [Blanton, 2008] is another earlier, although slightly

more advanced, sanitization tool that was developed at a university, by a professor who

wanted to release network data for students to conduct experiments on.

One of the first major influential tools released was tcpmkpub by Pang et al. [Pang et

al., 2006]. This tool presented the first policy-driven anonymization framework, where the

user can set from a set of anonymization functions (referred to as “primitives”) to use over

the data. These functions includes options to remove the payload, hash the header values,

obfuscate the IP addresses, and more. It provided transparent handling of the tcp-stack,

and advanced protocol-parsing functionality, and was driven by an innovative, customizable

anonymization language. Huang et al. proposed a system for large-scale network packet
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trace sanitization based on presenting exemplars to expert systems [Huang et al., 2011].

The CryptoPan was released by Fang et al. [Fan et al., 2004] as the first provable

prefix-preserving IP anonymization technique. Earlier methods for IP-obfuscation simply

performed a randomized one-way one-to-one mapping for each IP address independently.

This effect breaks the subnet address structure that IP addresses were built to represent.

By preserving a prefix in the transformation, CryptoPan allowed IP obfuscation without

erasing the subnet structure in the resulting dataset. SCRUB-tcpdump [Yurcik et al., 2007]

is a tool that allows one to extract only the useful values from a trace dataset and drop

everything else.

Statistical traffic obfuscation techniques such as those presented by Wright et al. [Wright

et al., 2009] attempts to mask the statistical signature of network protocols. Prior to this

work, much of the attention had been focused on content and static signatures within

network traffic. The authors demonstrated the feasibility of using statistical signatures to

both identify and mask traffic streams. Their technique used padding for packets to smooth

statistical signatures from traffic. Deep-packet anonymization is an interesting corner-case

solution presented by Foukarakis et al. [Foukarakis et al., 2009], this technique examines

the content of packets dynamically and uses emulation to unravel polymorphic-encoded

shellcode. It then obfuscates the attacker’s call-back IP address.

Finally, the most recent advance in network-trace anonymization is the PktAnon frame-

work [Gamer et al., 2008] by Gamer et al., which, much like tcpmkpub, is a policy-driven

approach that allows users to customize a set of anonymization primitives for use on the

data. Their framework uses an XML-driven anonymization-policy language and can handle

a broader range of network protocols including IP-in-IP.

“No perfect anonymization scheme exists and therefore, as in much of the se-

curity arena, anonymization of packet traces is about managing risk.” Pang et

al. [Pang et al., 2006]

Policy-driven anonymization frameworks such tcpmkpub and PktAnon have emerged as

the most popular tools in current use. This stems from a realization that security, privacy,

and utility for network-trace data is a fluid continuum that is hard to define, and is not the
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same for every party. Further, anonymization and de-anonymization methods all operate

using information you are aware of and not aware of. There is no way to know for example,

if the a particular flag setting in a particular packet uniquely identifies an individual, nor

is it known if the removal of all flags is a reasonable anonymization operation. It is this

realization that has led to the design of policy-driven anonymization frameworks which aim

to abstract the lower-level packet-processing mechanics into a policy-driven language that

users may customize to their needs. A set of powerful anonymization transforms is provided

to the user along with an intuitive language to drive these transformations, with best-use

suggestions provided. It is further ideal that the data provider and the user should have

some form of a contract that indicates what the data will be used for. This contract should

guide the design of the anonymization policy [Pang et al., 2006; Alllman and Paxson, 2007;

Gamer et al., 2008].

2.5 Measuring anonymity and utility

A number of works have proposed methodologies for evaluating anonymity and the utility of

the resulting data, post-anonymization. Many are derived for microdata, and while not all

of these measurements are consistent with requirements for network-trace anonymization,

the principles behind these metrics are congruent with those of trace anonymization; the

most relevant of these methodologies are summarized here.

2.5.1 Measuring anonymity

An overview of general network data anonymity metrics can be found in a survey by Kelly

et al. [Kelly et al., 2008]. Among these metrics, the ones most relevant to network-trace

anonymization include the following generalized metrics: k-anonymity, l-diversity, and t-

closeness. Another similar review by Coull et al. [Coull et al., 2009] provides a similar

survey of metrics.

k-anonymity ties the degree of anonymity with the size of the crowd, such as the number

of members in a mixnet. In general, a larger k implies implies more anonymity for each

member, as it becomes harder to match the end traffic with the originator; the pool of
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potential origins increase, therefore, the probability of obtaining a correct match decreases.

k-anonymity is an instance of a generalized measurement of anonymity, where a set of

indistinguishable entities, with respect to a specific set of identifiable attributes, is known

as the equivalence class of the anonymity set. The size of the equivalence class is positively

correlated with the level of anonymity. l-diversity is a data metric that quantifies the

uniqueness of a measurable attribute. As an extreme example, the IP address of a network

host is a low-entropic data metric, as each host has only a single unchanging unique IP

address associated with it. t-closeness is a related metric that is associated with the variance

of a distribution. For example, consider the type of network protocol observed in each

session. If hosts A and B on a network exclusively exercised protocols HTTP and FTP,

respectively, then regardless of how their IPs are obfuscated, it is always possible to identify

the origin of each session based on the protocol value: all HTTP traffic belongs to A, and

all FTP traffic belongs to B. In this example, A and B appear very different from each

other, and are thus distinguishable.

Other, more specialized – though somewhat tangentially related – measures of anonymity

also exist. [Zhang et al., 2007] discusses measurements of information-disclosure under real-

istic assumptions on privacy loss. Assessing a concept of global disclosure risk is discussed

in [Truta et al., 2004]. Transparent anonymization studies the properties of thwarting adver-

saries who know the algorithm [Xiao et al., 2010]. Most progress in quantifying anonymity

have been in the more restricted domain of statistical-databases where the query-based

model can be well-bounded. By restricting the interaction of the system to input queries

and output results, it is possible to derive functions and bounds on the exchanged data,

and it is within this domain that more powerful anonymity metrics such as “differential

privacy” have been successfully applied to network data anonymization [Dwork et al., 2010;

McSherry and Mahajan, 2010].

2.5.2 Measuring utility

General metrics of utility are difficult to enumerate as utility can be a subjective notion.

The primary reason for this is the fact that utility and privacy are often incongruent.

Perfect preservation of utility entails not modifying the data at all, therefore retaining all
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of the original information. Conversely, perfect anonymization involves removing all of the

distinguishable data, which, in essence, entails merging all of the traffic together into a

single profile representing the statistical mean of all entities. The practical solutions are

found in the continuum between these extremes. The optimal measure is different based

on the specific utility task: for example, a measurement task of discovering the distribution

of heavy-hitters on a network does not require evaluating packet payload content, therefore

this element can be removed from the traffic without effecting utility. However, the same

anonymization step of removing the packet payload might destroy the utility when the task

is forensics oriented, where detections might be based on the presence of specific signatures

strings in the payload. Nevertheless, some generalized metrics for utility are relevant for

specific case and have been proposed in previous works. Framework for evaluating the utility

of data altered to provide confidentiality is discussed in [Karr et al., 2006]. Measuring

the utility of certain anonymized data publishing methods is discussed in [Brickell and

Shmatikov, 2008]. The risk/utility trade-off of prefix-preserving IP transformations has

been studied by Burkhart et al. [Burkhart et al., 2008]. The effectiveness of k-anonymity

against traffic analysis is discussed in [Hopper and Vasserman, 2006].

From a forensic-security perspective, two papers have been published on evaluation of

IDS-alerts pre- and post-anonymization [Yurcik et al., 2007; Lakkaraju and Slagell, 2008].

Their results show that minute details in how anonymization is performed can yield in-

teresting consequences. Lakkaraju & Slagell, for example, discovered that transforming

port values to 0 triggered Snort’s “BAD TRAFFIC TCP” rule which, in their experiments,

caused a 550× increase in false alerts [Lakkaraju and Slagell, 2008].

2.6 Attacks and other challenges

Many challenges are associated with network-trace anonymization. Primarily, any proposed

system need to be mindful of both design requirements, which may limit their utility, as

well as de-anonymization attacks; the latter of which encompass a relatively broad surface,

as this section will discuss.

Offline network-trace anonymization platforms need to meet certain design requirements;
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the most important of these include: transparent handling of the TCP stack, the ability to

parse common protocols – or the capability to be easily extended to do so –, the ability to

easily filter the traffic to remove artifacts such as port-scans and other overt fingerprints,

and – where applicable – secure key-exchange mechanisms. These basic design constraints

evolved from a gradual realization of the privacy-piercing attack surface. De-anonymization

attacks exists at all layers of the TCP stack: from host-counting through NATs at the inter-

net layer [Bellovin, 2002], to service, protocol, and host identification at network layer [Coull

et al., 2007b; Foukarakis et al., 2009], to unmasking communication traffic at the applica-

tion layer [Coull et al., 2007a], and identification of individual hosts through encrypted

channels [Chakravarty et al., 2008].

Two types of attacks can be distinguished: the passive attacker infers information from

anonymized traces. The active attacker injects artifacts into the dataset before anonymiza-

tion and rediscover these artifacts in the anonymized dataset. De-anonymization attacks

can be online and offline: from statistical inference methods [Coull et al., 2007a] to meth-

ods that actively interfere with the encrypted channel and measure the resulting jitter to

break anonymity [Chakravarty et al., 2008]. A representative selection of such attacks are

broken-down in the following paradigms.

Artifact correlation : Passive inference techniques correlates side-channel information to

pierce anonymity. For example, one can use port scans to de-anonymize traffic as follows:

if one host linearly scans the IP range 128.59.1.1 → 128.59.1.255, it would yield an ob-

vious behavioral fingerprint. If the granularity was not perturbed then this signature is

observable in the anonymized dataset, in the obfuscated IPs. If the timestamps were not

changed, and the attacker was was able to de-ofbuscate the first IP address he would know

that the second obfuscated IP observed corresponds to 128.59.1.2, the third to 128.59.1.3,

and so on. Further discussed in [Koukis et al., 2006], this can be classified as k-anonymity,

or anonymity-set-size, attacks.

Information leakage exploitation : Several fingerprinting techniques take advantage of

the entry-diversity weaknesses, or other information leakages to infer information. Bellovin
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showed how to infer the number of hosts behind a NAT by counting the id-number entry

of packets at the exit point [Bellovin, 2002]. Using the clock-skew of the OS kernel has

been used fingerprint remote hosts, as demonstrated by Kohno et al. [Kohno et al., 2005].

Certain operating systems, including different versions of the same operating system, will

implement the TCP stack differently, and therefore behave slightly differently based on how

certain flags are set in packets. Active OS fingerprinting tools such as NMap and passive ones

such as p0f [Zalewski, 2006] utilizes these idiosyncrasies to identify the OS version. More

esoteric techniques such as tracking post-exploit host responses to identify vulnerabilities,

and even examining the (encrypted) content of exploits to identify attackers and victims

have been explored [Foukarakis et al., 2009]. Information leakage is, by far, the most pop-

ular method of de-anonymization.

Statistical inference : An emerging class of de-anonymization attacks uses statistical in-

ference to break anonymity. Coull et al. [Coull et al., 2007b] modeled the behavioral char-

acteristics of network hosts in the publicly available LBNL trace dataset to identify DNS

servers, to a certain degree of success [Alllman and Paxson, 2007]. Wright et al. [Wright

et al., 2006] modeled certain network protocols and demonstrated that these models were

sufficiently discriminative for protocol identification without content information. Modeling

the distribution of packet sizes when requesting static web-pages can be used to fingerprint

webpages without content, as shown by Koukis et al. [Koukis et al., 2006]. In addition,

prediction using access-order of content distribution networks was demonstrated by Coull

et al. [Coull et al., 2007a].

From these results a general theme emerges, that anonymity is mostly a game of ex-

ploiting information that you are aware of versus information that you are not aware of

– the former is leveraged to preserve the utility of the dataset during the anonymization

process, whereas the latter is used to pierce the privacy of the anonymized data.
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Concluding remarks

The current state-of-the-art in network-trace anonymization focuses on the approach of san-

itization: datasets should begin with captured traffic and, through anonymization, private

information should be removed, leaving the remaining information as the resulting output.

In one extreme, the optimal anonymization procedure is simply removing all information

from the data; conversely, the optimal utility-preserving transformation makes no changes

to the dataset. These extremes sacrifice one goal for the other. One would expect that,

if utility does not require breach-of-privacy, then the two should not be mutually exclu-

sive. Further, privacy and utility are not universally defined – different users will apply

their own definitions. Privacy therefore, much like the rest of security field, revolves, to a

certain extent, on risk-management, and policies which drive any anonymization procedure

should result from a mutual understanding between the data provider and user. The ideal

anonymization tool should satisfy all party’s definitions for privacy, with minimal dilution

of the fidelity of the dataset.
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Introduction

This chapter formalizes the problem that we study in this thesis. An overview of the scope of

this research is provided. This includes the threat model, the scope of the work, the proposed

solution model, the definitions used, and an overview of the methods of evaluation. The

need for anonymization is explained in more detail and a more exact definition for source-

anonymity is provided. This chapter also covers the fundamental assumptions underlying

the foundation of this research.

3.1 The duality of identity and anonymity

This section specifies the operative definition of “anonymity.” Though many prior works

have been published on network-data anonymization and privacy preserving paradigms

(such as differential privacy), few universally applicable definitions exist for anonymity in

packet trace anonymization. This is due to the fact that anonymity is often tied with utility

(the intended use for the dataset) and is thus considered to be subjective given different

environments, and may be conditioned on the protocols and services that a host exercise,

and not only hosts themselves – a dataset of web logs may have a different standard for

anonymity than a dataset of packet headers used for routing configuration, for example.

In this thesis, identity is considered at the host-level and is tied directly with individual

hosts (as opposed to anonymization of protocols or application-use.) It is conditioned on the

host’s uniquely assigned label i.e. the address (IP, Ethernet) of that host on the network.

It is directly related to that host’s “traffic profile,” which is defined as the characteristics

of the network traffic generated by that host which makes it uniquely distinguishable from

among those traffic generated by a crowd of its peers. This traffic profile can include IP

addresses, Ethernet addresses, content-, and statistical-signatures. The first assumption of

this thesis (later described in § 3.5) is that a host’s traffic profile has a statistically significant,

measurable, one-to-one relationship with the host’s identity. “Anonymity” is then defined

as the absence of identity – the inability to determine the true origin, given a segment of

traffic. A host is said to possess anonymity (is “anonymized”) if – post-transformation –

the profile of that host’s modified traffic no longer has a strong one-to-one relationship with



CHAPTER 3. PROBLEM FORMALIZATION AND SOLUTION MODEL 28

its identity.

Given these definitions for identity and anonymity, and their direct inverse relationship,

the duality in the separate problems of measuring anonymity and identity is apparent.

3.2 Threat model

The threat model considered in this thesis is the scenario where an organization such as an

academic institution, corporation, or government entity, wishes to release a packet trace to

the public, for research purposes, post-intrusion forensics, or other purpose. A full network

traffic capture may contain sensitive information including personally identifiable informa-

tion about users, artifacts which may leak information about the security policy of the

network (such as security software and operating system updates), information which re-

veal the structure of internal network, information that reveal distinct types of user activity

(such as the use of torrent software) – to name a few. In this scenario, the releasing party

uses existing content-obfuscation tools such as tcpmkpub to remove overt signatures such as

the payload information and certain header flags, then uses CryptoPan to perform a one-

way prefix-preserving transformation on the IP addresses. Believing this to be a sufficient

anonymization transform, the organization releases the dataset. An attacker then takes

this dataset, and through the use of statistical modeling of packet header fields, recovers

a list of potential Linux systems running outdated kernel versions which has a TCP-stack

implementation that always responds in a predictable manner, such as by setting specific

initial window sizes. The IP addresses were obfuscated so the attacker does not know the

true addresses of the vulnerable targets. However, he observes a subnet port-scan within

the dataset. Given that he knows the dataset was most likely obfuscated using a prefix-

preserving IP-address transformation, and given that subnet port-scans will usually scan

linearly, starting from 0 and ending in 255, he is able to identify all of the hosts in this

subnet after having identified one of them, simply by tracing the port-scan. Scanning the

traffic for this subset, he observes incoming web traffic on one host. Since the attacker knows

which organization released the data, he connects to the web site of that organization, and

collects the IP addresses for their web servers. Now he knows which subnet the vulnerable
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machines are located and needs only a few attempts before he is able to find and exploit

the vulnerable host.

Instances similar to this scenario have been observed in the past. The technique of pas-

sive OS fingerprinting is well known, and the popular tool known as p0f [Zalewski, 2006]

serves exactly this purpose – identifying operating systems and versions using statistical

features of the TCP SYN packets. Discovering subnets based on port-scan artifacts within

the dataset has similarly been discussed by previous authors [Fan et al., 2004]. Further, ac-

tual cases of researchers using statistical models to de-anonymize publicly released datasets

do exist. One example of such a case would the work by Coull et al. [Coull et al., 2008]

where the authors attempted to reconstruct the layer-2 infrastructure of the LBNL public

research dataset.

In addition to role-based host discovery. User-privacy issues are also of concern. This

may include instances of use of prohibited software such as Bittorrent. The data provider

may wish to obscure the number of hosts using such software on the network in order

to prevent the identification of specific hosts. Past work has demonstrated the feasibility

of inferring web-sites based on the statistical profiles of connections within anonymized

Netflow logs [Coull et al., 2007a]; in this case, anonymity by merging traffic among a crowd

of similar peers, would be needed to provide further anonymity to the source hosts.

Similar to role-based discovery and user-privacy, vulnerability-disclosure is a potential

type of information leakage. Typically, when a host is successfully compromised by a non-

directed, indiscriminate, attack, it is often turned into a bot or other pivot platform for

further attacks against other hosts. This post-exploit behavior is often distinguishable,

especially in the case of botnets [Kolesnikov and Lee, 2006; Fogla et al., 2006]. Vulnerable

hosts, such as those running older and outdated versions of common operating systems,

may also leak signatures such as those used in passive-OS fingerprinting. The distribution

of such hosts on a network is a feature that the data provider may wish to obscure. Security

policy-actuation profiles such as automated anti-virus update behavior and internal firewall

policy, network segmentation, DNS and other systems architectures, may be considered

private information and not to be released by the provider. These problems are all within

the domain of mapping behavior profiles to host identities, and the obfuscation of this
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mapping is one avenue for the anonymization of the system as a whole.

A naive way to prevent such attacks is to simply re-map all IP addresses within a

network to a single pseudo-IP address. Thus, all activity is essentially re-mapped to one

single host with very large volume of traffic. This, however, is an obviously unattractive

solution, as it removes any utility that the dataset may have possessed by destroying all

statistical distributions within the dataset. It is essential to keep in mind that the released

dataset must serve a purpose – distinct behavioral characteristics and traffic profiles must be

preserved to some extent. The underlying motivation of this thesis is that there is a natural

continuum between these extremes of preserving multiple distinct hosts which features high

utility and low anonymity, and a single distinct host which features high anonymity but low

utility. The exploration of this continuum using machine learning-based methods for traffic

behavior is the core of this thesis.

3.3 Scope of this thesis

This section describes the data studied in this thesis and scope of this work. We provide a

brief description of packet-trace data and its organization, followed by a description of our

feature set and the justification for using this set. As stated previously, this thesis focuses on

the host-layer behavior profiling. For each host, a single behavior model is extracted based

on three main features: the types of services used, the volume of information per service,

and the transition between services. Specifically, only traffic that is transferred over TCP is

used for measurement. TCP is a full-duplex, session-oriented, protocol that is used when a

reliable medium for information-transfer over the Internet is required. Given that it is the

primary information exchange channel, it is more strongly correlated with user intent and

behavior than other protocols such as ICMP or UDP.

By focusing on service, volume, and transition, it is possible to extract behavior profiles

from both packet-trace as well as Netflow data. The service information is obtained simply

from the destination port of the TCP session. The volume information is measured as the

number of packets transferred per session. The transition information is tracked simply

by measuring the change in these values over time. This versatility permits comparisons
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of different data in different but relatable formats across different source providers. Exact

details of feature extraction is discussed in a later section.

Content is not considered for the feature set for several reasons. Primarily, modeling

content is an entirely different problem than modeling network behavior, and is, for the most

part, beyond the scope of this thesis. Content is diverse across protocols, and for many

services, represent dynamic user-generated information which may be incongruent with

statistical measurements of network behavior. In addition, given the scale of enterprise-

level networks and ever increasing bandwidth (greater than 10GBps in most enterprise

environments as of the year 2012), most traffic monitoring systems do not capture full

packet traces for extended periods of time; instead, they capture packets headers only,

or rely on Netflow captures. This means that content is not always available for use in

measurements. Finally, the potential for side-channel leakage is is naturally higher when

using content, and quantifying risk becomes significantly more challenging, beyond this

scope of this study.

Finally, we make the distinction between anonymization framework and policy. Our

system is meant to be a framework with which we can extend both our understanding

of packet-trace anonymization and the current state-of-the-art technologies, such as those

found in tcpmkpub and PktAnon. Our methods are meant to be congruent with these

prior methods and not a substitute. For these reasons, we do not need to be concerned

with certain technical challenges such as prefix-preserving IP-address transformations, pay-

load hashing, and certain header-value obfuscations. It is assumed that these methods

are available and can be applied to the results of our anonymization procedure. Further,

the distinction between anonymization system and anonymization policy must be made.

Unlike microdata anonymization, where data is fully encapsulated as numbers within a ta-

ble and measurements of anonymity can be well-bounded and exact, where anonymization

translates to altering entries within a table in order to shift metrics such as the means or

standard deviations beyond certain thresholds, network trace anonymization for Netflow

and PCAP data is a different problem – one where such exact measurements for anonymity

are not available. Such data is inherently multifaceted and side-channel attacks against

anonymization platforms have not been fully explored; new attacks might remain unknown
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(a) Per-host obfuscation (low) (b) Proposed Solution (c) Randomized mixnet (high)

Figure 3.1: Anonymization paradigms are shown: original traces shown in solid-black, new

traces shown in dashed-blue.

until it is exploited. Network-trace anonymization, much like the rest of the security field

– as stated in prior related literature – is a study in risk minimization.

In this thesis, we provide the motivation for our approach, explain the derivation of our

system, demonstrate quantifiable effectiveness in our experiments, and show how our model

relates to existing measurements for anonymity, as well as how to measure this relationship.

3.4 Behavior-based traffic-mixture for anonymization

Consider the diagram presented in figure (3.1). In this figure, three different shapes (trian-

gle, circle, diamond) are used to conceptually represent different types of behavior patterns.

In panel (a) the anonymization paradigm of per-host obfuscation is shown; this results from

using tools such as tcpmkpub to sanitize each host independently from one another. Such

transforms preserves the most amount of utility, from a measurement standpoint, in that

the statistical properties of the dataset is untouched for the most part. However, it yields

the least amount of anonymity as these statistical properties may encapsulate fingerprints

which are just as discriminative as the content-signatures that were removed. Figure (3.1)(c)

represents the other extreme, where the network traffic is sent through a randomized mixnet

such as Tor, making all traffic appears to originate from a single host. This provides the

highest degree of anonymity, while at the same time destroying all of the useful statistical

information by aggregating all statistical behaviors into a single average. (b) represents our

proposed solution. In this approach, we use machine learning to identify groups of similarly-
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behaving hosts, then merge the traffic among these hosts and assign new group-identities to

the resulting set of independent crowds. Anonymity for any particular host is obtained from

being having all of that host’s traffic mixed among traffic belonging to similarly-behaving

peers, where re-attribution – as a signal-separation problem – is measurably difficult. Also,

as an intrinsic property, the dilution of the aggregate statistical distribution of among such

crowds is minimized.

3.5 Fundamental assumptions

The following assumptions about the characteristics of the network traffic form the foun-

dation of our methodology.

Assumption 1: Network behavior is, in general, idiosyncratic

The behavior of a host on a network, whether driven by interactive human operators or

automated service daemons, is – for the most part – idiosyncratic and predictable, given

sufficient data.

While network devices may be similarly configure with the same operating system, appli-

cation set, etc, this assumption states that no two devices on a network will utilize these

applications in exactly the same way such that the generated traffic from these machines,

with respect to diversity, volume, rate, and other features, are exactly alike and indistin-

guishable from one another. In general, unique behavior is recognizable given accurate

behavior models and sufficient training data.

Assumption 2: Behavior can be modeled using meta-data such as packet head-

ers

Host behaviors can be quantified and modeled using machine-learning-based time-series sta-

tistical models, using only captured packet headers, without payload content.

Fundamentally, behavior is not conditioned on the content of packet payloads – or more
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generally, the content of the traffic streams. While behavior – in terms of measurement of

network statistics – may be a side effect of information transport, and though there may

be a strong correlation between the content of the traffic stream and the statistical profile

of the traffic, such profile can be encapsulated by models that are trained while remaining

agnostic to content. This is a characteristic that all behavior-based systems – especially

anonymization systems – must seek to achieve, given that data providers rarely offer un-

obfuscated packet payload content.

Assumption 3: Group similarity is identifiable

Given a sufficiently large network, groups of similarly behaving hosts will emerge, and can

be identified using these statistical models. These hosts can be reassigned to represent single

identity with minimal information dilution between the original individual behavioral statis-

tics and the group aggregate statistics.

The core of this thesis is that anonymity-by-crowds can be achieved where all members of

each crowd exhibit measurably-similar behavior. The behavior-crowd serves to anonymize

each member and to preserve the statistical profile that characterize these member in the

aggregate traffic mixture. This, of course, implies that crowds of similar behavior exist, and

can be identified using statistical measurements.

Assumption 4: Traffic can be mixed such that re-matching is difficult

Absent the inclusion of side-channel information beyond the scope of behavior modeling –

such as content or other direct labels –, traffic can be anonymized with the group identities

such that re-attribution back to particular individual hosts within that group is quantifiably

difficult.

“Quantifiable” implies that it is possible to derive a method with which we can measure

whether one anonymized-mixture is better than another. Further, that we can measure

certain related qualities such as minimum mixture-size and ensure that these requirements

are met.
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Assumption 5: Traffic with targeted behavior can be synthesized

Given a target behavior model, it is possible to synthesis packet and flow-layer traffic that

is consistent with this model.

This assumption states that a generative model for behavior can be constructed, and that

it would be possible to sample new instances of network traffic given this model, and that

these traffic instances would be measurably similar to the original.

3.6 Privacy and utility

In our approach, privacy depends on several measures. Primarily, these include the size of

the mixture and the homogeneity in the behavioral characteristics of the members within

that mixture. In the former, the size of the mixture relates directly to the well-understood

concept of anonymity-set-size – the k value in k-anonymity. All factors equal, the size of

the anonymity set is a direct measure of the level of privacy provided to each member.

This is directly related to the re-attribution problem: given a sample of traffic, without

side channel information, the probability of accurate prediction is, in general, 1/k. In the

latter measure, the homogeneity in the cluster behavior is directly related to how similar

each member is to every other member, and is directly measurable as the sum of the pair-

wise similarities under some behavior model. If a web-server, which observes thousands of

connections per minute where each connection is the handling of the same static HTTP

request, is mixed with a crowd of user machines where no other member is receiving port

80 traffic, and all members are observing fairly high-latency intermittent connections, then

the web-server would immediately stand out. This is a measurable loss in anonymity.

First and foremost, this thesis provides a machine-learning-motived framework by which

we can measure network traffic behavior with quantifiable accuracy, and segment this traffic

distribution as the solution of a graph-partitioning problem where maximization of cluster-

homogeneity is an intrinsic property of the solution. We further show how to estimate a

minimum required anonymity set size (i.e. cluster size) and how to guarantee that this
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requirement is met.

The properties which we hide and preserve is enumerated here in this section. As

previously mentioned, anonymization is a matter of policy and risk minimization – where

attacks often consists of side-channel information. However, certain invariant properties

exist for all anonymization systems. For example, network addresses such as IP addresses

and MAC addresses must be hidden. Content of packet payloads must also be hidden, as

this data would offer a potent channel for information-leakage – it doesn’t matter well the

anonymization system is able to mixture a user’s traffic, if the packet payload exposed the

username that user typed into a web form. A range of passive network TCP-implementation-

centric features, such as elements within packet headers, and how these features should be

obfuscated are discussed in the later chapter on anonymization.

Related to this, certain properties of the data must be preserved in order to maintain

the utility of the dataset. These include but are not limited to:

• Volume distribution - the distribution of traffic volume in terms of total number of

packets, flows, and volume of data transferred.

• Rate/frequency distribution - the distribution on traffic frequencies such as inter-

arrival times and transmission rates.

• Service/protocol distribution - this is information pertaining to the range of services

on the network, measurable as a function of uniqueTCP port values.

• Distribution of host behavior - the distribution of distinct behavior types on the

network such as servers, user machines, etc, should be preserved to the best extent.

• Network characteristics - feature such as path MTU, TCP sequence numbers, and

related values. Naturally, some values must be changed in oder to provide mixture-

based source anonymization, however the distortion should be minimal.

• Communication structure - the anonymization transformation should not destroy the

topology information of the underlying network.

In this thesis, we should how these properties for privacy and utility are maintained.
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3.7 Evaluation methodology

The methodology proposed in this thesis is based primarily on behavior modeling, graph-

partition-based clustering, and traffic synthesis. Fundamentally, this is an unsupervised

learning problem where we do not have true labels for which hosts should be mixed together.

However, there are natural ways to quantify the accuracy of the proposed solution. Recall

that our measure of anonymity is conditioned on the cluster size, and the homogeneity

within that cluster. This implies that two important measurements are necessary. The

first is the accuracy of the behavior model, and the second is the accuracy with which we

measure similarity between these models. And finally, we need to measure the fidelity of

the synthesized data. These methods are evaluated as follows:

• Behavior model: We evaluate the accuracy of the model with classification-evaluation.

Since no true labels are available which hosts should be matched, we evaluate accuracy

by segmenting a host’s own traffic and matching that traffic with itself. Models are

learned on the training data and evaluated using the testing data. Under this condi-

tion, the problem is transformed into a supervised-learning set-up. Classification is

based on select the host model that produces the highest likelihood on the test data.

• Similarity metric: We derive a kernel-based similarity metric based on the behavior

models. Evaluation is done by using this kernel in classification evaluation and visual

evaluation using embedding.

• Synthesis: Measuring the fidelity of the synthetic data is done by evaluating the

likelihood of the data using the models that they were synthesized to represent. Com-

parisons with authentic and randomly-sampled data confirms the fidelity of this data.

Visual confirmation using embedding is also used.

Measurements for the statistics preserving aspect of this transformation are also pro-

vided:

• Volume distribution: Volume is a feature in our behavior model, and the anonymiza-

tion transformation preserves the shape of the distribution. This is demonstrated by

compare the distributions before and after transformation.
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• Port distribution: Port values and their transitions are features within our model,

and the clustering algorithms naturally preserve this distribution. This is demon-

strated in the experiments.

• Behavior distribution: Preservation of the behavior distribution is an intrinsic

property of our clustering algorithm. This is shown in the experiments.

• Anomaly Detection: Congruent to the above property, anomalies in the original

traffic translate to anomalous clusters in the resulting data; while the cluster itself

provides anonymity against re-attribution.

• Network-centric characteristics: The nature of our anonymization transform ap-

plies minimal obfuscation to these features, such as path MTU, TCP sequence num-

bers etc.

• Topology: While not explicitly modeled in our framework, we show how we can

naturally extend our models to make use of topological information about the network.

In addition, we show how our models related directly to well-known measurements in the

field of anonymization. These include k-anonymity, l-diversity, t-closeness, and anonymity-

set-size. So that theories that make use of these measurement would be applicable to our

framework.

Definitions and notations

All mathematical variables in bold font such as x and y denote column vectors. Matrices

are denoted using bold capital letters, such as A. Non-bold variables, such as d, denote

scalar values. We use xi to denote the ith vector of a set of vectors X = {x1, ..,xN}. The

(i, j)th component of a matrix is denoted x[i, j]. x
� denotes the transpose of x. Other

notations that are not mentioned here will be described withn the sections that they are

used.
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Chapter 4

Statistical Model for Network

Behavior
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Introduction

Behavior modeling is used in many areas of network research, and span a broad range

of topics. These range from host-similarity measurements in communication-structures

[Iliofotou et al., 2007; Tan et al., 2003] to anonymized protocol prediction [Wright et al.,

2006] and web traffic prediction [Coull et al., 2007a], to ubiquitous use in statistical anomaly-

detection [Wang et al., 2005; Fogla and Lee, 2006; Wang et al., 2006; Song et al., 2009].

This is in addition to measurement research such as route optimization, and load balancing,

to name a few. Our work is distinguishable from these others in that, rather than focusing

on a specific network measurement, our models are designed to capture a high-level profile

for host behavior – one that incorporates traffic from all exercised protocols and services, as

well as information relating to how these features relate to each other change over time. Our

goal is not to produce the most accurate model for any specific protocol, but rather one that

is sufficiently accurate to summarize the overall behavior characteristics of a network host

and quickly optimized over a large quantity of training data; importantly, it should support

a valid Euclidean similarity metric such that differences in behavior can be measured.

This goal is realized in a model which we refer to as the protocol-transition Markov

model (PTM). The PTM a state-based model that tracks the range of network services

utilized by a host (HTTP, FTP, etc) as function of TCP port values. The volume of traffic

sent on these services is measured with exponential-family emissions distributions that are

coupled to each state, and the transition among these services is tracked using a transition-

probability table. In many aspects, the PTM is similar to other state-based models in

machine learning such as the hidden Markov model. However, as we will demonstrate in

the result comparisons, the assumption of the existence of a set of latent states – representing

abstract subclasses of behavior – which work well in other feature domains, can be inefficient

in high-level network-traffic modeling. We show that superior performance is achieved by

simply coupling the states with the services directly. Another benefit of this approach is

that optimizing the model parameters for the state transitions is much simpler and can

be achieved optimally using maximum-likelihood estimation that grows with time linearly

proportion to the sample size.

This chapter discusses the features used, the models, and derivations and our motivations
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for these choices. We compare the performance of the PTM with similar models in this

category and demonstrate the superior performance of this approach. The reader is assumed

to be knowledgeable in networking fundamentals as well as statistics and machine-learning

theory.

4.1 Feature extraction

The first challenge in behavior modeling is selecting the feature set with which to model. The

features must summarize the characteristics of the traffic while, at the same time, be discrim-

inative enough in order for differences in behavior among hosts to stand out. The choice of

feature set also depends on the computation cost of of the training algorithm. Models with

assumptions on hidden states, for example, cannot be optimized using maximum likelihood

(ML), thus multiple passes over the data is necessitated using stochastic gradient-descent

algorithms such as expectation-maximization (EM). In the context of network traffic, the

dataset often spans several hundred gigabytes of information. The Columbia University

network traffic dataset, for example, contains three weeks worth of traffic and spans over

7 billion packets. Multiple low-level passes over such large-scale data is computationally

infeasible. Realistic assumptions on data-availability should also be followed: it is rare

that providers would include packet-payload content in traffic datasets. This is more often

to due privacy concerns as well as computational constraints. As an example, full packet

captures on Columbia University’s Computer Science department’s network yields well over

2Gb worth of traffic every minute – consistently. This volume is typical of modern gigabit-

speed enterprise networks. Quantifying behavior depends on time, and capturing such data

at such scale over prolonged periods is often too demanding. Most datasets, therefore,

provide only statistical records, such as Cisco Netflow captures or packet-header captures

only. This is shown in the Department of Homeland Security’s Predict.org [PREDICT,

2011] data-sharing center, where large network traffic datasets are shared amongst different

research organizations. For this and similar reasons, network research often focuses on more

abstract statistical properties; volumetric information in particular. Many prior works has

demonstrated the accuracy of using traffic volume, and packet/flow-size information.
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(a) User machine port-histogram (b) Server port-histogram

Figure 4.1: Log-scale plot of histograms for traffic-volume by ports. x < 0 range represents

Received-On ports, x ≥ 0 represents Sent-To ports. Notice the distinct behavioral patterns

between the user and server machines.

As a simple introduction, this section and the following, discusses our fundamental

approach towards volume-based behavior modeling. The feature representation is discussed

and the exponential-family class of statistical distributions is described, and the extension

into time-series modeling with hidden Markov models is covered. The limitations of this

approach is highlighted and used to lead into our main work, which is the derivation of a

more efficient time-series model that utilizes the same sort of features.

Our results show that network-behavior can be accurately modeled by observing the

amount of traffic sent to and received on each port. TCP ports are, in general, strongly

correlated with the type of service exercised by that host (SSH traffic uses port 22; HTTP

use 80). By default, the selection of TCP ports are determined by the operating system,

and not by the application or user, according to TCP specifications for well-known and

reserved ports, making TCP ports a consistent feature across different hosts. This is true

for the most part – applications and operating systems often allow the user to select different

ports, however, in the majority of cases, TCP port values is a strong indication of the type

of service being used. For example, outbound requests sent to port 80 indicate a request

for web-traffic; port 25 indicates mail traffic; port 22 indicates encrypted sessions such as
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Figure 4.2: Distribution of packet sizes during two hours worth of traffic, randomly sampled

over a period of 20 days.

SSH, and so on. Conversely, if a host receives significant traffic on port 80, it is a strong

indication that it is a web-server. The volume of traffic observed further distinguishes one

host from another.

Monitoring service-port ranges provides a view of the types of interactions a host engages

in within that time frame, and given sufficient sampling, distinct fingerprints of behavior

emerges. Figure (4.1) shows an example of this pattern. This plot shows the log-scale plot

of the port-traffic histogram of two difference machines on the Columbia network using

traffic captured across the span of one day. We see the user machine make requests to

various service ports on a foreign machine, and receiving responses back on its ephemeral

port. The server machine on the right receives several distinct types of incoming requests

and makes three main types of outbound connections: a low-port connection, most likely

SSH, an outbound request for a port in the range of 600, and replies on ephemeral ports

(in this figure, ephemeral ports are coalesced together on port 1025.

Considering the fact that TCP represents a state-full session layer, different classes

of packets exist. These are packets that transfer content and those that manipulate the

state of the session, such as SYN, ACK, FIN packets. When modeling behavior based



CHAPTER 4. STATISTICAL MODEL FOR NETWORK BEHAVIOR 44

Figure 4.3: Activity-grid representation: 288 five-minute port histograms; a time-series

feature representation for network traffic.

on packet-counts alone, the distribution of packet types is ignored. This is a potential

oversight given that packet sizes have been shown to be a discriminative factor in protocol

classification [Wright et al., 2006]. However, with respect to high-level behavior modeling

at the service-distribution layer – which is the scope of our study – the level of detail at this

view does not require the use of packet sizes. Figure (4.2) demonstrates this point. The

distribution of packet sizes is plotted for our network, sampled over a period of two hours

at random intervals over the course of 20 days (our network uses Ethernet, i.e. 1500-byte

MTU.) When agnostic to specific protocols (HTTP, FTP,...etc), the overall distribution of

packets sizes is clearly a bimodal distribution representing the two distinct classes previously

mentioned. Overall, the true volume of data transferred is related to the packet count by a

multiplicative factor.

Given that host behavior is changing process, a holistic view of traffic at the granularity

of a single day, such as the one shown in figure (4.1), cannot capture a representation of

this change. A time-varying view is necessary – one that shows how these activities change

across the span of hours, days, and possibly weeks. The straightforward extension of this

representation is to capture the histogram on smaller intervals and use a collection of such
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intervals as the feature set. Figure (4.3) shows the time-varying activity grid representation.

This structure is composed of 288 distinct port histograms, captured at five-minute intervals

throughout the day, beginning at 00:00:00 of the day and ending at 23:59:59 in the format

of Hour:Minute:Second. Using 2050 features to represent input and output activity gives us

a 2050× 288 matrix. Similar feature sets are discussed in [Coull et al., 2011]. The columns

within the grid represent snapshots of behavior across time. The next section discusses

time-series models that can fit to this type of data. This form of representation is often

very sparse, and model estimation can be an ill-posed problem. The following subsection

discusses how to compress this data using a sub-space projection-based method.

4.1.1 Dimensionality reduction with sub-space projection

For the vast majority of hosts, the 2050 × 288 activity matrix is sparse, with 90% of the

entries unpopulated on average. This is due to the host not observing any traffic in certain

ports, and/or at certain times. This sparsity yields two sets of problems. First, general-

ization performance becomes a problem, as it is known that as the dimensionality of the

training data increases, so does the requirement for more instances of such data, to avoid

under-fitting the models. The second problem is the memory requirement – using one full

matrix per training day, roughly 2Mb worth of memory would be required per host. A trace

file for enterprise-level traffic dumps typically consists of hundreds of thousands of hosts,

and in our tests using a subset of Columbia’s traffic with roughly 7,000 hosts, full-memory

consumption and disk-thrashing occurs roughly 10 seconds into the processing of the al-

gorithm in this simple setting. To solve this problem, dimensionality-reduction algorithms

can be used to compress the data into a smaller subspace where under-fitting is less of an

issue, and memory requirements are much more relaxed. The methods discussed in this

section consist of subspace projection-based algorithms. This approach consists of learning

a projection matrix P such that the new samples are derived by the following linear relation:

Y = P
T (x− µ) , µ =

1

N

N�

i=1

xi.

Where x is an instance of an activity matrix. As this is a linear projection, the columns

of P are constrained to be orthonormal. For Principal Component Analysis (PCA), the
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columns of P consists of the top eigenvectors of the covariance matrix Σ, recovered from

the samples:

Σ =
1

N

N�

i=1

(xi − µ) (xi − µ)T .

Further, the Nyström method for low-rank approximations [Zhang et al., 2008] can be

used to obtain an estimate for the covariance matrix at significantly less computational

costs with some sacrifice of precision. Kernel-based dimensionality reduction is discussed in

a subsequent section. We propose to further study this and other dimensionality reduction

techniques, including but not limited to, discriminant analysis-based projection methods

such as Fisher Linear Discriminant which maximizes the inter-cluster separation instead of

maximizing the covariance in the subspace, as in the PCA case.

A significantly more computationally-efficient approach – one that is more suitable for

large network-scale datasets – is to use Random Projection (RP), where P is randomly

initialized and then made orthonormal via the Gram-Schmidt process. In practice, ran-

dom projection is a much faster and simpler approach that yields results comparable with

PCA. Given the type of distribution, bounds on the performance of RP in relation to PCA

are available, these are a function of the difference in the eigenvalues of the covariance

matrix [Dasgupta, 2000].

4.2 Volume distributions modeling

Time-series models are typically composed of two parts: a state representation and tran-

sition model and an independent emissions model that is coupled with each state. This

feature is present in discrete latent-space system such as hidden Markov models [Rabiner,

1989] which uses discrete sets of hidden states which must be summed over when performing

inference, as well as continuous systems such as the Linear Dynamical System [Ghahramani

and Hinton, 1996] that uses a continuous state model. Fundamentally, time-series models

assume the data is generated from a closed system with multiple states, that the emissions

model coupled with any given state is responsible for the observed output data. Shifts in

output patterns are attributed to transitions of (potentially latent) internal states. For vol-
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umetric distribution modeling, we evaluate the performance of several related distributions

that represent fundamentally different assumptions on how the data is generated. These

distributions are closely related methods, drawn from the exponential-family of distribu-

tions. Evaluation of these methods provides insight into how to best interpret network

traffic features, and are used as motivation to derive the PTM in a later section.

Given that counting features are used, the multinomial distribution is a natural choice.

The multivariate multinomial distribution calculates the probability of each sample based

on the ratio of the vector components.

p(x|θ) = n!

x(1)!, ...,x(k)!
θ(1)x(1) · · · θ(k)x(k),

k�

i=1

x(i) = n (4.1)

The θ variable constitutes the sufficient statistics of this model and the normalized ratios

of events x(i), ...,x(k) in the training data. Multinomial distributions model discrete event

occurrences as separate independent events, and proportion of these occurrences in relation

to one-another. This entails fingerprinting a host’s network behavior based on the ratio of

services invoked, at each time step, as opposed of absolute volume. This allows hosts with

similar distributions in service-use but dissimilar in volume, such the difference between

as a small web server a large one, to appear similar to one another independent of exact

volume.

The second most relevant model is the multivariate Gaussian distribution, also known

as the multivariate-normal (MVN) distribution. This model is used when we observe the

emission as a single independent-identically-distributed (i.i.d.) multivariate variable, and

is useful when absolute volumes are tracked as a model of behavior – where the volume-of-

traffic and not the ratio-of-services is considered discriminative. The MVN model in this

case, treats the observation at each time-step as a single draw from a joint distribution.

The MVN is also a continuous model, which allows more flexibility in working with feature

set transformations such as sub-space projects and other preprocessing functions.

p(x|µ,Σ) = 1

(2π)d/2
�
|Σ|

exp

�
−1

2
(x− µ)TΣ−1(x− µ)

�
(4.2)

The third, and simplest, model is the Discrete Conditional Probability Table (DCPT).

This model is used more in computational biology and natural language processing, where
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Figure 4.4: Graphical representation of the hidden Markov model. Shaded nodes represent

observable emissions. Unshaded nodes represent hidden states.

each emissions can be considered as a discrete symbol from a closed alphabet. In this case,

both the emissions model and the transition model are represented by probability tables.

p(a|b) = T(a, b),
�

j

T(i, j) = 1 ∀i (4.3)

The DCPT approach was studied in the earliest implementations of the hidden Markov

model. It is most appropriate when feature sets can be represented as discrete events.

With volumetric information, some pre-processing is necessary in order to transform packet

counts into discrete symbols. In out experiments, we clustered the range of volumes and

assigned unique symbols to each entry based on the cluster label. In general, the DCPT

method can be used where a separate system assigns unique labels to discrete events in

network traffic, the appearance of these events can then be modeled in a time-series.

4.3 Time-series extension with hidden Markov models

Given the emissions models described in the previous section, the hidden Markov model

(HMM) involves modeling the transitions between a set of hidden states, where each state

is coupled with an independent emissions model. An HMM is a Markov-transition model

where the process transitions between states in an unobservable path; where each state is

conditionally dependent on the previous state.
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Figure (4.4) shows the graphical representation for an HMM’s dependency structure.

The un-shaded nodes represent unobserved hidden states. A Markov-dependency is used

to model the transition between each subsequent state. The shaded node at each state

represents the emissions model. This is a model described in the previous section, such as

one from the exponential family of distributions.

Consider an HMM with multi-variate Gaussian emissions (x). The probability of ob-

serving a sequence of such emissions is denoted as p(X|θ), where X = {x1, . . . ,xT } presents

the a sequence of observations of length T , and each observation vector is xt ∈ �d. This

model assumes that xt at each time step t was emitted from one of M independent uni-

modal Gaussian models (qt = {1, . . . ,M}). This HMM is specified by the parameters:

θ = {π,α,µ,Σ}. These variables represent the:

• Initial-state probability distribution πi = p(q0 = i), i = 1 . . .M

• The state transition probability matrix α ∈ �M×M where αij = p(qt = j|qt−1 = i)

• The Gaussian emission model p(xt|qt = i) = N (xt|µi,Σi), for i = 1 . . .M , where

µi ∈ �d and Σi ∈ �d×d are the mean and covariance parameters of the Gaussian

model in state i.

We use µ = {µ1, . . . ,µM} and Σ = {Σ1, . . . ,ΣM} for short. The scalar variable d is

the dimensionality of x. Since the exact value of qt is unknown it is referred to as a hidden

state. The transition through a sequence of hidden states q = {q1, . . . , qT } and the emissions

at each step determines the generation of the observed sequence X. Further, because the

exact hidden states are unknown, p(X|θ) must be evaluated over all possible combinations

of the hidden states (q), which translates to evaluating the emissions probability at each

setting and summing over all possible settings in order find the normalized probability for

the given sample X:

p(X|θ) =
�

q0

· · ·
�

qT

p(x0|q0)p(q0)
T�

t=1

p(xt|qt)p(qt|qt−1). (4.4)

Brute-force evaluation of equation (4.4) would normally require exponential time, how-

ever, dynamic-programming-based methods such as the Junction-Tree algorithm (JTA) or
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the Forward-backward algorithm, is often used to compute this quantity efficiently.

Estimating the parameter (θ) of an HMM is typically done via expectation maximization

(EM). This process includes two iterative steps: the expectation step where the likelihood

of the data is calculated using the current estimate of the model parameters and a maxi-

mization step where the model parameter is adjusted by moving it in the gradient of the

likelihood function over the training data. The EM update rules are conditioned on the

emissions models are derived differently for each model. Our derivations for the HMM with

multi-variate Gaussian emissions are presented here.

The E-step uses a forward pass to obtain posterior marginals over the hidden states

given the observations:

γt(i) = p(qt = si|xn, θ) (4.5)

ξt(i, j) = p(qt = si, qt+1 = sj |xn, θ). (4.6)

A hat-variable (θ̂) represents a new estimation of that variable based on the previous

iteration of EM. The M-step updates the parameters θ using these E-step marginals as

follows:

π̂i = γ1(i) (4.7)

α̂ij =

�T−1
t=1 ξt(i, j)�T−1

t=1

�M
j=1 ξt(i, j)

(4.8)

µ̂i =

�T
t=1 γt(i)xt�T
t=1 γt(i)

(4.9)

Σ̂i =

�T
t=1 γt(i)(xt − µi)(xt − µi)

�
�T

t=1 γt(i)
. (4.10)

The E and M steps are repeated until the likelihood value p(X|θ) of the training dataset

X with model θ does not improve. The above derivation yields the parameter update rules

for the HMM with MVN emissions. As previously stated, the benefit of using distributions

from the same exponential-family class means that update rules for HMMs with Multino-

mial, DCPT, emissions are derived in the same way; these derivations are simple and (given

that the MVN model is the only one relevant in further sections) are omitted for brevity.
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4.3.1 Inferring properties about network data from HMM performance

The purpose of this section is to show how the performance disparity between these models

infers certain properties of network data and their effect on these models. For testing,

we collected three weeks of worth of packet-header-only traffic from Columbia University’s

computer science department’s network using a SPAN port; this dataset is referred to in this

thesis as the CUCS dataset. Over the course of three weeks in 2010, over 1.6 millions hosts

were observed, generating over 7 billion packets and spanning over a terra-byte of data.

Much processing was needed in order to extra useful information for this dataset. First, a

subnet of Columbia hosts must be isolated – otherwise the top hosts in the dataset would

be foreign hosts such as google.com. In addition, the packet-count distribution is heavily

skewed towards a small set of hosts that generate the majority of traffic – a property of

most networks. After isolating the traffic of a specific Columbia class C network, and taking

the top hosts with sufficient amount of traffic (details discussed in a later subsection), we

are left with 80 Columbia hosts that generate the majority of the traffic observed on the

network. These data processing steps are described in more detail in § 4.6.1.

These models evaluated by measuring the accuracy of using these models to classify

traffic belonging to a particular host (unseen during training) back to that host during test-

ing. The clustering algorithms presented later in this thesis which make up the foundation

of the behavior-based anonymity-by-crowds algorithm, is determined by the accuracy of

these models, as accurate models indicate accurate representations of behavior, and thus

accurate measurements of similarity. The classification experiment is set up as a one-vs.-all

matching problem where each test sample is matched against the model of every host. The

label is assigned based on the model that yields the highest likelihood value. The baseline

performance for this experiment, using random guessing, would yield 1.25% accuracy. In

our experiments, 80% of the traffic for a host is randomly chosen as the training set, and

20% as the test set. Classification is performed at the day-granularity, i.e. roughly two

weeks worth of traffic are used for training and the third week is used for testing. The re-

ported results are each averages of five independent runs. (Note: Subsequent experiments

in later sections are done on segments of traffic at session-level granularity.)

Table (4.4) shows the results from modeling network traffic as slices port activity across
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Data representation Baseline G-HMM M-HMM D-HMM G-Vec.

CUCS Raw 1.25% — 22% 25% 82%

CUCS PCA 1.25% 10% — — 63%

CUCS SESSION 1.25% 28% 22% 25% 80%

Table 4.1: Classification performance of different HMMs on CUCS 80 vs. 80 dataset at the

day-granularity. Dashed entries indicate infeasible settings. “G-Vec.” refers to a Gaussian

vector model.

time and tracking the transition of these emissions across time. Each slice of network activity

represents statistical measurements of port-traffic volume for a five-minute interval, with 288

such intervals present per day. “CUCS Raw” indicates raw packet counts as features. Gaps

of inactivity on the network would be represented with zero-valued entries in these samples.

“CUCS PCA” indicates normalized PCA-projected features, and “CUCS Session” indicates

PCA-projected features which were pre-processes to be gapless, which translates to explicitly

not attempting to model periods of network inactivity. In the table, the “G-HMM” column

indicates the performance of an HMM with a multivariate-Gaussian emissions distribution.

Likewise, “M-HMM” represents an HMM with a Multinomial vector emissions distribution,

and D-HMM represents a scalar emissions model where the output has been translated

to discrete symbols; this was done by thresholding the aggregate volume of the observed

traffic and assigning different symbols to the different volumes of traffic observed, by order

of magnitude. “G-Vec.” indicates a single multivariate Gaussian model.

A range hidden state sizes for the HMMs were evaluated and the best results are shown;

typically no improvement was noted beyond 5 hidden states. A minimum state count of 2

was used, as an HMM with a single state does not have a state-transition property and is

equivalent to the multivariate Gaussian (“G-Vec.”) distribution. The results of Table (4.4)

can be used to infer several useful properties about network traffic data. The fact that the

Gaussian vector model outperformed all of the hidden Markov models is surprising, at first.

However, an examination of the distribution of network traffic reveals the reason behind

this. Network traffic, unlike other domains where continuous emissions are modeled using

time-series data, possesses extreme sparsity. The amount of time a user spends active on a
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machine is actually fairly sparse, with periods of sharp bursts of activity. When modeling

activity conditioned on time, as in the case of the activity grid, this translates to large

numbers of zero-vector emissions. The models, therefore, lock on to a zero-emissions state

that contains a high self-transition probability. This essentially means that the HMMs

are tracking the behavior for when a host is not active, which induces inaccuracy in the

model considering the fact that periods of inactivity is a prominent characteristic if all host

behavior.

The sparsity of the data was found to strongly influences model accuracy. When the data

is processed to reduce sparsity, through PCA, and a pseudo “sessionization” process, where

we simply dropped all of the gaps in the traffic, performance of the HMMs improved. The

Gaussian vector case is included here for comparison. While it is useful as a classification

technique, the PTM model that we propose in the following section outperforms it in further

evaluation. In addition, the PTM model is a proper time-series model and, as such, captures

the transitional information in the behavior profile, and allows synthesis of time-series data

whereas the Gaussian vector model does not.

4.4 The Protocol-transition Markov model

The experiment results with HMMs have demonstrated that hidden-state models, when

trained over sparse traffic, can lead to poor fitting and underperformance. This section

discusses what can be learned from these results and how to fix these problems in a new

model derivation. A new time-series model and feature representation, which overcomes

this sparsity problem and yields better performance overall, is presented in the form of the

protocol-transition Markov model (PTM), which operates at a higher-level view of the data,

using flow-layer statistics.

4.4.1 From packets to flow-statistics

The HMM experiments have shown that attempting to fit hidden state models on sparse

traffic can lead to poor performance. Examining the parameters of the trained models reveal

that the hidden states tend to lock onto periods of inactivity as a feature in the behavior
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representation – essentially tracking the frequency with which a host is inactive. This is

an undesired effect as it diminishes the discriminative aspect of the model: long periods

of inactivity is common among all hosts, this similarity was overtaking the characteristics

of the actual traffic behavior. When the gaps were removed, the performance improved,

though still not achieving the same performance level as a simple Gaussian vector model

that tracked the aggregate sum. Additionally, the size of the emissions model compounds

the problem; without compression, this model is trained on 2050 × 1-sized vectors, which

means at least 2050 training samples are necessary in order to obtain a full rank estimate

of the covariance matrix in the Gaussian distributions. In the activity-grid representation,

this translates to over seven-days worth to traffic as a minimum requirement, making under-

fitting a real possibility. Improvement in performance was noted as sparsity was removed by

removing the gaps in the traffic due with PCA and sessionization. Given that network data

is often sparse, unaligned and captured only over short periods, a new model that operates

at the flow-statistics layer is introduced. This model is trained on session information given

in Netflow like format:

x ∈ {timestamp, srcaddr, srcport, dstaddr,dstport,pktcount}.

The above representation is a record of a flow connection. This information format is

available directly from Netflow. When only packet captures are available, these session-

layer statistics can be recovered by two means: the first is replaying the packets into a

flow-exporter using tools such as softflowd and nfcapd which gives you a pcap-to-netflow

conversion, and the second – simpler – approach is to use session-extractor tool such as

tcptrace. Tcptrace reassembles the sessions and returns the statistics in the format above.

The network data is then represented as a time-ordered set of these flow-layer records

X = {x1, . . . ,xN}.

The PTM learns a state-transition model using only the src and destination port pair-

ings, along with the packet count feature. The models are trained on a per-host basis, so

the source IP address is unnecessary, and our model is agnostic to outbound destinations –

tracking the aggregate profile of all outbound behavior, therefore the destination IP address

is also unnecessary. Further, the src port distribution is tracked only for the purpose of

synthesis. The outbound destination port and the packet count are essentially the sufficient
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Figure 4.5: Graphical representation of the latent-state flow-transition model.

statistics for this model.

4.4.2 The protocol-transition Markov model

Using this feature set the full latent-state flow-transition model is a hidden-state Markov

model with three inter-dependent observed emissions variables: the source port, the des-

tination port, and the flow size. The graphical representation of this model is shown in

Figure (4.5). The source and destination pairings identify a unique network application;

coupled with the flow size these produce a statistical record which represents a segment of

that host’s behavior profile. Under this model, a latent variable s represents the current be-

havior state of the host. The observed output (or “emission”) for each state consists of the

flow statistics, i.e. the source and destination ports, and the flow size, represented by the

number of packets observed. Factoring this graphical model yields the following equation.

Let x = {x1, x2, ..., xT }, s = {s1, s2, ..., sT }, d = {d1, d2, ..., dT }, and h = {h1, h2, ..., hT }.

Thus we have:



CHAPTER 4. STATISTICAL MODEL FOR NETWORK BEHAVIOR 56

p(x, s,d|h,Θ) =
�

h1

· · ·
�

hT

T�

t=2

p(xt|dt, st, ht)p(dt|ht)p(st|ht)p(ht|ht−1). (4.11)

Where p(xt|dt, st, ht), p(dt|ht), p(st|ht) are the emissions probabilities and p(ht|ht−1 is

the transition probability. Θ represents the set of all model parameters for these inde-

pendent distributions. This full factorization is unnecessarily complex given the nature

of network behavior. Using some expert-knowledge of network protocols, it is possible to

reduce the model by conditioning both the flow-size and source-port emissions entirely on

the destination-port emission. Next we decouple the dependency between the flow-size and

the source port. This is reasonable because, given the TCP specification, the destination

port represents the type of service requested by that host. Conditioning behavior based on

the characteristics of outbound traffic couples the model with the behavior of the type of

services requested by the host, and the types of responses sent by the host. Conversely,

conditioning the behavior based on input is less accurate as the host does not determine

the type of input it receives; rather, that is the behavior profile for the responding host.

Trimming the model in this manner yields the following, more simplified, representation

which is factorized based solely on the observed variables, and which allows both easier

inference and parameter estimation.

The graphical model, which we call the protocol-transition Markov model (PTM), shown

in figure (4.6), takes the following form:

p(d,x|Θ) = p(d1)p(x1|d1)
T�

t=2

p(dt|dt−1)p(xt|dt). (4.12)

Observe that, in Figure (4.6), that inference does not depend on the source variable. The

PTM tracks the dynamics of a system as a transition between specific application services

represented by distinguishable protocols (FTP → HTTP → SMTP, ...). dt represent the

observed destination port of the system at time-step t. Let xt represents the observed

flow-size and is determined by a separate emissions distribution conditioned on the state

dt. The overall interaction is modeled now as a fully observed Markov process. In order

to handle the range of behavior types, implicitly assumed to exist given the original latent-

space representation, a scalar Gaussian-mixture model (GMM) is used for the flow-size
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Figure 4.6: Graphical representation of the reduced fully-observed protocol-transition

Markov model.

distribution p(x|d):

p(x|θ) =
M�

i=1

1�
2πσ2

i

exp

�
−(x− µi)2

2σ2
i

�
. (4.13)

Figure (4.7) diagrams this interaction. A mixture model allows us to implicitly capture

an estimate of the different types of traffic exchanges observed under a particular protocol.

For example, the model-state for port 80 would capture a distribution on the sizes of websites

visited; the state for port 25 would track a distribution on the lengths of emails sent,

and so forth. The emissions model can be easily estimated, per state, using Expectation

Maximization (EM). Since the value of the state is known, parameter estimation for the

state-transition probability table T (a, b) = p(st|st−1) can be done analytically. Putting

these together we obtain the full probability distribution s = {s1, ..., sT },x = {x1, ..., xT }

and Θ = {θ1, ..., θM}:
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Figure 4.7: Conceptual diagram of the PTM.

p(s1, xt) =
�

t,k

γt(i, k)
K�

k=1

N (x1|θ1,k) (4.14)

p(s,x|Θ) = p(s1, xt)
T�

t=2

T (st−1|st)
M�

i=1

N (xt|θi,k). (4.15)

For the emissions model of any given state (whose parameter is represented by θi), we

need to track table of source and destination port pairings. Let bi,j = p(dst = j|src = i), this

tracks the distribution of source ports which sent traffic to the destination port represented

by this state.Table b is estimated in the same manner as T (a, b). This gives us a final set

of parameters that make up the model θ = {b,π1, µ1,σ1, ...,πM , µM ,σM}.

4.4.3 Learning the parameters of the PTM

Optimizing the PTM parameters is also via simple expectation-maximization which opti-

mizes the log-likelihood function on p(X|Θ) over training dataset D

argmax
Θ

p(X|Θ) = argmax
Θ

�

D
log

�
T�

t=2

T (st−1|st)
M�

i=1

N (xt|θi,k)
�
. (4.16)
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Optimal parameter estimation in the PTM model is dramatically simpler than the HMM

case because the states themselves are observed. In the case of the HMM, the hidden state

are abstract, and implicitly track sub-classes of similar emissions distributions, therefore

their estimation is not subject to maximum likelihood. for the PTM, the states are exactly

dependent on the network service, which is identified based on the observable port numbers.

This means that optimizing T (a, b), in the ML estimation, consists of simply tracking the

port-transition frequencies as follows:

T (a, b) =
#(si = b, si−1 = a)

#(si = b, si−1 = a) + #(si �= b, si−1 = a)
. (4.17)

#(si = b, si−1 = a) in the above equation is a function that counts the number of times

state b follows state a in the training data (how many times a user transitions from FTP to

HTTP, for example). For each state, learning the mixture-of-Gaussians emissions model is

done via standard EM. The E-step uses a forward pass to obtain posterior marginals over

the hidden states given the observations:

γt(i) = p(qt = si|xn, θ) (4.18)

ξt(i, j) = p(qt = si, qt+1 = sj |xn, θ). (4.19)

A hat-variable (θ̂) represents a new estimation of that variable based on the previous

iteration of EM. The M-step updates the parameters θ using these E-step marginals as

follows:

π̂i = γ1(i) (4.20)

α̂ij =

�T−1
t=1 ξt(i, j)�T−1

t=1

�M
j=1 ξt(i, j)

(4.21)

µi =

�T
t=1 γt(i)xt�T
t=1 γt(i)

(4.22)

σ̂i =

�T
t=1 γt(i)(xt − µi)(xt − µi)�T

t=1 γt(i)
. (4.23)

The E and M steps are repeated until the likelihood value p(X|θ) of the training dataset

X with model θ does not improve. EM for the PTM is very simple due to the fact that the
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emissions is a scalar distribution (representing packet counts.) This means that parameter

estimation is both fast and less prone to numerical errors.

4.4.4 Multi-step Markov transitions

The default PTM models the traffic using first-order Markov transitions. This means that

each traffic instance is conditionally depending solely on the previous sequence. At the flow-

level, and for offline data, this assumption in the dependency structure is not unreasonable,

given the level of abstraction found at this layer. Each flow entry capture behavior over

a small segments of time and is therefore a smoother representation of behavior than the

packet layer; the first-order dependency assumption at the packet-layer, for example, would

be much less reasonable. Nevertheless, the extension of this model into a multi-step Markov

model is also possible. This can be done by adjusting the dependency based on multiple-time

steps as opposed to the previous timestep:

p(d,x|Θ) = p(d1)p(x1|d1)
T�

t=w+1

p(dt|dt−1, dt−2, . . . , dt−w)p(xt|dt). (4.24)

Here w represents the Markov step size; a step size of 5 would indicate that the prob-

ability of transition into the current state is conditionally dependent on the five previous

instances. However, this would also increase the size of the transition model exponen-

tially. If a first-order Markov transition table is two dimensions, then a second-order

transition model would be geometrically represented as a cube of transition probabili-

ties, and so on. One way to mitigate this is to use the product of the marginals in-

stead p(dt|dt−1, dt−2, . . . , dt−w) ∝ p(dt|dt−1)p(dt|dt−2), ..., p(dt|dt−w). This would change

the model to the following form:

p(d,x|Θ) = p(d1)p(x1|d1)
T�

t=w+1

p(xt|dt)
w�

j=1

p(dt|dt−j). (4.25)

This would require additional normalization complexity, however if we are only inter-

ested in comparing likelihood score for classification or similarity measurements, then the

normalization factor can be ignored.
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4.5 Technical and implementation details

If we track transition of services based on port values then, in theory, we could have a

unmanageable 65, 536 × 65, 536-sized transition matrix. In practice, this is not the case

given the design of TCP. There are three types of ports defined in TCP, referred to as

the “well known,” “registered,” and “ephemeral” ports. Each type of port has its own

predetermined range. “Well-known” ports extend from port 0 to port 1024 and are used by

very common network services, such as SSH. The “registered” range extends from 1,025 to

49,151 and is used by third party applications; Bittorrent clients use port 6900, for example.

Finally all other services with no registered ports are assigned a randomly selected port from

the “ephemeral” range of 49,152 to 65,536. Given this implementation design, two things

become apparent. First, since the “well-known” range tend to experience more stable and

dense traffic activity it is best to maintain a one-to-one feature mapping. That is, features

relating to SSH should not be combined with features relating to FTP. Second, since the

“ephemeral” range maintains no correlation between the specific service and the port used,

we can collapse all activity in this range into a single bin.

Feature extraction for the “registered” range is not well defined for several reasons.

First, TCP/IP implementations are not consistent across all platforms and overlapping reg-

istration does occur. In addition, different operating systems will allocate ports differently

based on implementation, version, and the third-party application behavior. Third, it is

not a strict requirement for services to use the ports that they are registered to. In our

work, we use a histogram to represent this range and bin services based on their numerical

proximity. IF we have 49, 151− 1, 025 = 48, 126 registered ports, and a 100-bin histogram,

we would accumulate activity for all ports between 1025-1124 into the first bin of the his-

togram, 1125-1224 in the second bin, and so on. The results in this paper were derived

from models using 20-bin histograms, chosen because port-activity is typically very sparse

unless some sort of port-scanning activity is occurring. On average, most hosts typically use

only a handful of services (SMTP, HTTP, etc), mostly in the “well known” range. Sparsity

is particularly pronounced in the “registered” range in practice. Using large histograms

would induce higher training-data requirements on the machine-learning algorithms and

makes accurate parameter estimation more ill-posed.
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When measuring volume, network traffic can fluctuate dramatically for particular hosts

even when measuring the same services. This is due to the exchange of protocol-control

and data messages, which can induce a large variance in the statistical model and reduce

modeling accuracy. To compensate, we use a log-squashing function on the volume feature.

Let x represent the volume of activity that a particular service observes for a given session,

instead of measuring x in our models we measure log(x). Finally, our model tracks the

distribution of port pairings. For each destination port we track an independent set of

associated source ports from where we have observed traffic. A problem arises when a

state is encountered in testing that was not seen in training, for example the appearance

of HTTP traffic where only SMTP was observed during training, then no entry for that

protocol would exist in the trained model. This is solved by adding a single dummy-state

to represent all protocols unseen during training; with a fixed-value set for both entry- and

exit- transition and emission probabilities.

4.6 Evaluations

We evaluate the performance of the PTM model over six different network traffic datasets.

Our results show that the PTM outperforms other standard machine learning techniques

by notable margins. Table (4.2) summarizes the accuracy comparison results.

We evaluated our model on a range of network traffic datasets. These include the well-

known LBNL dataset [Allman et al., 2005], collections from West Point and NSA [United

States Military Academy, 2009], and University traffic from CU and GMU. For each host,

multiple 500-entry segments of Netflow were randomly sampled for testing data, while the

rest was used for training. When a dataset can in the form of packet-traces, we converted

them into Netflow format.

4.6.1 Datasets

Columbia University dataset The Columbia University dataset consists of traffic cap-

tured over the course of three weeks in the March of 2010. The traffic was captured from

a SPAN port and covers a significant portion of traffic from the Computer Science depart-



CHAPTER 4. STATISTICAL MODEL FOR NETWORK BEHAVIOR 63

ment, containing over 7 billion packets. Only packet headers over TCP were captured in this

dataset. George Mason University dataset The George Mason University dataset was

similarly captured and contains the traffic from the Computer Science department at that

university. Only TCP headers were captured. University of Michigan/Merritt dataset

was obtained through predict.org [PREDICT, 2011] and contained a single day’s worth of

traffic from the University of Michigan’s networks. The Lawrence Berkley National

Laboratories (LBNL) dataset comes from their enterprise tracing project [Allman et

al., 2005; Pang et al., 2005] and contains traffic that spanned several days across capture

in 2004 and 2005. The West Point dataset and National Security Agency (NSA)

dataset were obtained from the same source at [United States Military Academy, 2009].

These are general research datasets containing instances of intrusion-related activity such

as port-scans. Given that several datasets only had a day’s worth of traffic, we extract

day-level subsampling of data from each dataset In order to keep experiments consistent,

results over larger datasets such as GMU and CUCS are averages over randomized sam-

plings of days. For each day’s traffic, if the dataset was available only in packet format,

we performed a packet-to-netflow translation using nfcapd and softflowd to obtain the

flow-layer statistical representation discussed in the previous section. Network traffic is

often extremely skewed in terms of volume, where a small number of hosts is responsible

for generating the majority of the traffic.

The majority of hosts on the network did not contain more than 1000 flow connections.

In order for us to accurately evaluate the performance of our models, thresholds were used

to filter out hosts with too little traffic in order to avoid unreliable performance estimations

due to underfiting. This entailed a 1,000-flow threshold for the smaller datasets such as

NSA and West Point, and a 5,000-flow limit for the larger university datasets. For the

larger university datasets, we filtered the data by identifying class-C subnets belonging to

that university within the dataset. This is done in order to filter out foreign hosts, not

belonging to that network. For example, large amounts of web traffic to google would make

that host appear very prominent in the traffic dataset; we are only interested in evaluating

hosts belonging to these individual organizations, and not foreign connections. Given that

the IP addresses were obfuscated, this estimation was done by observing the distribution
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Dataset Num hosts Baseline Gaussian kNN PTM

West Point Border 47 2.13% 36.0% 36.5% 73%

NSA Capture 45 2.22% 31.1% 34.1% 45%

LBNL Enterprise 35 2.86% 49.4% 51.2% 86%

Columbia Univ. 82 1.22% 40.5% 40.9% 86%

George Mason Univ. 65 1.54% 35.5% 39.6% 85%

UMich. Merit 135 0.74% 44.2% 53.0% 63%

Table 4.2: Likehood-evaluation-based classification accuracy of comparable models across

datasets.

of IP prefixes. Large groups with similar prefix and diverse outbound distributions most

likely to represent class C subnets. This was done under the assumption that a prefix-

preserving IP transformation was used to obfuscate the addressed. A related study on

identifying networks based on IP prefixes in anonymized traffic is provided by [Burkhart et

al., 2008]. After filtering in this manner, we can be confident that the hosts we’ve extracted

are representative of their networks as well as contain enough traffic such that the models

can be reliably evaluated.

4.6.2 Experiment parameters

Our classification experiment follows standard practice: the model that yielded the highest

likelihood on the test sample labels the sample as belonging to that particular class. To

understand this notion of accuracy: if there are 100 hosts, a baseline would yield a 1%

chance of a correct random guess. Table (4.2) shows the performance of the PT-Markov

model. This model consistently achieves significantly higher performance than the baseline,

as well as top-performing alternative models in this field. The use of Netflow-like statistics

permits training with significantly less data than alternative time-series models such as

HMMs, which could require data on the order of days due to sparsity problems (discussed

later.) Our results show that given any traffic sample, on the order of 20 minutes to an

hour, our models can attribute that traffic to the true host, from among 82, with 76%

accuracy, on Columbia’s network. This quantifies the degree to which our models are
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Dataset 1 - 10 11 - 20 21 - 50 50-100 100-200 200-1000 1000+

LBNL Enterprise 20 5 0 1 0 9 0

NSA Capture 23 1 2 0 1 2 16

West Point Border 27 11 0 0 0 1 8

George Mason Univ. 28 26 10 1 0 0 0

Columbia Univ. 50 28 4 0 0 0 0

UMich. Merit 59 34 27 3 2 10 0

Table 4.3: Distribution of model sizes (number of port-bins) per dataset.

correctly capturing statistical representations for the idiosyncrasies of network behavior.

The low-performance on the NSA dataset can be attributed largely to session-reconstruction

errors. These datasets were released for very different purposes and coalescing them into

a standard form proved difficult at times. Poor reconstruction from PCAP to Netflow-like

statistics can lead to inaccurate records on session duration, size, etc., and this inaccuracy

influenced poorer performance on our model for that particular dataset.

Table (4.3) summarizes the distribution of model sizes observed in these datasets. As

we can see, the vast majority of hosts observe very little variance in the amount of services

executed. Without model, it’s obvious to see which are hosts are port-scanners given their

large model size which is based on outbound behavior.

In addition, compared out model to hidden Markov models. To achieve this, we first

had to reshape the data into a format that can be used with an HMM. This required

delineating the time-series data into segments of network-traffic so that an emissions model

for the HMM may be trained. We use the Columbia dataset for this experiment, because

unlike the other datasets, it was captured over the course of three weeks and the data

was already divided into multiple days, thus a minimum amount of data mangling needed

to be done to ensure little influence on the results. We used a data format composed of

288 distinct port histograms, each estimated in the same format as the PTM, captured at

five-minute intervals throughout the day; beginning at 00:00:00 of the day and ending at

23:59:59 (Hour:Minute:Second).

Results comparison with HMM models are given in Table (4.4). “Raw” indicates un-
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Baseline G-HMM M-HMM D-HMM PTM

Columbia Univ. Raw 1.22% — 22% 25% 76%

Columbia Univ. PCA 1.22% 10% — — —

Columbia Univ. SESSION 1.22% 28% 22% 25% —

Table 4.4: Classification performance comparison of comparable time-series models on

CUCS traffic. Dashed entries indicate infeasible settings. PTM dramatically outperforms

HMMs.

processed raw packet-count features. “PCA” indicates normalized PCA-projected features,

and “Session” indicates PCA project features which were pre-processes to be gap-less –

making no attempt to model off-periods in network activity. As Table (4.4) shows, the

PTM performs considerably better than the HMM. A range of different types of HMMs

were tested, using different emissions models. G-HMM represents HMMs with Gaussian

emissions, similar to the PTM, M-HMM represents those with Multinomial emissions, and

D-HMM represents those with Discrete Probability Tables emissions. The optimization

functions of these HMMs were derived in the same manner as the PTM, except with an

additional EM step to estimate the hidden state parameters. As we can see, the PTM

outperformed the HMM universally. This result is mainly due to the sparsity problem that

plague network traffic. Because we do not always have continuous streams of network data,

across multiple days, gaps in the traffic might be implicitly captured as a hidden state by

learning algorithm of the HMM. The PTM on the other hand simply takes advantage of

the fact that the states are tied with the services, and thus using the port values, we know

exactly which state we are in. Thus, the state transition table can be optimally estimated

and we can easily use up to several hundred states without any problems.

Concluding remarks

This results contained within this chapter demonstrated the potential for using time-series

models for network behavior modeling. While we have had success with the PTM in this re-

search problem, we do expect that in future, research more accurate models will be derived

that outperform this model. The value of the kernel-based approach is not bounded by
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the specific model proposed, but include the principles behind this construction. Given the

large scale of network traffic datasets, designing learning-algorithms for this field encounters

rather unique challenges in terms of complexity and scale. Machine learning models must

be mindful of the characteristics of network traffic that make it unique to other learning

problems. As hidden Markov models results show, intricacies in traffic feature representa-

tion and assumptions about latent state behavior can be difficult to establish. The scale of

modern network traffic datasets demands attention to this detail when designing new al-

gorithms; training algorithms that require multiple passives over the dataset, or those that

scale super-linearly with the data, will face challenges in runtime constraints and possibly

suffer under-fitting. The PTM encapsulates behavior in a comparably simple structure, with

uncomplicated variable-interactions in an intuitive representation. In the single-Gaussian

emissions case, the model is trained on one-pass of over the data. We showed through

empirical evaluation how this model can be sufficiently accurate enough to capture the

differences in the distinct types of behavior encountered in network traffic.
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Chapter 5

Kernel Extensions for Network

Behavior Model
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Introduction

Having an accurate model for host behavior extends to certain practical applications, such

as anomaly detection. However, the main goal of this thesis is to derive methods by which

we can measure behavior similarity, in order to perform statistics-preserving mixed-net-

based anonymization on the underlaying dataset. This requires the derivation of a measure

of similarity between our behavior models. Measuring such similarity has been studied in

different contexts in networking. Some representative works include measuring the similarity

within packet content distributions for anomaly detection [Cretu et al., 2008], identifying

host roles based on communications patterns represented by the traffic dispersion graph [Tan

et al., 2003], and a similar study by [Coull et al., 2011] that proposed clustering hosts based

on similarity measured by Dynamic Time Warping over flow-level statistics; this latter work

is the most closely related study to this thesis and comparisons will be made inline with

the explanation of our methods.

The approach described in this thesis is distinguishable from related works in that,

rather than comparing data samples directly, the information contained therein is first ab-

stracted by fitting time-series models (PTM) this data, and metrics are derived to compute

similarity between the resulting model parameters instead. This metric is implemented as

a probability product kernel derived for the PTM. Consider samples x,y and let φ(x) be

some non-linear mapping on the components of x, for example φ(x) = [x21, x
2
2, x1x2, ...]. A

kernel function computes the inner product of this mapping in a high dimensional inner-

product space (K(x,y) := �φ(x),φ(y)�) without having to explicitly calculate φ(·). In gen-

eral, kernels are used to capture an assumption of similarity between two data instances.

Kernel-based methods typically utilize pair-wise comparisons between data samples, and of-

ten take the form of weighted functions such as h(y) =
�

i αiK(y,xi)+b. These algorithms

provide several benefits. First, with proper regularization, noise in the data samples may

be smoothed during model-parameter estimation rather than being factored into similarity

measurement. Second, in time-series distributions, comparing similarity in model param-

eters is often orders of magnitude faster than comparing the samples themselves since the

model parameters are often orders of magnitude smaller. Third, with regard to classifica-

tion, linearly inseparable samples may be linearly separable in the Hilbert space defined by
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the kernel used. Finally, exchanging models for comparison between different organizations

is possible, without risk of privacy loss. In addition, by extending our work into the domain

of kernel machines, a range of different algorithms becomes available.

This chapter begins with an introduction to various clustering paradigms. One of the

main contributions of this thesis is presented, that is the derivation of the probability

product kernel for the PTM, along with derivations of new clustering/matching algorithms

in a kernel-based framework. The choice of this approach was motivated by our previous

work in time-series clustering [Jebara et al., 2007].

5.1 Paradigms in time-series data clustering

Clustering time-series data presents unique challenges over the more familiar case where

data samples are points embedded in a vector space. Time-series data often represent the

output of some stochastic process, and these samples are often not aligned and vary in

length. This property is a fitting characterization of network traffic, where instances from

different hosts may be captured at different times, with different durations.

There are three main paradigms in time-series data clustering, representing different

extremes, and comparisons between related approaches are discussed within this section.

These approaches span the continuum in the theory of time-series clustering. At one

end of the continuum are data-driven methods for similarity comparison. These meth-

ods typically compare evaluate similarity in the time-series sequence based on pair-wise

subcomponent similarity. As an example, given two sequences X = {x1,x2, . . . ,xM} and

Y = {y1,y2, . . . ,yN}, one can simply form a M×N -sized matrix of pair-wise similarity val-

ues measured by the inner product where S[i, j] = �xi,yj�. The aggregate similarity between

the two sequences can be solved as the average of the matrix S(X,Y) = 1
MN

�
i,j S[i, j].

this metric, of course, runs in polynomial time O(MN). A representative example of this

technique is Dynamic Time Warping (DTW). Variations on this technique have been pro-

posed, such as those that measure only components of the similarity matrix near diagonal;

this translates to comparing data within a short window of each other in time. This vari-

ation of DTW is used for flow-record similarity measurement in the study by [Coull et al.,
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2011]. Fundamentally, the DTW-class of algorithms is data-bound. Given a large network

trace, with thousands of hosts and millions of flow-records, the computational cost of such

algorithms can easily make this approach impractical.

5.1.1 Soft-clustering via expectation-maximization

The next step along the continuum is to construct a hierarchical probability model, often in

the form of a mixture-model. Optimization of this model would then yield an optimization

of the parameters of the individual clusters as an intrinsic property. A simply construction

typically consists of assuming a linear mixture where the weights are learned through an

iterative gradient-descent procedure. Let p(X|θ) represent the probability of observing X

for a distribution p with model parameter θ. A mixture extension with M clusters would

then be:

p∗(X|Θ) =
M�

i=1

πip(X|θi) π = {π1,π2, ...,πM},
�

i

πi = 1.

After optimizing p∗(X|Θ), by taking the gradient with respect to the parameters Θ and

setting to zero, and training the model over the data, the individual sub-models θ1, ..., θM

then represents the parameters of the individual clusters. Expectation maximization is

referred to as a “soft” clustering because the influence of each data sample within the

parameter update rule is weighted by its posterior probability to that sub model. The K-

Means algorithm is the “hard” counterpart to EM, and the optimization is identical with

the exception that no weight is used and the sample is simply assigned to the cluster with

the higher posterior probability at each iteration.

The EM-based approach to clustering is more model-driven than the previous DTW ap-

proach, in that a mixture model is used to represent the data. However, multiple passes over

the data is still necessary when using EM. Specifically, the dataset needs to be evaluated

O(cL) where L is the total length of all of the data samples, and c (where c << L) is the

number of iterations needed for the algorithm to converge. The downside of using an EM

approach is that the algorithm makes parametric assumptions about the dataset; funda-

mentally, that it is distributed in a mixture model – this assumption does not always hold,

especially in the case of network data where the distributions can be very non-parametric.
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5.1.2 Graph-based clustering methods

Finally, the graph-based approach to clustering represents the other extreme. In this setting,

separate models are trained on each data instance, and these models are then treated as

nodes within a graph. The edge weight ei,j ∈ E between two models θi, θj is calculated

using some measure of similarity between the two nodes. Typically a kernel is used for this

similarity measurement. Clustering corresponds to recovering the partition for the graph

that yields the minimum-weight edge cut. Additionally, given the fact that the distribution

of edge weights can imbalance the cut, the Normalized Ratio cut, or normalized-cut for

short, is more often used. While provably optimal, recovering the normalized-cut solution

for graph partitioning is a problem that has been proven to be NP-Complete [Shi and Malik,

2000]. In practice, spectral graph partition is often used to approximate the normalized-cut

by using the eigenvectors of the graph’s Laplacian matrix, which is the normalized affinity

matrix of pair-wise similarities. The solution to the partition problem is then recovered by

the vector q:

argmax
q

q
�
Lq, q = [q1, q2, ..., qN ], qi ∈ {−1,+1} (5.1)

Solving for q is easily recognizable as the eigenvector-decomposition problem. The

graph-cut method has the benefit of being the most efficient of all three approaches, both

in terms of runtime and memory costs. Further, this approach remains agnostic to the

underlying distribution of the data. For sparse data where the dimensionality of the fea-

ture set is large, avoiding such parametric assumptions can often lead to improvements in

accuracy over methods such as EM, as shown in the following works [Kannan et al., 2000;

Ng et al., 2001; Jebara et al., 2007; Tony Jebara, 2007].

5.2 Derivation of the probability product kernel for the PTM

In this thesis, we take an approach that falls within these extremes. Rather than comparing

the data directly, as in DTW, or by optimizing a model over the entire sample distribution,

we fit a PTM model to represent each host – trained on that host’s traffic – then use

spectral clustering to find the optimal partition among these hosts. Therefore, a kernel
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between PTM models is necessary. This section discusses the derivation of such a kernel.

Typically, kernels are used for vector data x ∈ Rd. However, a special class of kernels

exist which operate over distributions on x. K(p, p�) = �p(x|θ), p(x|θ�)�. For brevity, we

denote p(x|θ) as p and p�(x|θ�) as p�. An instance of this class is the probability product

kernel (PPK) [Jebara et al., 2004]. The PPK is a generalized kernel that computes the

inner-product of two distributions over the space of all possible data inputs x:

K(p, p�) =

�

x
pβ(x|θ)pβ(x|θ�)dx. (5.2)

When applied to vectors, this kernel has an unusual interpretation – it calculates the

similarity between two data points defined by a function over the pair of distributions fit to

these single points. However, in the time-series domain, where models such as HMMs are

frequently used to concisely represent single sequences of time-series data, this is not only

a meaningful interpretation but a computationally efficient approach to measuring simi-

larity. The PPK is closely related to other similarity metrics in machine learning. When

β = 1/2 in equation (5.2), the kernel affinity is equivalent to the well-known Bhattacharyya

affinity between two probability distributions. This affinity is related to the well-known

Hellinger divergence H(p, p�) = 1
2

�
x

��
p(x)−

�
p�(x)

�2
dx according to the following re-

lation H(p, p�) =
�
2− 2K(p, p�).

The PPK is solvable in closed-form for a range of distributions. These include the

multivariate-Gaussian distribution, Gaussian mixture model, multinomial distribution, hid-

den Markov models with various emissions distributions, as well as continuous state-space

time-series models such as the linear dynamical system, the details of which can be found

in [Jebara et al., 2004]. Having a elegant closed-form solution to a metric with a rich inter-

pretation makes this an attractive method with which to measure time-series similarity.

This section shows the derivations for the probability product kernel for the protocol-

transition Markov model. The details of PPK-construction is described in [Jebara et al.,

2004]. At its core, the PPK has two components: the affinity in the emissions model, and

the coupling of the state estimates. In the first component, we derive what is referred to as

the elementary kernel Ψ(·), which is the affinity between the emissions models for p and p�

integrated over the space of all emissions x.
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Ψ(θ, θ�) =

�

x
p1/2(x|θ)p1/2(x|θ�)dx. (5.3)

In order to derive the PPK for the PTM model, the elementary kernel of (5.3) needs

to be solved using the PTM mixture-of-Gaussians model. This can be solved by expanding

the product and following the same complete-the-squares technique as described in [Jebara

et al., 2004]. Due to the linearity of integration, the elementary-kernel of a linear-mixture

distribution can be solved as a function of pair-wise sub-elementary-kernels �Ψ, on the sub-

models of the mixture. This kernel is derived here.

The main difference between the kernel for the PTM model and the HMM model is that

the states for the PTM are fully observed. For the HMM, the elementary kernel between the

pair of emissions distributions involves integrating over all of the sub-models. For the PTM,

the state is tied to the port value, therefore the set of common states between two models

is observable, and the integration can be restricted to only these common sub-models. Let

C represent the set of common states between two hosts. Let (µi,m, σi,m) represent the

sufficient statistics of the mth sub-model of the ith Gaussian mixture, then we have the

following:

µ† = µm/σm + µn/σn (5.4)

σ† = (σ−1
m + σn

−1)−1 (5.5)

Z = µmσ−1
m µm + µnσn

−1µn − µ†σ†µ† (5.6)

�Ψ(θm, θn) =

√
σ†

(σmσn)
1/4 exp

�
−1

4Z
� (5.7)

Ψ(i, j) =
�

m∈C

�

n∈C
αmγn�Ψ(θi,m, θj,n). (5.8)

α, γ represent the mixture coefficients within the i, j models, respectively. Note that the

number of sub-models need not be the same between two PT models, as long as each model

is properly normalized (i.e.
�

i αi = 1). In practice, the size of each PTM model is small

(c.f. Table (4.3)) and the amount of overlap between any two given hosts (C) is smaller still

– this translates to a very fast and efficient kernel for comparing model similarity.

The essence of the probability product kernel is that all possible configurations of settings
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PTM probability product kernel K(p, p�):

Elementary kernel Ψ(θ, θ�) =
�
x p

1/2(x|θ)p1/2(x|θ�)dx

Φ(q0, q�0) = p(q0)1/2p�(q�0)
1/2

for t = 1 . . . T

Φ(qt, q�t) =
�

qt−1

�
q�t−1

p(qt|qt−1)1/2p(q�t|q�t−1)
1/2Ψ(qt−1, q�t−1)Φ(qt−1, q�t−1)

end

K(p, p�) =
�

qT

�
q�T

Φ(qT , q�T )Ψ(qT , q�T )

Table 5.1: Fast iterative algorithm for the probability product kernel for the PTM.

Figure 5.1: One step in the Junction Tree algorithm.

are evaluated in an efficient manner. Even though the states of the PTMmodel are observed,

when computing the kernel between two models, we still evaluate over all possible pair-wise

configurations. This means that the coupling of the states is similar to the one found in

the PPK for the HMM. Once the elementary kernel Ψ(θ, θ�) is obtained, marginalizing over

the hidden states is done using the Junction-Tree factorization which yields the efficient

dynamic-programming solution shown in Table (5.1). This function recovers the kernel

between two PTM models in O(TMN) operations where T is the length of the sequence

and M and N are the sizes of the models (cf. Table (4.3)).

However, the PTM and HMM have different underlying interpretations, which can be

leveraged to obtained an even more efficient kernel based on the PPK. Consider each iter-
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ation of the Junction Tree algorithm as shown in Figure (5.1). Probability estimation for

HMMs requires marginalization over the hidden states, and factoring in both the emissions

probabilities and the prior state estimate. This can be interpreted as estimating a poste-

rior estimate for the hidden state at each time step given the evidence observed from prior

emissions and state estimates. Written in vector notation this takes on the following form:

qt = diag(pt)A
�
qt−1 (5.9)

where pt represents the marginalized emissions probabilities at time-step t. Here is

where the difference between the two models can be leverage to our advantage. Given that

the state values for the PTM is observed and does not depend on the emissions probability,

the posterior state estimate can be calculated by dropping the diag(pt) term. Thus the

state values take on the following linear relation:

qT =
T�

t=1

A
�
qt−1. (5.10)

This is a familiar function in linear dynamical systems, the continuous-state analog

of HMMs, and familiar theories are applicable. In particular, the Lyapunov steady-state

condition for linear state-space models shows that equation (5.10) is exponential stable, i.e.

converges, if the real components of the eigenvalues of A are less than 1. Given that A is a

row-normalized transition matrix (
�

j A[i, j] = 1 for all i), the eigenvalues for A can never

be greater than 1, thus the above equation converges. In practice, convergence typically

happens after 10 iterations – this can be the value set for T in the probability product

kernel. Since the emissions model does not factor into the state estimate, we can solve for

the convergent state estimate first, then resolve the emissions. This produces the following

for efficient pseudo-PPK:

In the algorithm given in Table (5.2), the state estimates are calculated independently of

the emissions model. Note that the matrix exponential is used. In practice, it was found that

convergence typically occurs after ten iterations, therefore T = 10 is an accurate setting.

This kernel essentially calculates the PPK, not over the entire state space, but rather the

most likely setting for the state estimate – which makes this a maximum-a-posterior (MAP)

estimate for the PTM probability product kernel. The benefit of this kernel is that it is
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MAP-estimate for the PTM probability product kernel K(p, p�):

q0,q�
0 are the initial state estimates for the two models p, p’.

�qT = (A�)T−1
q0

�q�
T = (A�)T−1

q
�
0

K(p, p�) =
�

�qT

�
�q�
T
Φ(�qT , �q�

T )Ψ(�qT , �q�
T )

Table 5.2: Faster iterative algorithm for the probability product kernel for the PTM using

the maximum-a-posteri estimate. T = 10 is a good setting for convergence.

fast, memory efficient, and simple to implement, and achieves identical performance with the

full PPK, while being less likely to suffer from numerical problems given that the emissions

models are not factored into the calculation at each iteration. Just like the earlier model,

Φ(qT , q�T ) is an M × N matrix where M,N are the sizes of the i, j models, respectively –

which is the number of unique ports observed, and the actual summation occurs over the

common states, which is often a smaller subset.

5.2.1 Isotropic emissions model

K(p, p�) =
1�

(4πσ2)
exp

�
−||µ− µ�||2/(4σ2)

�
. (5.11)

In the case of a single Gaussian emissions model for the PTM, a simpler form of the

probability product kernel is available. Under the setting β = 1, and fixing the variance

in the two separate distributions for p, p�, the elementary kernel for Gaussian model is

conditioned only on the µ parameter of the distribution. This form is shown in the above

equation. This reduced elementary kernel is even faster to evaluate, and could prove more

stable in the cases where certain states have too few samples for the learning algorithm to

estimate the variance parameter σ accurately.

5.2.2 Mutual information kernel

Another kernel for the PTM is available using the mutual-information kernel described in

[Yin and Yang, 2005]. Shown in equation (5.12), this kernel calculates the Hilbert-space

inner-product as a function of the cross-likelihood values from the two densities. Let θx, θy
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represent the models trained over samples x,y, respectively. This kernel takes the following

form:

K(θx, θy) = exp

�
− ||p(y|θx)− p(x|θy)||

2σ2p(x|θx)p(y|θy)

�
. (5.12)

The main benefit of this mutual-information kernel is the ease of implementation, re-

quiring only a set likelihood evaluations per model pair. The downside of this derivation is

the overhead incurred in having to explicitly calculate the likelihood values for each data

sample used in the kernel estimate. For large sets of long data sequences, this cost can be

prohibitively expensive.

5.3 Spectral algorithms for PTM-measure host behavior

Given the PPK, a range of kernel-based methods are available. Among the most useful

is spectral clustering, which is a graph-based clustering algorithm is robust when used on

datasets whose distributions do not follow classic parametric distributions such as Gaus-

sians. This section describes how to perform spectral clustering of host behavior using the

PTM and the PPK. In addition, we propose a new spectral partitioning algorithm which

produces more stable and balanced clusters.

5.3.1 Unbalanced spectral clustering with the PPK

The spectral approach to time-series clustering involves estimating a PTM model for each

sequence. The PPK is then computed between all pairs of PTMs to generate a Gram matrix

which is used for spectral clustering. This approach leverages both parametric and non-

parametric techniques in the clustering process; parametric PTMs make some assumptions

about the structure of the individual sequences (such as Markov assumptions) but the

spectral clustering approach makes no assumptions about the overall distribution of the

sequences (for instance, i.i.d assumptions). Empirically, this approach (Spectral Clustering

of Probability Product Kernels or SC-PPK) achieves a noticeable improvement in clustering

accuracy over fully parametric models such as mixtures of PTMs or naive pairwise likelihood

comparisons.
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Listed below are the steps of our proposed algorithm. Spectral clustering is an eigenvalue-

relaxation of the NP-hard normalized-cuts graph segmentation problem described by Shi &

Malik [Shi and Malik, 2000]. Our implementation of SC-PPK is a time-series analogue of

the Ng & Weiss spectral clustering algorithm presented in [Ng et al., 2001].

The SC-PPK algorithm:

1. Fit a PTM to each of the n = 1 . . . N time-series sequences to retrieve models θ1...θN .

2. Calculate the Gram matrix A ∈ RN×N where Am,n = K(θm, θn) for all pairs of models

using the probability product kernel (default setting: β = 1/2, T=10).

3. Define D ∈ RN×N to be the diagonal matrix where Dm,m =
�

nAm,n and construct

the Laplacian matrix: L = D−1/2AD−1/2.

4. Find the K largest eigenvectors of L and form matrix X ∈ RN×K by stacking the

eigenvectors in columns. Renormalize the rows of matrix X to have unit length.

5. Cluster the N rows of X into K clusters via k-means or any other algorithm that

attempts to minimize distortion.

6. The cluster labels for the N rows are used to label the corresponding N PTM models.

Figure (5.2) shows the results of the spectral clustering algorithm over the Columbia

dataset. The DNS names are printed in order to provide some measure of accuracy. While

by no means are they definitive labels for true behavior, similar DNS names do provide

some measure of confidence in the accuracy of the algorithms when similarly labeled hosts

are grouped into the same cluster. These hosts are mostly server machines, many were

configured and operated by the IT department within the Computer Science department,

therefore they are consistently configured. The “web1,web2,web3,web4” machines, for ex-

ample, are web-servers behind a load-balancer; it is not surprising to see them grouped

together. The “sos” machines are general purpose computing machines belonging to the

Network Security lab; they are used by different users and their behavior is not universally

similar.
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( 1) ng911-db2

( 1) forest

( 2) dhcp11

( 2) corsica

( 2) dhcp25

( 2) dhcp30

( 2) dhcp49

( 2) workstudylaptop

( 2) racecar

( 2) leaf

( 2) spectral

( 2) fdr

( 2) water

( 2) coulomb03

( 2) dhcp85

( 2) furst-pc

( 2) apadana

( 2) unknown

( 3) neale.ccls

( 3) pachira

( 3) cluster00.ncl

( 3) manata

( 3) metrorail

( 3) raphson

( 3) metro20

( 4) kathy-pc.win

( 4) kkh

( 4) sekhmet

( 4) lagrange

( 4) klimt

( 4) pyromania

( 4) bailey

( 5) dhcp64

( 5) dhcp72

( 5) dhcptemp27

( 5) dhcptemp33

( 5) dhcptemp48

( 5) mail

( 5) fry.win

( 6) web1

( 6) web2

( 6) web3

( 6) web4

( 6) web3157

( 6) game

( 6) honda

( 6) cs

( 6) animal

( 6) chihiro

( 6) raphael

( 6) gabriel

( 6) templar

( 7) walker.win

( 7) carter.win

( 7) baker.win

( 7) fuji

( 8) ense-client

( 8) sos2

( 8) sos5

( 8) ense2

( 8) cutunes

( 8) hikari

( 8) unknown

( 8) zapp.win

( 9) metro23

( 9) goya

( 9) uribe

( 9) tardieu-desktop

( 9) boyacipc2

( 9) irtdesk1

( 9) picard

( 9) cityhall

( 9) multitouch

( 9) ense1

(10) irtdesk5

(10) guajira

(10) hamming

(10) green

(10) sos1

(10) sos6

(10) sos9

(10) elba

Figure 5.2: Results of spectral clustering with 10 clusters.
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5.3.2 Balanced spectral partition with the PPK

Notice that spectral clustering algorithm is not guaranteed to produce balanced clusters,

or clusters with a minimum size. This is because the clustering is based on an eigenvalue

approximation of the normalized minimum-weight graph cutting problem [Shi and Malik,

2000]. As such, the distribution of the cut sizes are entirely determined by the dataset, and

the pair-wise affinities (edge weights) between the data samples. An unevenly distributed

dataset would yield to unbalanced clusterings, and distributions with very anomalous be-

havior could lead to undersized or singleton clusters.

The goal of this thesis, however, is to use clustering in order to provide anonymity to

hosts on a network. Therefore, undersized clusters, and clustering without a guarantee of

minimum size would not be a complete solution. Nevertheless, spectral clusterings reflects

the distribution information within a dataset, and the distribution of cluster sizes do provide

useful information about the behavior profiles of the network. In a later section § 7.2.2 we

demonstrate how to patch spectral clustering with an hierarchical merging step in order to

provide a minimum cluster size guarantee while preserving the distribution information. In

this subsection, we present a simpler, more intuitive algorithm that not only guarantees a

minimum clustering size, but also a balanced clustering.

Spectral-Partition provides the pseudocode for this algorithm. Spectral partition

is based on half-space partitions, where the data space is continuously divided in half, re-

cursively – until the minimum cluster size is met. This is a stable algorithm with input

and output invariance. The algorithm recursively partitions the space of the dataset using

the trained model parameters represented by Θ. At each layer of the recursion, the Fiedler

vector is extracted from the eigenvectors of the Gram matrix’s graph Laplacian, which is

the eigenvector corresponding to the second largest eigenvalue – the vector corresponding to

the largest eigenvalue is the vector of all ones. The pivot point is calculated at the half-way

point after sorting the components of the Fielder vector. Conceptually, this partition is

the approximate optimal graph cut that balances the normalized sum of the edge weights

between the two clusters. The partitioning is tracked by applying the same partitions to

the original data index, which is simply a vector of indices of length N [1, 2, 3, . . . , N ]. The

Mergelabels concatenates the retrieved label and index vectors and ensures proper order-
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ing is maintained. When merging two partitions, the label vectors are 1 × k-sized vectors

that hold the cluster label for each partition [1, 1, ..., 1], [2, 2, .., 2], . . . , [N/k,N/k, .., N/k].

The function resolves label collisions by incrementing the label of one of the clusters.

Spectral-Partition(Θ, index, k)

1 d ← Length(Θ)

2 ✄ Check if we have reached the minimum cluster size

3 if d ≤ k + 1:

4 then return {[1, 1, . . . , 1]1×d, index}

5 A ← CalculateGramMatrix(Θ,Θ)

6 Dm,m ←
�

nAm,n∀m = 1, . . . , N

7 L ← D−1/2AD−1/2

8 [V,D] ← EigenvectorDecomposition(L)

9 ✄ Sort the eigenvectors contained in V based on the eigenvalues

10 [D, idx] ← Sort-Descending(D)

11 ✄ Take the vector corresponding to the second largest eigenvalue – this is the Fiedler vector

12 V ← V [:, idx(2)]

13 ✄ Sort the components of the Fiedler vector and find the splitting point

14 [V, idx] ← Sort-ascending(V )

15 p ← �d/2�

16 idx1 ← idx[1, . . . , p]

17 idx2 ← idx[p+ 1 : d]

18 index1 ← index[idx1]

19 index2 ← index[idx2]

20 [label1, index1] = Spectral-Partition(Θ[idx1], index1, k)

21 [label2, index2] = Spectral-Partition(Θ[idx2], index2, k)

22 return Mergelabels(label1,ind1,label2,ind2)

Figure (5.3) shows the results of the spectral partition function on the same dataset, with

a minimum cluster size set to 5. Here, we see the balanced partitioning and the minimum

cluster sizes preserved. Many similarly-named hosts appear in the same clusters, which
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( 1) web1

( 1) web2

( 1) web3

( 1) web4

( 1) web3157

( 2) game

( 2) honda

( 2) cs.columbia.edu

( 2) animal

( 2) chihiro

( 3) raphael

( 3) gabriel

( 3) templar

( 3) walker.win

( 3) carter.win

( 4) baker.win

( 4) dhcp64

( 4) dhcp72

( 4) dhcptemp27

( 4) dhcptemp33

( 5) dhcptemp48

( 5) neale.ccls

( 5) pachira

( 5) cluster00.ncl

( 5) manata

( 6) metrorail

( 6) raphson

( 6) dhcp11

( 6) corsica

( 6) dhcp25

( 7) dhcp30

( 7) dhcp49

( 7) workstudylaptop

( 7) racecar

( 7) leaf

( 8) kathy-pc.win

( 8) spectral

( 8) fdr

( 8) water

( 8) kkh

( 8) fuji

( 9) metro20

( 9) metro23

( 9) goya

( 9) uribe

( 9) tardieu-desktop

(10) boyacipc2

(10) irtdesk1

(10) irtdesk5

(10) coulomb03

(10) dhcp85

(11) furst-pc

(11) ng911-db2

(11) picard

(11) cityhall

(11) forest

(12) sekhmet

(12) guajira

(12) hamming

(12) multitouch

(12) ense-client

(13) green

(13) sos1

(13) sos2

(13) sos5

(13) sos6

(14) sos9

(14) ense1

(14) ense2

(14) cutunes

(14) hikari

(15) lagrange

(15) klimt

(15) pyromania

(15) bailey

(15) apadana

(16) elba

(16) unknown

(16) unknown

(16) mail

(16) zapp.win

(16) fry.win

Figure 5.3: Results of spectral partitioning. The minimum cluster size was set to 5.
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adds confidence to the accuracy of this algorithm. While using the spectral partitioning

function does provide minimum-cluster-size guarantees, it does so at some cost to accuracy.

Consider the case of where three balanced clusters are equally distributed with distances

equal to each other. The first cut will split the dataset along the middle of one of these

clusters, which is a sub-optimal solution. In general however, such cases are rare in network

behavior. The choice of which algorithm to use, and how to use it with respect to minimum

cluster sizes, will depend on the distribution of the dataset and the anonymization policy

of the source provider.

5.4 Accuracy and runtime evaluations

The anonymization algorithms presented in this thesis is conditioned on two things: the

accuracy of the model in capturing the representation of host behavior and the accuracy

in the kernel metric is measuring the similarity between two models. As such, the much of

the experiments focus on empirical evaluations of the accuracy of these two components. In

previous sections, accuracy comparisons of the PTM versus other similar models have been

presented. This section shows the results of comparing the performance of the PTM with

the probability product kernel against other methods with similar purpose. Specially, we

focus on the clustering techniques based on EM and a similar spectral clustering technique

presented by [Yin and Yang, 2005]. Our recent research has shown that these two methods

are the closest competitors to our algorithm in general performance on time-series classifi-

cation problems with other kernels, both in terms of accuracy and runtime [Jebara et al.,

2007].

Normally, evaluating the results of clustering is not straightforward. Many factors need

to be considered when more than two clusters are evaluated. These factor include measure-

ments on different types of matching-fidelity such as homogeneity, recall, etc. For a more

detailed description of this problem refer to [Meila, 2007]. A simpler way of measuring

clustering-accuracy is to use a two-class clustering set-up where the cluster labels translate

directly to classification labels. This presents a simple and reliable estimation of the accu-

racy of the kernel. This method of evaluation was used in our related paper on clustering
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Dataset EM SC-MIK SC-PPK

’cityhall’ vs ’racecar’ 54% 70% 100%

’leaf’ vs ’sos1’ 64% 80% 100%

’cutunes’ vs ’racecar’ 66% 50% 94%

’dhcp49’ vs ’sos9’ 74% 66% 94%

’baily’ vs ’cluster00.ncl’ 86% 66% 94%

’ense-client’ vs ’workstudylaptop’ 82% 54% 94%

’sos6’ vs ’cityhall’ 74% 54% 94%

’picard’ vs ’sos9’ 94% 52% 92%

’leaf’ vs ’ense-client’ 82% 80% 92%

’tardieu-desktop’ vs ’ense2’ 82% 62% 92%

’ense2’ vs ’sos2’ 82% 50% 92%

’corsica’ vs ’pyromania’ 88% 66% 86%

’ng911-db2’ vs ’multitouch’ 94% 74% 80%

Table 5.3: Clustering accuracy comparison between samples from classes of different behav-

ior.

with time-series models [Jebara et al., 2007].

Figure (5.3) shows the comparison of inter-class classification performances.

Exact runtime comparisons are presented in Table (5.4). Evaluations were performed

using synthesized traffic samples of 10,000 entries in length with 10 model states; parameters

that are set to represent the average available traffic sample for a particular host. As the

results show, both the EM-based approach and the spectral clustering approach with the

mutual-information kernel exhibited poor performance compared to the spectral clustering

algorithm using the PPK. This is because these two former methods are derived using

likelihood evaluations over the data and thus their performance scales with the size of the

dataset. Conversely, the SC-PPK algorithm runtime grows according to number of hosts

and the size of the models. In practice, large enterprise networks may contain tens of

thousands of hosts each with hundreds of thousands or millions of flow entries. Clustering

methods that are data-bound will have difficulty scaling to that size, whereas the SC-PPK
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# of time-series samples EM SC-MIK SC PPK

10 25s 8.4s 1.0s

20 52s 35s 3.3s

30 88s 77s 7.6s

40 101s 139s 13s

50 126s 215s 21s

60 153s 311s 29s

70 181s 433s 41s

80 206s 561s 52s

90 230s 704s 69s

100 255s 871s 84s

Table 5.4: Average runtimes of time-series clustering algorithms. Includes model-training

time.

algorithm can handle such scale by the nature of its design. In our approach, each model

can always trained independently in linear time, and each element of the similarity matrix

can be evaluated independently, the complexity of which is conditioned only on the model

size, which is directly tired to the diversity of observed traffic for a particular host. This

independency makes parallel processing simple to implement, and efficient solvers for large

graph cutting problems are available.

Figure (5.4) shows the scalability of the two faster kernel-based approaches. The SC-

PPK method maintains superior runtime and scales favorably compared to the mutual-

information kernel presented by [Yin and Yang, 2005]. This feature is due to the fact that

the PPK does not require exact computation of the likelihood values for each kernel estimate,

unlike the mutual-information kernel, and the EM-based approach. By not using the data

samples themselves, we use a dataset that is orders of magnitude smaller when computing

the Gram matrix. As such our algorithm runs orders of magnitude faster than our closest

competitor asymptotically. Further results from previously published work confirms this

property [Jebara et al., 2007].

We can further evaluate the accuracy of the PPK by using it to extract the nearest-
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Figure 5.4: Runtime scaling comparison of top two kernel-based clustering methods:

mutual-information kernel vs probability-product kernel. Dashed line: Mutual Informa-

tion kernel, solid line: PPK.

Figure 5.5: Nearest-neighbor clusters are recovered with the CUCS dataset using the PPK.
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neighbors in the space of all behaviors present within the dataset. Figure (5.5) shows the

output of a nearest neighbor grouping. While we do not have true labels for host behavior,

we can infer some notion of accuracy by using a reverse DNS-lookup and checking their

domain names. Here, we see groups of what appears to be similar hosts, such as the web

servers (web1, web2,...) and compute servers (sos1,sos2,...).

5.5 Behavior visualization and low dimensional embedding

All data – scalar, vector, time-series, or otherwise – can be thought to exist as single points

in some high (possibly infinite) dimensional space. “Embedding” algorithms is a class of

algorithms designed to capture a representation of these data points in a lower dimension

(typically 2 or 3) while maintaining the pair-wise distances in the individual data points.

These techniques permit visualization of high dimensional datasets and can help confirm

clustering results as well as provide insides into the distribution of the data and the number

of appropriate clusters.

5.5.1 Kernel PCA

For most of these algorithms, the only requirement is some measure of data similarity.

In the simplest case we consider kernel principle component analysis (KPCA). KPCA for

time-series data is a straightforward extension given the derivation of the PPK. These algo-

rithms may be useful in setting where exchanging data between organizations is not desired.

Instead, models and low-dimensional vector-space embeddings of data is to be exchanged.

The dimensionality reduction in this step is analogous to the previously mentioned PCA.

Whereas principal component analysis finds a linear mapping into a sub-space that max-

imizes the intra-class covariance, kernel-PCA finds an implicitly non-linear mapping by

solving the same problem in the image of the non-linear mapping function Φ induced by

the kernel function.

C :=
1

m

m�

i=1

Φ(xi)Φ(xi)
T . (5.13)

Since it can be proven that the eigenvector spans the Φ-images of the training data,
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Figure 5.6: Kernel-PCA embeddings for CUCS dataset using HMM models.

the solution set v takes the form v =
�m

i=1 αiΦ(xi), which leads to the same eigenvalue

decomposition problem:

mλα = Gα, G[i, j] := K(xi,xj) (5.14)

The nth component of the kernel PCA projected data point is then:

�v(n),Φ(x)� =
m�

i=1

αn(i)K(xi,x) (5.15)

Where the kernel function K(·, ·) can be either the probability product kernel or the

cross-likelihood kernel. The matrix of such kernel values K is known as the Gram matrix.

Figures (5.6) and (5.6) show an examples of lower-dimensional projection using KPCA.

In each case, time-series models were fit to the network traffic of these hosts and the proper

kernel functions were used to compute the projections according to the equations described

above. Results were calculated using distance metrics over HMMs in figure (5.6) and PTMs

in figure (5.7). Certain clusters of behavior immediate stands out, such as the planetlab
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Figure 5.7: Kernel-PCA embeddings for CUCS dataset using PTM models.

cluster in the first and two clusters of behavior (“web” and “sos”) in the second.

Utility in network research : Sub-space projection methods such as Kernel PCA is useful

for situations where we wish to exchange data anonymously between organizations without

sending the actual traffic instances. Instead, we send sub-space vector representations of

behavior. This is can be done by projecting the data into the kernel PCA components.

Similarity amongst hosts between different organizations, and similarity to other represen-

tative behaviors (attack traffic, vulnerable hosts, botnets members, etc), can be compared

over the vector space embeddings this way in a manner analogous to the way hash-collisions

are used in security. And If the comparison can be made to hash functions, then the set of

“support” models used in the kernel computation X = {x1,x2, ...,xM} can be thought of

as the key.

5.5.2 Lower dimensional embedding with the Hellinger divergence

Non projection-oriented methods that focuses on producing better visualization results are

also available. The field of low-dimensional embedding for visualization and data compres-
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sion spans a range of different techniques. These include Multi-dimensional Scaling [Kruskal

and Wish, 1978], Maximum Variance Unfolding [Weinberger and Saul, 2006], Minimum Vol-

ume Embedding [Shaw and Jebara, 2007] and other related methods [Roweis and Saul”,

2000]. In our research context, low-dimensional embedding allows one to view network

traffic on a 2D/3D plane, to identify clusters of similar or anomalous behavior, as well as

provide insights into how many clusters might exist in the dataset, giving us a look at, what

is essentially, the network behavior manifold.

These algorithms typically require the computation of a dissimilarity matrix, which is a

matrix of pair-wise distances. This is a straightforward extension of our previously discussed

algorithms. Note that the Bhattacharyya affinity calculated in probability product kernel

is a positive definite metric, and not a distance metric, further it does not hold triangle

inequality. However, the previously mentioned Hellinger-divergence does hold this property.

This divergence is considered as a symmetric version of the well-known Kullback-Leibler

(KL) divergence. Given that the kernel affinity values are not normalized by default, we

can use the normalized Laplacian matrix to calculate the divergence matrix.

Low-dimensional embedding for network traffic:

1. Fit a PTM to each of the n = 1 . . . N time-series sequences to retrieve models θ1...θN .

2. Calculate the Gram matrix A ∈ RN×N where Am,n = K(θm, θn) for all pairs of models

using the probability product kernel (default setting: β = 1/2, T=10).

3. Define D ∈ RN×N to be the diagonal matrix where Dm,m =
�

nAm,n and construct

the Laplacian matrix: L = D−1/2AD−1/2.

4. Compute Hellinger divergence matrix: H[i, j] =
�
2− 2L[i, j], ∀i, j = 1, ..., N .

5. Use matrix H as input into any existing embedding algorithm such as MDS.

Low-dimensional embedding allows us to view network traffic on a 2D/3D plane, to iden-

tify clusters of similar or anomalous behavior, as well as provide insights into how many

clusters might exist in the dataset.
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Visualization of behavior changes across time : 4-dimensional view of this behav-

ior manifold is also possible, by examining the embedding across time. With a time-lapse

embedding we see how patterns of behavior can evolve, and how hosts approach and drift

in behavior. The reader is encouraged to view a video demonstration on behavior track-

ing across time that is available on our website http://www.cs.columbia.edu/~yingbo/

MVE-DHS-2.mov. This was produced using the minimum volume embedding technique de-

scribed in [Shaw and Jebara, 2007]. The behavior of hosts on the CUCS network was split

into 288 five-minute time-slices throughout the day, and their traffic embedding was com-

puted at each of these time-slices. Plotting these embeddings provides an interesting view

of how network behaviors can converge and diverge across the span of a single day. Clusters

of behavior emerge and disperse and the overall shape of the distribution changes over this

time period. Figures (5.8) through (5.13) show segments from this video.

5.6 Kernel machines and density estimation

Among all the machine-learning techniques used in practice by other disciplines, one of the

most well known algorithms is the support vector machine (SVM). The discriminative power

of SVMs, along with the simplicity of the classifier-implementation, makes this algorithm

omnipresent in many toolboxes. This section discusses how to construct a support vector

machine-based classifier for network traffic using the PTM with a probability product kernel.

We demonstrate the strong performance of this classifier on actual network traffic.

5.6.1 Protocol-transition support vector machines

Fundamentally, the SVM is simply a linear threshold function in the Hilbert space defined by

the kernel metric. Unlike optimization procedures such as EM, that optimize the parameter

estimation based on the empirical risk (a function of the number of mis-labelings on the

dataset), the SVM is optimized according to principle of Structural-Risk Minimization,

which minimizes both the empirical risk and the structural risk of the classifier – which is a

calculated as a function the classifier’s VC-dimension. Additional discussion on structural

risk minimization is not relevant for the purpose of this thesis. It is sufficient to state that
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Figure 5.8: 4-D Behavior embedding. Time step 1.

Figure 5.9: 4-D Behavior embedding. Time step 2.
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Figure 5.10: 4-D Behavior embedding. Time step 3.

Figure 5.11: 4-D Behavior embedding. Time step 4.
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Figure 5.12: 4-D Behavior embedding. Time step 5.

Figure 5.13: 4-D Behavior embedding. Time step 6.
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derivation of the support vector machine for network traffic using the protocol-transition

Markov model and the probability product kernel does not require much additional effort.

F (x|Θ) = sign

�
M�

i=1

αiyiK(θ, θi)− b

�
. (5.16)

Equation (5.16) shows the classifier function for the SVM. Optimization these parame-

ters include estimating the set of support vectors needed, which takes the form of an index

on the training data, and the set of weights (αi) on these “support vectors” (although, in

our case they are better referred to as support PTMs). These parameters are typically

estimated by maximizing the following dual of the Lagrangian function:

L(α) =
N�

i=1

αi −
1

2

�

i,j

αiαjyiyjK(θi, θj). (5.17)

Maximizing the above in αi ≥ 0 following the constraint
�N

i=1 αiyi = 0 can be done

using quadratic programming. Here the data points being compared are the trained PTM

model parameters θi, ..., θN , and the kernel function is the probability product kernel.

Table (5.5) shows results form between-class classification experiments. All false-positive

rates were 0%, therefore the classification accuracy was displayed without ROC plot. These

results are representative of between-class classification performance using a support vector

machine with the PTM probability product kernel. It should be noted that training SVMs

on network traffic datasets in this manner should be undertaken with care. Given that

extremely large sample space of all possible time-series samples, and the fact that this

classifier uses a subset of training samples as the classifier, the possibility of over-fitting

to the small subset of training data used is more significant than in vector-space settings.

Careful tuning should be used in practice to ensure that the parameters are estimated

properly for the dataset and that the data used to train the classifier is representative

of the distribution. In contrast, table (5.6) shows results form within-class classification

experiments. The total number of correct and mis-predictions were used to calculate the

accuracy as opposed to sweeping the margin results for a ROC curve. The “webX” machines

represent the load balancer machines behind the Columbia Computer Science department’s

web-server. Given the overlapping nature of the traffic that these machines typically see,
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Dataset Classification Rate False Positive Rate

’dhcptemp27’ vs ’ng911-db2’ 100% 0%

’web4’ vs ’boyacipc2’ 100% 0%

’chihiro’ vs ’neale’ 100% 0%

’cluster00.ncl’ vs ’cityhall’ 100% 0%

’corsica’ vs ’fdr’ 100% 0%

’ng911-db2’ vs ’uribe’ 100% 0%

’dhcp85’ vs ’furst-pc’ 100% 0%

’neale’ vs ’spectral’ 100% 0%

’cityhall’ vs ’gabriel’ 100% 0%

’raphael’ vs ’baker’ 100% 0%

’cutunes’ vs ’zapp’ 100% 0%

’dhcp49’ vs ’animal’ 100% 0%

’leaf’ vs ’hamming’ 100% 0%

’multitouch’ vs ’mail’ 100% 0%

’cityhall’ vs ’boyacipc2’ 100% 0%

Table 5.5: PT-SVM classification accuracy for inter-class behavior; all classes were linearly

separable. Representative of between-class classification results.
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Dataset ’web1’ ’web2’ ’web3’ ’web4’

’web1’ — 100% 100% 100%

’web2’ — — 57.5% 87.5%

’web3’ — — — 85%

’web4’ — — — —

Table 5.6: PT-SVM classification accuracy for intra-class behavior. Web[1,2,3,4] are NAT’d

hosts supporting a load-balanced web-server.

lower performance is to be expected.

5.6.2 Non-parametric behavior modeling via kernel density estimation

Having discussed discriminate learning with the PTM support vector machine. This chapter

concludes with a discussion on generative learning in the non-parametric case using kernel

density estimation (KDE). KDE, also referred to as the Parzen-window method, is a method

of approximating the parameters of non-linear distributions, as a function of similarity over

a set of training points. In some ways, this is a generative analogue of the SVM function.

Similar to the previous kernel algorithms, KDE requires only a valid kernel metric between

samples, and the density estimate may be solve as follows:

F (θ;Θ) =
1

N
K(θ, θj). (5.18)

Where Θ = {θ1, ..., θN} represents the set of learned PTM model parameters. Or a

simple non-parametric likelihood estimator for any instance of a time-series data x can

be recovered as the mean of the likelihood evaluations over PTMs trained over the entire

dataset:

F (x;Θ) =
1

N

N�

i=1

p(x, θi). (5.19)

The KDE method is used for anomaly detection later in this thesis to detect anomalous

traffic from the network, as well as to show how our anonymization preserves the statistical
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distribution by detecting anomalous clusters of traffic post-anonymization and demonstrat-

ing that original anomalies are present. These results are presented in § 7.5.2.

Concluding remarks

This section described our kernel-based framework and the class of algorithms that our

work naturally extends into. We described the probability product kernel, and how to use

this method, along with the PTM, to build a graph representation for the distribution of

host behaviors on a network, and how a graph-partition-based approach can be an intuitive

method with which to segment a network into distinct classes of behavior. We also showed

how to guarantee a minimum anonymity set size using the recursive partition function.

The PPK is one of many different kernels in machine learning. It is also possible to

combine results from several kernels to incorporate multiple measurements of similarity

to improve performance. This field include techniques related to multiple-kernel learn-

ing [Gönen and Alpaydin, 2011]. One potentially useful feature set is incorporating features

from the topology of the network (cf. § 8.2).
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Chapter 6

Network Traffic Synthesis and

Simulation
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Introduction

Data-synthesis is an important, yet under-explored, aspect of network-trace anonymiza-

tion. While sampling statistical elements within a table according to a privacy-preserving

methods in the context of differential privacy has been studied for microdata, generating

network traffic to mimic behavior for the purposes of obscuring source-identity in network

capture datasets has not received equal attention. Traffic synthesis has been studied in

works related to cover-traffic generation in overlay and anonymous VPN implementations,

as well as tangentially-related fields in network measurement such as generating traffic for

load-balance testing, routing testing, and for evaluation of intrusion detection systems. The

intuition behind using synthetic data to mask source-identity is nevertheless understood.

In this chapter we demonstrate how to generate such data for network-trace anonymization

through sampling from the PTM model and the use of a custom packet-synthesis library

which we have designed.

This chapter is outline as follows: we describe the theory and implementation behind

netflow-layer statistical data synthesis in § 6.1. This section discusses how synthetic data

is sampled form the protocol-transition Markov model, and answers the question of how

to evaluate the fidelity of the synthetic data. In § 6.2, we present algorithms for behavior

shaping and behavior interpolation when given input of different sets behavior profiles.

We further show how synthesize can be used to perform behavior regression, where we

can essentially fill-in missing gaps of traffic, how to synthesize behavior across time in

order to faithfully mimic activity throughout the day. Finally, we describe how to generate

sessionizeable packet streams using these netflow-layer features. Results within this chapter

were published in [Song et al., 2011].

6.1 Synthesizing flow-layer statistical samples

Synthesizing traffic for anonymization has been studied primarily within two distinct con-

texts. The first is the use of cover-traffic in online anonymization systems, such as mixnets

or onion-routing networks like Tor. These networks provide source-anonymization in a con-

tinuous manner, depending on the connectivity patterns in the users. Due to the nature
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of online source-anonymization, these systems are sometimes vulnerable to timing-analysis

attacks. An extreme example is when only one member is active on a mixnet at a given

time, an attacker observing the exit traffic can easily determine the identity of the source.

Cover-traffic is then used to provide an additional layer of obfuscation that raises the level

of difficulty for reattribution [Troncoso and Danezis, 2009; Freedman and Morris, 2002;

Edman and Yener, 2009]. The second is the context where this type of algorithm is used

is in statistical database anonymization. In the microdata context, replacing elements of a

table with samples from a distribution in a privacy-preserving scheme has been explored in

techniques such as differential privacy [Dwork, 2006]. Traffic shaping is a related technique

that is also designed for obscuring signatures in order to prevent attribution. This often

takes the form of traffic padding to prevent statistical analysis. It has been discussed in

mixnet implementations [Dingledine et al., 2004] and analyzed in more detail [Syverson et

al., 2001]. Results have been achieved for anonymization of specific protocols and applica-

tions. An example of such protocol obfuscation is the traffic morphing techniques based on

packet-size manipulation studied in [Wright et al., 2009].

This chapter discusses techniques for synthesizing traffic for network packet capture

datasets. This is similar to the online setting, however we have the benefit of having all of

the available traffic for a host that we wish to mimic. This allows accurate estimates for

behavior and samples can be generated such that it is quantifiably similar to the original.

Rather than manipulating the size and distribution of traffic in order to add noise to the

signal, we can actually re-shape traffic based on specific targeted behavior recognizable by

our models.

Traffic synthesis contains two components: the first is sampling statistical records from

our time-series model for particular host that we wish to mimic. Or sampling from a model

trained to encapsulate a specific type of behavior (web server, vs. database server, etc).

The second component consists of translating thees statistical features into actual packets

that are fully sessionizeable and consistent with TCP/IP specifications. The first problem

is a matter of statistical sampling from a time-series distribution, and the second is mostly

a technical matter of conforming to RFC specifications.
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6.1.1 Sampling from the PTM

Since the PTM is a time-series model with observable states, synthesizing a new Netflow

sequence translates to drawing a statistical sample from this model. This includes drawing

an initial state, outputting the port value associated with that state, drawing from the

emissions distribution associated with that state, drawing the most-probable subsequent

state according to the transition distribution, and repeating this process; algorithmically,

these steps involve sampling from three different distributions. A few notations need to

be introduced before describing the algorithm: let s ∼ M(p1, p2, . . . , pk) denote a random

draw from a multinomial distribution specified by the normalized ratios parameter p =

{p1, p2, . . . , pk}. Assuming an alphabet of k characters with respective probabilities of

appearance p where
�

i pi = 1, as the number of draws grows the normalized proportion

of selected values approaches p. Let x ∼ N (θi) denote sampling a scalar quantity from

the Gaussian mixture denoted by θi = {µi,1,σi,1, . . . , µi,m,σi,m} for mixture size m. The

pseudo code for the synthesis algorithm is given as follows:

Synthesize-Netflow(θ, n)

1 return Features-To-Data(Synthesize-Stats(θ, n))

Synthesize-Stats(θ, n)

1 ✄ Use the frequency estimate to set the initial state

2 d0 ∼ M(π1,π, . . . ,πk)

3 ✄ Src/Dst port model used to estimate the pairing

4 s0 ∼ M(bd0,1, bd0,2, . . . )

5 x0 ∼ N (θs0) ✄ Sampling the volume

6 ✄ The rest is generated by induction

7 for t ← 1 to n− 1 :

8 do dt ∼ M(adt−1,1, adt−1,2, . . . , adt−1,k)

9 st ∼ M(bdt,1, bdt,2, . . . )

10 xi ∼ N (θst)

11 return [s,d,x]
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Since the states within the PTM are observable, the associated port values are unam-

biguous. The transition probability is represented by tableT[a, b] that indexes the likelihood

of transition between any pair of states. For a table T[a, b], the row-index a represents the

current state while the column index b represent the subsequent state and the value within

that table, T[a, b] = p(st = b|st−1 = a), denotes the probability of the transition from a

to b. Further, the table is row-normalized:
�

iT[a, i] = 1. Drawing the most-likely subse-

quent state, t+1, is equivalent to taking a maximum-likelihood sample from a multinomial

distribution with parameters defined by these individual rows of the table.

Recall that the states correspond to destination port values, and is thus only one-half

of the sample space. The PTM also incorporates multinomial distributions for the associ-

ated source-port values, which are tracked in the b variables. These track the conditional

probability of observing any particular source port, given a destination port. A conditional

probability is used instead of the joint probability in order to prevent under-fitting prob-

lems, as the space of source and destination port pairings is typically exponentially larger

than the space of available training samples. Source and port destination pairs are driven by

network protocol design and not uniformly random. That is, modeling p(si|di) is sufficient

as opposed to modeling p(si, di). Second order modeling for source and destination pairings

is similarly redundant.

Finally volume information (packet count) xi is drawn from the Gaussian mixture as-

sociated with each unique state i. Function Synthesize-Stats shows the steps of the

synthesis algorithm. Recall that we utilize port-histograms in our feature representation,

in order to reduce the total possible number of states. This bin value is the output of

the synthesis algorithm and must then be converted back to the normal data-space by the

following function.



CHAPTER 6. NETWORK TRAFFIC SYNTHESIS AND SIMULATION 105

Features-To-Data(s,d,x)

1 [s�,d�,x�] ← ∅

2 n ← length(s)

3 for t ← 1 to n :

4 do s�t ← Bin-To-Ports(st)

5 d�t ← Bin-To-Ports(dt)

6 x�t ← exp(xt)

7 return [s�,d�,x�]

Bin-to-Ports is function that reverses the feature-extraction transformation performed

on the dataset during training and remaps the data from features back to their normal

representation. For example, di = 1045 then di gets remapped to a random ephemeral

value between the range of [49152, ..., 65536].

Bin-To-Ports(x, h)

1 if x < 1026 : ✄ Well known ports

2 then return x

3 elseif x > (1025 + h) : ✄ Ephemeral ports

4 then return Rand(1, . . . , 16384) + 49151

5 z ← (49152− 1025)/h ✄ Registered ports

6 return 1025 + (x− 1025)× h+Rand(1, . . . , h)

For each port histogram bin, we sample the port value represented by the range of

that bin according to a uniform distribution. It is possible to further use a non-parametric

model to represent the global port-distribution for each bin. If this is used then all of the

data within the network may be used to train these models, in order to avoid under-fitting.

Port selection in TCP is conditioned on the implementation and internal condition of the

operating system, and not a function of user behavior, therefore training data from across

all behavior classes may be used to train these models. However, such granularity is often

unnecessary; more accurate simulation of port pairings may be achieved by using a smaller

bin size in the port histogram. This can be adjusted on a per-network basis in order to find

the optimal performance with respect to synthesis and model accuracy.
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Dataset Genuine Synthetic Random sampled

West Point Border -4.1445e+10 -6.6203e+10 -8.3211e+10

NSA Capture -5.2935e+10 -6.5322e+10 -6.6581e+10

LBNL Enterprise -3.9719e+10 -6.8987e+10 -8.8169e+10

Columbia Univ. -3.0717e+10 -3.1106e+10 -5.5863e+10

George Mason Univ. -1.3528e+10 -3.5596e+10 -3.7741e+10

UMich. Merit -2.0368e+10 -4.1504e+10 -5.2505e+10

Table 6.1: Log-likelihood evaluation of genuine, synthetic, and randomly-sampled data

across datasets (average of 10 trials.)

6.1.2 Quantifying similarity and data fidelity

One of the primary questions pertaining to data synthesis is how to evaluate the fidelity

of the synthesized data. If the data is meant to be used for anonymization, what is the

measure by which we can be sure that one sample is more useful than another. Given

that our techniques are statistics-driven, the answer to this question is rather obvious: the

measurement quality is simply the likelihood evaluation of the synthesized dataset using the

behavior models. Let x∗
i ∼ pPTM (θi) represent a sample drawn from the PTM trained for

host i. We evaluate the fidelity of the sample with p(x∗
i |θi). A synthetic sample consistent

with the behavior of the original model would yield a higher log-likelihood score than a

poorly recreated sequence.

In practice log(p(s,x|Θ)) is used to avoid underflow errors. Table (6.1) shows likelihood

comparisons for synthesized data over the different datasets. We compare the log-likelihood

scores of synthetic data with the original (genuine) data as well as data piece together by

randomly selecting subsets traffic belonging to other hosts. In this latter case, represented

in the table by “Random sampled,” a naive way of data synthesis is simulated, where we

randomly piece together segments of traffic belonging to other hosts to synthesize traffic

for a particular host. This method gives us a more challenging performance baseline to

compare against, as opposed to synthesizing random data via sampling from a uniform

distribution, given that we are using segments of actual traffic. Random data sampled in

that manner yields log-likelihood scores that are orders of magnitude lower and are thus not
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interesting for comparison. All results are average of 10 randomized trials. As expected,

our synthesized data consistently exhibit higher log-likelihood scores than the randomly

sampled data, but lower than the genuine data, which would represents an upper bound.

The results confirm how we would expect data synthesis algorithms to perform, that data

synthesized from a behavior model is more realistic than randomly sampled data, but less

than genuine data.

6.1.3 Anonymization via. model-exchange

Traffic synthesis can be used not only to obscure the source signal within a dataset but also

can, in theory, replace the original traffic, given accurate enough models and simulation. If

the models can achieve 100% accuracy on the training dataset, for example, and if the syn-

thesis algorithms could consistently generate synthetic data with respect to these models.

Then it may be possible to simply exchange model parameters between organizations for

research purposes rather than exchanging anonymized data. For certain research problems

where only independent measurement of behavior is necessary, such as detection of intru-

sions, measurements on the distribution of services, and other volumetric measurement,

using these models would be the next best thing to having authentic data. The benefit of

exchanging only models is that a high level of anonymity may be achieved given that the

potential for side-channel information disclosure is minimized. Using the synthesis tech-

niques described in this chapter, the receiving party can re-synthesize the dataset according

to these models, if necessary. This aspect of research is part of our future work and will be

discussed in further detail in that chapter.

6.2 Behavior-based traffic interpolation

Behavior interpolation can be achieved in the simplest way by using a switched PTM. A

switched time-series model is simply one where multiple models are joined together and an

independent variable is used to track which model is active at a given time. The probability

of “switching on” any specific model can either be a multinomial distribution if the transi-

tions are independent, or can be modeled explicitly using a transition probability, much in
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the same way as the state-transitions within each model operate. This generates traffic that

represents an interpolation of behavior between the different behavior models, and would be

reflected in the model parameters trained over this synthesized data; a hypothesis that will

be experimentally confirmed in this section. A user-specified distribution on the switching

variable can be used to control the degree of interpolation.

Synthesize-Mixed-Netflow provides the pseudocode for this procedure:

Synthesize-Mixed-Netflow(Θ, n,p, c)

1 [s,d,x] ← ∅

2 for t ← 1 to �n/c�:

3 do i ∼ M(p)

4 [st,dt,xt] ← Synthesize-Netflow(θi, c)

5 [s,d,x] ← Append([st,dt,xt])

6 t ← t+ 1

7 return [s,d,x]

In the most straight-forward implementation, data synthesis using switched-models in-

volves generating blocks of traffic of length c for each model and combining them. The

result is that individual sections of the data will be statistically similar to different models.

Given that, in practice, interpolating behavior would often be done on similarly matched

hosts, the statistical divergence within these traffics blocks would be minimal. In practice, c

can be randomized at each iteration within the loop if an exact final length is not required.

One might consider why c should not be set as 1. The reason for this is that the PT-Markov

model measures transitional probability. Therefore, if c = 1, in the worst case where we

have two completely different behavior models, we can have a thrashing scenario where

the context occurs after each generated entry. This would, in theory, yield a result that

is dissimilar to both of the initial models. This thrashing effect is mitigated if two models

are more similar to each other and contain a high degree of overlap among port values, in

which case it would allow the models to transition between each other more smoothly. In

practice, c can be adjusted based on the model similarities.

A visual similarity-measurement technique to quantify the the fidelity of the synthesized

data in this interpolation setting. We confirm our hypothesis on the interpolation effect by



CHAPTER 6. NETWORK TRAFFIC SYNTHESIS AND SIMULATION 109

Figure 6.1: Behavior interpolation: Two clusters of behavior profiles are embedded (“sos2”

and “web3”) along with a new class of behavior (“S”) that interpolates between these two

models.

using the embedding techniques described in the kernel chapter to visualize the distribution

of the original and synthetic points with respect to each other. In this experiment, we

began with two classes of behavior, one modeled on a web server (denoted by “web”) and

the other modeled on a general-computation server (denoted by “sos”). A switched model

is used to synthesize samples of their interpolated behavior which we labeled the“S” class.

Figure (6.1) shows the embedded results of interpolation two distinct classes of behavior.

Visually, we can confirm that the synthesized data indeed falls between these two distinct

classes of behavior. In this experiment, we trained PTMs on traffic belonging to two hosts:

“sos2” and “web3.” These models were the used in the interpolation-synthesis algorithm

described above in order to generate a set of synthetic data which is represented in the

embedding as class “S.” The samples from sos2, web3 and S were then embedded into two

dimensions using multi-dimensional scaling with a PPK-calculated Hellinger divergence

matrix. The embeddings are distributed according to what we would expect. The two
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classes are clustered together, and the third class is embedded between these two. Note

that the distance relationship is not exactly linear in this space – the linearity is actually in

the high dimensional Hilbert space imaged by the probability product kernel, but appears

non-linear in the lower dimensions.

6.3 Behavior-based traffic regression

Often network traffic is not captured continuously and gaps in traffic may occur, or traffic

instances may be unaligned. One interesting problem is how can we fill in this missing gap.

We refer to this problem as traffic regression. Ideally, we would like the synthesized data to

match with the actual data along the boundaries so that transition probabilities are properly

maximized. While this is not so difficult if we use a simple one-step Markov model as the

basic setting of our model uses, problems would arise if we were to extend our model and

use a multi-step Markov dependency assumptions where we have p(st|st−1, st−2, . . . , st−k).

In this case aligning the boundaries becomes more difficult. Given this we propose a more

general solution that can work for any variation on the behavior models. An efficient

randomized algorithm is to simply generate many samples and pick the one that yields

the highest likelihood given the choice of probability model p(s,x|Θ), or more efficiently

implemented as generating a very long sample and using a sliding window to calculate the

block of traffic that yields the highest likelihood estimate with respect to the boundary

traffic instances.

This process takes the following form:
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Netflow-Regression(θ, s,d,x, c)

1 n ← Some large number

2 D ← [∞,∞, . . . ,∞] of length n

3 [s�,d�,x�] ← Synthesize-Netflow(θ, n)

4 for t ← 4 to n− c− 4 :

5 do Dt =
�t

i=t−3 ||di − d�i||+
�t+c+3

i=t+c ||di − d�i|| . . .

6 +
�t

i=t−3 ||si − s�i||+
�t+c+3

i=t+c ||si − s�i||

7 j ← Find-Index-Of(Min(D))

8 [s∗,d∗,x∗] ← [s�j,...,j+c−1, d
�
j,...,j+c−1, x

�
j,...,j+c−1]

9 return [s∗,d∗,x∗]

This algorithm synthesizes a single long sequence, and a sliding window of fixed size is

swept across the generated data to find the indices where the boundaries are most similarly

aligned between the original and the synthetic data. The method of similarity measurement

is simply the Euclidean norm. The values between the boundaries within the synthetic data

are then taken to patch the missing gap of size c within the original.

Figure 6.2: Filling in missing data: (Left) shaded entries represents missing data. (Right)

synthesized entries.

Figure (7.12) shows an example of this regression. In this experiment, we trained a

model for a particular host and took an unseen segment of traffic from the same host for

testing. From this testing sample, we removed a portion of the traffic – this is represented

by the shaded values on the left side of the figure. On the right side of the figure, denoted

in bold font, we show the sequence of entries generated using our regression technique.

Statistically, this is the maximum likelihood estimate. However, it is easier to visually

appreciate the similarity in the real and synthetic samples.
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6.4 Passive network-device fingerprints

The next section provides a description for how to synthesize packet-data that is consistent

with the netflow-layer statistical representation. Before that topic is covered, however, a

brief mention of a related topic of passive device fingerprints is necessary. In addition to

statisical behavior-based fingerprints and overt identifiers such as IP or Ethernet addresses,

less-obvious content-based signatures also exist within the TCP packet headers, in the form

of predictable values in certain header fields. These potentially discriminative features

include TTL values and Window sizes set within TCP SYN packets. These values are

determined, not by application level host behavior, but rather by the implementation of the

operating system, and the implementation of the network protocol stack. Given that TCP

is agnostic to layer-2 implementation not to mention host OS implementation, such features

such as maximum segment size, TCP window size and path MTU must be negotiated in a

handshaking procedure during the initialization of the TCP session between two different

hosts. During this initialization the hosts submit their own acceptable values to each other,

and it is this exchange of information that present the avenue for passive OS fingerprinting.

These signatures are typically used to identify the operating system of the connecting hosts,

are referred to as “passive” fingerprints to distinguish them from those fingerprints retrieved

by actively probing of the host. p0f [Zalewski, 2006] is a well-known instance of the passive-

OS fingerprinting tool that uses characteristics of the SYN packet, primarily, to perform

passive OS identification.

Active OS detection leverages the fact that different operating systems, and different

versions of the same operating system (Linux 2.4,2.6...) have different implementations that

will behave differently when handling malformed packets. nmap is a prominent example of

active OS fingerprinting tool. Other forms of active fingerprints also exist, such as the ap-

pearance of port-scans, DDoS attacks, and other behaviorally recognizable artifacts within

network traffic that can distinguish one particular host from another, or a particular dataset

from another. This topic is discussed later, in the chapter on network trace anonymization.

Passive OS fingerprints are relevant in the context of synthesis in that the synthesized

packet streams must be consistent with these features in addition to the higher level statis-

tical representation. The next section will describe how this is achievable.



CHAPTER 6. NETWORK TRAFFIC SYNTHESIS AND SIMULATION 113

6.5 Synthesizing TCP-layer packet traffic

This section describes the technical details in crafting sessionizeable packet streams that

are consistent with the statistical samples synthesized using the techniques of the previous

section. Recall that behavior features that we study take the following form:

x ∈ {timestamp, srcaddr, srcport, dstaddr, dstport, pktcount}.

In our setting, each of these records represent the unidirectional flow of information from

one host to another and a collection of these instances represent a session. A collection of

sessions then represent the traffic set of a particular host. The prior section described how

to synthesize each of the fields within this record, with the exception of the timestamp,

which we will discussed in a subsequent section. The IP address will be obfuscated values

in the resulting dataset, so they may be chosen at random or in a prefix-structured manner

if network topology and subnet distribution is to be preserved. Given this set of data,

implementing the packet transform is a mostly a technical challenge, and not a conceptual

one. The difficultly lies primarily in ensuring the packets are consistent with RFC 1122

specifications on the implementation of the TCP/IP layers [Force, 1989].

We have written TCP-session synthesis library in Python for assist in this last step of

the transformation. This library allows one to program the synthesis of packet streams

using the statistical entries described above. This library is essentially a simplified software

stack for the TCP layer. The main challenge for us to consider is producing sessionizeable

packets consistent with the given statistical behavior. The underlying characteristics of the

IP-layer is, for the most part, independent of the application behavior. Therefore, we built

our library on top of the Scapy PCAP programming library [Biondi, 2012] and use their

handling of the IP stack to transparently craft the individual IP packets.

The library transparently handles the establishment of the TCP session and ensures

the transmissions characteristics are consistent with the statistical information. Given that

TCP is a full-duplex connection, the corresponding sequence numbers and window-size

values for each session are tracked accordingly. These steps are as follows:

1. Establish the TCP handshake by crafting the TCP SYN packet for the originating

host, consistent with the input OS fingerprint. The receiver host will often also have
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Figure 6.3: Programming with the Flow-to-PCAP TCP-session-synthesis library.

passive fingerprint, and this is incorporated into the SYN+ACK response.

2. Control variables such as window sizes are established given the host pairings.

3. Initial values for the TCP sequence number are generated at random.

4. Packets are generated for time entry t according to the statistical samples xt. The

TCP sequence numbers are updated. Random bytes are used to fill the payload

portion of each packet. The packet sizes are kept consistent with the TCP sequence

numbers and the path MTU. We pad the packets so that the maximum allowable

amount of information is used, according to the MTU (c.f. figure (4.2) for packet size

distributions).

5. After the session is complete the FIN, FIN+ACK packets are generated.

Scapy is used to automatically maintain consistency in the IP header values with respect

to checksums, flags, and the packet IP ID values.

Figure (6.3) shows a sample program written to craft a TCP session using our library.

Figure 6.4 shows that these synthesized packets passes all checks in Wireshark and are fully

sessionizeable.
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Figure 6.4: Synthesized packets are sessionizeable and passes all checks in Wireshark.

Figure 6.5: Translation between statistical representation to PCAP.
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In practice, the programming API would read statistical features from the generated

statistical entries and the user will not need to manually input these values. Figure (6.5)

shows details of an instance of synthesized packets. The translation between statistical

representation and packets is shown. One limitation of this method is that the generated

traffic is fairly “clean” and network jitters are not currently reproduced. For example, on

a normal network is it very common to see such things as bogon traffic, IP fragmentation,

duplicate packets, malformed headers, etc. These eccentricities are difficult to replicate

faithfully given that they are content oriented. Synthesis of these objects remains the

subject of our ongoing research.

6.6 Time-driven traffic synthesis

The timestamp feature was the last missing element of the synthesize procedure. This is

because the PTM model does not explicitly trace time and as such as no concept of exact

traffic generation times or session inter-arrival times. Incorporating timing modeling can

be done using mixtures of exponential distributions, and is discussed in the future works.

In order to synthesize traffic conditioned on time, a separate distribution conditioned on

time may be used. However, if a more accurate model is desired one such solution to

this limitation is training independent PTM models in a piece-wise manner on segments of

traffic conditioned on time. This is a rather simple engineering solution to a conceptually

challenging problem.

One of the reasons why modeling traffic conditioned on time is that this level of gran-

ularity requires far more training data than the prior algorithms since we need to observe

a host’s behavior throughout the day, for several days, in order to obtain an accurate mea-

surement to create a distribution based on active times. It reflects the issues with the HMM

performance described in the model sections. If a traffic profile is conditioned on a period

of time during the day then each instance of training traffic requires measurement from a

different day in order to be consistent.

We chose the first approach mentioned in adopting a separate distribution that models

the amount of traffic a host generates on a given day. This model breaks a day into
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288 individual five-minute time slices and, for each time slice, we measure the aggregate

volume of data sent to and received by a particular host. This gives us a statistical sample

y ∈ R1×288 for a particular day. With a set of m samples Y = {y1,y2, . . . ,ym} we can use

a set of Gaussian distributions to track behavior conditioned on time. For each time-slice

of activity t we have:

µt =
1

m

m�

i

yi,t (6.1)

σt =
1

m

m�

i

(yi,t − µ)2. (6.2)

This implicitly assumes independency between the individual time slices. Representing

this timing model using τ = {µ1, µ2, ..µ288,σ1,σ2, ..σ288}, the pseudo-code for the time-

depend packet synthesis is as follows:

Synthesize-Day(θ, τ)

1 for i ← 1 to 288 :

2 do vt ∼ N (τt)

3 if vt < � : ✄ � is a threshold for activation

4 then continue

5 n ←
�
vt/

1
k

�k
i µi

�

6 Fi ← Stats-To-PCAP(Synthesize-Stats(θ, n))

7 ✄ Merge all PCAP files into F∗

8 F∗ ← Merge-PCAP(F1, F2, . . . , F288)

9 return

In the above pseudo-code Stats-To-PCAP is the function for generating packets from

a statistical sample. In our experiments our models have yielded interesting results, such

as replicating port-scanners found in the NSA dataset.
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Figure 6.6: Synthesize-Netflow maintain O(n) growth with respect to number of flows.

Large traffic set with 20,000 flow entries took less than five seconds to synthesize.

6.7 Runtime evaluation

The memory footprint of our models is small when implemented using efficient underlying

data structures. The largest part of the model is the transition-probabilities table. This size

is upper bounded by the size of the list of potential port features. In our implementation,

we had 1025 well known ports, 20 registered-ports bins, 1 ephemeral-port bin, which yields

a 1046 × 1046 transition table. If double precision floating point storage is used for all

values then we have a roughly 8Mb maximum storage requirement per model. However,

the transition-probabilities table is typically very sparse, because most hosts exercises only

a small subset of potential network protocols, unless a host is experiencing some sort of

port-scanning activity. In practice, for a typical host which uses a dozen or so network

services (c.f. Table (4.2)), the storage requirement of using sparse-matrix implementation

is roughly 12Kb per host. This means that on modern computing platforms it is easily

possible to compute profiles for networks containing tens of thousands of hosts and keep all

parameters in memory simultaneously.

Figure (6.6) shows the runtime of this synthesis algorithm. Given that our algorithm

utilizes a single-pass over the dataset, its runtime growth is linear in O(N). Even in

Synthesize-Day where two loop layers exist, the outer loop is upper bounded by a rela-

tively small constant, therefore the entire system still grows in O(N). Figure (6.6) shows
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Figure 6.7: Synthesize-Netflow runtime is largely independent of the model size.

the runtimes for synthesizing the behavior of a host utilizing 16 network services. The

results demonstrate that synthesizing a (relatively large) 20,000-element Netflow record re-

quired less than five seconds. Results were derived from computation performed on a 64-bit

2.66Ghz processor with six cores. We believe our relatively un-optimized research-oriented

code can be improved in production settings, and significantly higher performances may be

achieved.

Figure (6.7) shows that the runtime of the synthesis algorithm is independent of the

model size. This is because the state-transitions is largely independent on the number of

states. For each state transition an index a column within a matrix is selected the size of

the state-space adds computational cost to the multinomial-distribution sampling function

that selects each subsequent state, however this effect is minimal, and only adds a small

multiplicative factor to the overall runtime.

Concluding remarks

In this chapter we have described a model for representing network behavior at the host

level, for purposes of network traffic simulation. We showed how to extend these models

and use them to synthesize realistic looking traffic that mimic the original hosts. We

demonstrated how to modify these models to manipulate the resulting synthetic data, by
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adjusting the parameters, and interpolating between different models to simulate adjustable

new behavior, as well as be used to fill in “missing” gaps of traffic. Methods to quantify the

fidelity of these algorithms are presented, and backed up by experiments which demonstrate

favorable performance of our algorithm.
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Chapter 7

Network Trace Anonymization
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Introduction

Having described the machine learning-based components of network host behavior model-

ing, similarity measurement, and traffic synthesis in the previous three chapters, this chapter

shows how all of these techniques are combined to create a source-anonymization system

consistent with the formalization presented in Chapter 3. This chapter further shows how

the minimum anonymity set size is estimated and derive these measurements for various

datasets. We show how to ensure that this minimum requirement is met while preserving

the behavior distribution. The technical details behind the traffic-merging functionality

are presented, such as obfuscation requirements for specific packet header values. Mea-

surements on the statistical distributions before and after anonymization demonstrate the

statistics-preservation quality of this transformation. The stability of the algorithm and the

quality of the matched groupings are also evaluated. Algorithms for behavior level traffic

shaping and methods by which we can measure these changes are also presented. Further,

connections to existing anonymity metrics are made, such as k-anonymity, anonymity set

size, and other metrics, in order to show how existing anonymization theory are relatable

to our work and how these methods may be used to guide the use of this technology. Po-

tential areas of information leakage are explored and methods to mitigate these problems

are offered.

7.1 Anonymity via crowd of similarly-behaving peers

We have demonstrate in the previous chapters that statistical models for static and temporal

traffic behavior may be used to identify groups of individuals with distinctively similar

behavioral patterns. The accuracy of the models in classification experiments confirms that

behavior is quantifiable, measurable, and that groups of similar behaviors can be identified

using these methods. We further showed that traffic consistent with targeted behavior can

be synthesized, and confirmed this with fidelity measurements that shows the statistical

significance.

This sections walks through the conceptual overview of the anonymization process.

Figure (7.1) show the first step of the process where PCAP data, containing session
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Step 1 - Feature Extraction

Figure 7.1: PTMs are trained for each host within a network trace file in steps 1 and 2.

information is extracted into flow-layer statistics and PTM models are trained for each

host.

Given the model, we can conceptualize each host as a single point in an abstract behavior

space defined by the PTM, shown in figure (7.2).

The probability kernel provides a pair-wise similarity distance metric for these behavior

models and can be used to define a fully-connected graph, as shown in figure (7.3) where

user behaviors are considered nodes and the edge weights are pair-wise probability product

kernel affinity evaluations. Without the need to assume a parametric model for the overall

host-behavior distribution (as in EM or KMeans), recovering the optimal partition is a

function of obtaining the minimum weight graph-cut solution. A fast and efficient spectral

approximation to the normalized ratio cut is used, and the optimal partition is recovered.

Given this partition the clustering in the original model space is identified (figure (7.4)).

The groups are now merged and group identities are assigned.

Finally, this clustering is actuated in network data by modifying the packets such that

the new sessions are consistent with the merged identities. Note that this matching does

not need to use hosts from within the same dataset, rather multiple sources for network

traffic may be clustered simultaneously, providing additional anonymity by enlarging the

anonymity set size.
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Step 2 - PTM-Space

Figure 7.2: Time-series models can be conceptualized as points in a time-series space.

Step 3 - Kernel metric casts the behavior profiles as nodes within a fully-connection graph.

Figure 7.3: These behavior models are conceptualized as points within a graph where edge

weight is solved by the kernel affinity calculated with the PPK. The optimal normalized cut

is recovered using a spectral approximation algorithm.
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Step 4 - Clustering recovered

Figure 7.4: Clusters can of similar behavior are recognizable in this space using the proba-

bility product kernel.

Step 5 - Clusters merged and labels are assigned

Figure 7.5: Similar hosts are grouped together to form clusters for statistics-preserving

crowd-based anonymization.
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Figure 7.6: Anonymity by crowds is actualized through a packet/flow merging transforma-

tion on the appropriate hosts in the trace file.

7.1.1 Anonymity in the mixed traffic set

For realtime mixnets, the anonymization system induces end-to-end anonymity in that

observers sitting on the edge of the circuit can only see traffic flowing into and out of

the system but cannot match the source and destination pairs. Here, we analyze what

anonymization by clustering achieves for the offline case.

Figure 7.7: Mixing traffic amongst similarly behaving hosts.

Consider figure 7.7. Users A, B, and D are determined to behave similarly, as were users

D, E, and F. Traffic for users A, B, and D are aggregated and reassigned a new identity
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of user X. The same is done for user Y, and it now appears that two users generated the

original traffic. Let unique sessions be identified by the labels Pkt1, Pkt2,...etc. We can

assume that an observer has a segment of User A’s traffic and therefore knows the exact

characteristics of this session such as parameters of the TCP handshake, the initial window

size negotiated, the duration, initial TCP sequence numbers, etc. In an unmixed packet

trace the IP is simply obfuscated, the attacker now has the pseudo-identity for User A and

can see all of the other sessions (Pkt4, Pkt5). Under our anonymization transformation,

the attacker can only identify that User X is the pseudonym for User A. He cannot infer

anything else about the traffic output from User X, such as how many members User X

represents, and which sessions (represented by Pkt1,2,3,4,5,6,16,20) actually belongs to User

A. Given that our behavior models track common services exercised as well as volumetric

and time-series information, all of these sessions are quantifiably similar and difficult to

separate. Further, he cannot infer whether or not all of the sessions that he observes are

authentic and not synthesized, nor can he determine if they all originate from the source true

source network and were not mixed across different network traces. Outbound information

such as cardinality of the outbound peers is obfuscated as a property of merging the traffic,

thus this signal is removed. Further, all IP addresses are obfuscated using a technique such

as CryptoPan. Therefore, the anonymization has made it so that User X is functionally

equivalent to a mix net exit node.

7.2 Stability of the algorithm

Given that our proposed algorithm is a stochastic-based method, the utility is partially

conditioned on the stability of this algorithm. In order for PTM-based clustering of host

behaviors to be a practical solution, the performance of the modeling, clustering, and syn-

thesis steps must be predictable and consistent. We associate the study of these problems

into the category of algorithm stability. An evaluation of such stability is presented in this

section. A few important problems are discussed along with their corresponding proposed

solutions. The first problem is how to determine the optimal cluster size k, and the second

is the related problem of how to guarantee this minimum size in the clustering result. The
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quality of the matchings, in terms of disparity between traffic-set sizes belonging to matched

hosts, is examined, along with the predictability and stability of the synthesis algorithms.

7.2.1 Determining the optimal k

One of the foremost questions regarding this approach to anonymization is how to deter-

mine the optimal clustering size k. In practice – within this context and other similar

anonymization approaches, such as micro-data anonymization – k is chosen by the user

of the system in a way to minimize information disclosure about any individual measured

entity. In micro-data anonymization, the mean and standard deviation may be used to

determine – often in an ad hoc manner – the optimal cluster size.

Fundamentally, the motivation of establishing a cluster size is to obtain a favorable

balance between the tradable in utility and anonymity. It is a reasonable assumption that

the utility of the dataset is inversely proportional to the amount of modifications performed

on it – an unmodified dataset retains all of the original utility properties, after all. As

such, k should be chosen to be the minimum value that satisfies a measurable quantity of

anonymity. What that measurement is, and how it can be used to obtain an estimate for k

is studied in this section.

Our approach to estimating the tradeoff between utility and minimum cluster size is

based on the likelihood estimate of the test data over a model trained on the mixed traffic

dataset. Specifically, random segments of a host’s traffic are extracted for use in the testing

set. Then, that host’s model is retrained using the merged data belong to that host as

well as its nearest neighbors. The new model is used to evaluate the extracted test dataset

from that particular host. A plot of the likelihood loss can then be used to estimate the

amount of information lost or conversely, the anonymity gained. This simulates the effect

of information loss by losing the exact labeling for that host. Essentially, it measures the

loss of identity when merging into a crowd. It is the same scenario that an attacker who is

trying to de-anonymize the dataset would observe – one where he knows the dataset is a

mixture of multiple hosts. Using the likelihood value as opposed to classification accuracy

is appropriate because classification is determined by the likelihood, therefore the the two

values are strongly correlated.
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(a) Columbia Univ. (b) George Mason Univ.

(c) Univ. Michigan (d) Lawrence Berkeley National Labs

(e) West Point (f) NSA

Figure 7.8: Measuring log-likelihood loss as a function of cluster size (k).
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Figure (7.8) shows examples of this measurement. In this experiment, we obfuscate the

host’s traffic using PTM-measured nearest neighbors to generate the clusters of varying

size. We measure the loss in the log-likelihood of the host’s testing data when the model is

trained with data that does not belong to the same class. The expected behavior is that the

log-likelihood would continuously decrease, until the cluster has grown to the point where

very non-similar hosts are added and the performance becomes chaotic. Before this point

is reached, however, one might notice a fall-off point where adding similar hosts no longer

affect the performance.

The data-fidelity loss is both stable and linear in the number of elements in a cluster; as

more hosts are added to a cluster the fidelity of the data, as represented by the log-likelihood

graphs, drops – as expected. This provides insights into necessary cluster-sizes: GMU, for

example, achieve optimal clustering at size 5. The most evident example of this occurs

in the GMU experiments where we see that the optimal cluster size is 5 – beyond this,

the identity-loss (or conversely the anonymity gain) levels out. This allows us to measure

anonymity gain and provides insights into how one can estimate the necessary size of the

clusters.

7.2.2 Minimum-sized k guarantee when not using spectral partitioning

In the section that covered spectral clustering, we introduced the spectral partitioning

algorithm, which guarantees a balanced clustering.

In the standard spectral clustering set up, a minimum cluster size is not guaranteed

in the resulting labeling. In fact, singleton clusters can emerge; the frequency of which is

based on the distribution of the data. Given the evaluation for cluster size discussed in the

previous subsection, it is necessary to provide a guarantee for the minimum cluster size for

the general case. This necessitates an additional processing step in the clustering procedure,

in addition the spectral clustering. In this section we show how an agglomerative-clustering

step can be utilized to provide this minimum k guarantee.

Agglomerative clustering is a hierarchical approach to clustering where pair-wise ele-

ments are recursively grouped from the bottom up. The algorithm proceeds in iterations

where, within each iteration, pairs of datums are matched based on their similarity to each
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other. The iterations are repeated until all datums are matched. In our problem setting,

the datums are cluster labels outputted from spectral clustering. Thus, it is necessary to

iteratively cluster pairs of clusters (not individual hosts.) A metric for cluster-similarity is

then necessary.

One generative approach would be to retrain a single PTM model for each cluster using

the traffic belonging to the hosts within that cluster θA = argmaxθ p(X ∈ A|θ). The PPK

can then be used to match similarity between clusters:

S(A,B) = KPPK(θA, θB). (7.1)

This can be done recursively in order to perform agglomerative clustering. This is an

EM-like approach, however, it is computationally complex as the dataset would need to

be processed on the order of O(N logN) times on average if the pairing tree is balanced,

and O(N2) if it is unbalanced. However, re-training and re-computation of similarity scores

is unnecessary. An efficient way to achieve the same hierarchical clustering is to take

advantage of already existing kernel-based similarity comparisons found in the Gram matrix

that was computed during the spectral clustering step. Recall that spectral clustering uses

the eigenvalues of Laplacian matrix L, which is computed from the Gram matrix G. One

can compare similarity between clusters directly by summing the pair-wise similarity scores

between hosts within the two clusters, this is done by summing the rows and columns that

correspond to the elements from the two separate clusters.

Let π(i, j) return 1 if xi ∈ A and xj ∈ B, and 0 otherwise.

δ(i, j) =





1 : xi ∈ A ∧ xj ∈ B

0 otherwise
(7.2)

Finding the similarity between clusters of hosts corresponds to summing elements of the

gram matrix G:

�S(A,B) =
N�

i=1

N�

j=1

G(i, j)δ(i, j). (7.3)

This method, in essence, compares the distance of all members of one cluster to all the

members of another. An efficient way to do this is to extract the entries from the Gram
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matrix where the rows correspond to the entries of one cluster and the columns correspond

to the entries of another cluster. The sum of this reduced matrix gives the aggregate

similarity between members of the two clusters. Performing the agglomerative clustering

step is then straight forward, using iterative matching at each layer.

Figure (7.9) shows an example of this agglomerative clustering method on the Columbia

dataset. Iterative merging of under-sized clusters is shown, with k = 5 set as the minimum

cluster size. In the top left panel, the results of the spectral clustering procedure are shown;

the figure shows a histogram of the number of elements within each cluster. (For the scope

of this experiment, no effort was made to adjust the algorithm to yield more favorable

balanced clusters; in practice, proper regularization of the probability-product kernel can

be used to produce more balanced cluster sizes naturally.) The subsequent panels show

the steps of the agglomerative clustering procedure as the clusters are merged with their

nearest neighbors and their host counts are aggregated, until no cluster is left with less

than 5 members. The Columbia dataset was chosen to demonstrate the stability of this

algorithm since the true-labels for the hosts are known. Therefore, we can examine the

results of the final clustering using the host names.

Figure (7.10) shows the results of spectral clustering with an agglomerative matching

fix-up phase. In this resulting dataset, we can see all of the web servers are clustered

together in cluster 4. This cluster was missing “web3157” in earlier evaluations, but this

host was matched to this cluster in this hierarchical matching scheme.

In terms of runtime costs, given that the components of the Gram matrix are used, the

algorithm runs in time proportional to the number of clusters (which is very small compared

to the number of hosts). Since no retraining or re-evaluation of the dataset is necessary, and

only comparisons of values within an N ×N matrix is needed, this procedure as negligible

overhead to the original clustering function.

7.2.3 Parity in the clustering

Thus far, examinations of clustering stability has focused no the host-level entity, compar-

isons were based on host label matchings and not the amount of traffic each host possessed.

Stability in behavior matching, however, is conditioned on the host as well as the volume of
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Figure 7.9: Agglomerative clustering to guarantee minimum cluster size (k = 5.) Distribu-

tions of cluster sizes at each step is shown.
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Figure 7.10: Results of spectral clustering with agglomerative merging of the resulting

clusters. The minimum cluster size was set to 5.
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traffic belonging to that host. For example, if a host containing 1 million packets is matched

with a host containing 100 packets, the disparity in data volume is naturally going to have

an adverse effect on the anonymization, regardless of how similar the behaviors of these two

hosts may be. Therefore, this section examines the parity in the traffic volume between the

host mixtures. While traffic volume is not explicitly modeled in the PTM, some estimate

of volume is intrinsically captured in the emissions model which measure the average size

of the flow connections, though the total number of connections are not tracked. As the

evaluations show, similarity in host behavior is correlated with traffic volume.

If a similar-behavior based approach is used to de-anonymize the merged trace, then,

without true labels on the traffic segments, the attacker draws portions of the mixed traffic

for training. Anonymity is proportional to the probability of drawing any given host’s

packets from the mixed source. Let this be defined naively as the ratio of packets between

those belonging to a particular host and those of the entire cluster. Let ci represent the

count of the number of packets for host i in a cluster. The probability associated with each

host is then associated with the ratio, and the measure of parity is based on the Shannon

entropy in the packet-count distributions within a cluster:

pi =
ci�

j∈A cj
(7.4)

H(A) = −
|A|�

i=1

pi log pi. (7.5)

And the expected value of H for the k clusters is then used for the parity metric of the

clustering algorithm.

H∗(C1, C2, ..., Ck) =
1

k

k�

i=1

H(Ci). (7.6)

Figure (7.11) shows the stability of the matching with respect to the packet count parity.

Average packet-count disparity vs. number-of-clusters: the ability of the system to match

up even-sized traces with each other as the number of clusters increases. In (a) we measure

the homogeneity of packet-counts of members element. This means that if a host with a

large set of associated data is mixed with one that has few data, the score would be low.
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Figure 7.11: Average packet-count disparity vs. number of clusters in Columbia dataset.

A baseline of random mixing is shown in the dashed line. As the figure shows, our method

maintains good cluster parity until the cluster sizes approach the size of the entire dataset

and bad mixes are forced.

7.2.4 Traffic interpolation and synthesis stability

Among the anonymization transformations is the ability to synthesize new data. The use of

statistical sampling and replacement of true values with these samples is used in micro-data

anonymization, and has been studied in the case of differential privacy. In this section, we

evaluate the stability performance synthesizing new traffic using the behavior-based models.

We use a visual similarity-measurement technique to quantify the fidelity of the syn-

thesized data. This is done by plotting points in a 2-D plane in a way such that each

point corresponds to a synthesized data sequence, and the distances between points in this

2-D plane is proportional to the distances between the corresponding traffic samples in the

original space. This technique is known as “embedding,” and we have developed methods

for network-data embedding in our prior work [?]. In this experiment, we began with two

classes of behavior: one modeled after a web server (denoted by “web”) and the other mod-
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Figure 7.12: Behavior interpolation: Two clusters of behavior profiles are embedded (“sos”

and “web”) along with a new class of behavior (“S”) that interpolates between these two

models.

eled after a compute server (denoted by “sos”). A Parzen-based switchng model, similar

to the one described in equation (5) is used to synthesize samples of interpolated behavior,

which we labeled the “S” class. Visually, we can confirm that the synthesized data indeed

falls between these two distinct classes of behavior. We use the kernel principle component

analysis with the PPK-PTM kernel to achieve this embedding.

7.3 Self-similarity and behavior shaping

The concept of traffic shaping has been studied in the context of anonymization for many

years. The fundamental goal behind traffic shaping is to obfuscate any statistical or con-

tent characteristics from the traffic that might leak information about the identity of the

anonymized entity, such as a host or a communications stream. Traffic shaping has been dis-

cussed in the context of onion routing networks since 2001[Syverson et al., 2001] where data

padding and other transformations are investigated to provide cover traffic for anonymized

communications channels. Recently, traffic morphing for offline data was discussed by

Wright et al. in [Wright et al., 2009].
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Traffic shaping is mostly used in tandem with statistical models where a measurement of

behavior or other characteristic is quantifiable. Given the ability to model and measure such

behavior, it is a natural extension to then use this measurement to reshape those statistical

properties to achieve some specific goal: either blending into desired goal or add enough

noise such that sufficient divergence from a target model is achieved. In the packet trace

setting, this is typically done by modifying the original packet streams with transformations

such as adding, removing, modifying packets.

An example of where such methods are applicable would be identifying users that have

very distinctive behavior patterns, such as a person who generates a very high amount

of FTP traffic. This individual might be easily identifiable even if their IP address was

obfuscated using CryptoPan or a comparable method. However, changing the IP address of

the host does not mask that host’s behavioral profile and, using the same behavior models

that were presented in this thesis, that user is detectable in the IP-anonymized result. Some

transformation which would improve anonymity and remove this overt signature would be

to systematically drop FTP packets from that host’s traffic stream, or insert synthesized

FTP traffic to similar hosts, such that the signal-to-noise ratio is diluted for that particular

host.

7.3.1 Self-similarity measurement

This section and the following discuss traffic shaping in our anonymization context. In

order to reshape behavior, there must be a method of measurement to act as the baseline

for evaluation – a way to measure the changes induced by any obfuscation transformation.

For anonymization in web-traffic, the distribution of packet sizes were used [Wright et al.,

2009]. For our research purpose, we are interested in an overall behavior profile for the

host. For a baseline measurement, we use a measure that we refer to as the “self-similarity”

measure. This is a measurement of the likelihood of a host’s traffic as evaluated by that

host’s own behavior model.

Self-similarity is determined by moving a siding window of a set size across a host’s

traffic dataset, and at each step evaluate the likelihood of the traffic within that window

using that host’s model. Let x[i : i + w − 1] represent a window of traffic of length w for
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Figure 7.13: Self-anomaly of different hosts across time. Calculated as normalized negative

log-likelihood score of data within a sliding window swept across the traffic.
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traffic sample x.

ψi = p(x[i : i+ w − 1]|θ) ∀i = 1, . . . , N − w. (7.7)

Generally, we are interested mostly in evaluating anomalous behavior. Such traffic

present statistical signatures that could be a source of privacy leak. The measure is inverted

therefore, to use the negative of the loglikelihood estimate, in order to reflect a measurement

of self-anomaly. Figure (7.13) shows this plot of self anomalous behavior for various hosts

within the Columbia dataset. This measurement is used in the subsequent subsections to

measure the effects of proposed traffic-shaping transformation techniques.

7.3.2 Traffic smoothing: anomaly removal

A host’s behavior profile may not always appear consistent, as some of the self-similarity

plots show. It is normal for hosts to exhibit periods of abnormal behavior with respect to its

own model. This happens sometimes due to outside influence. For example, if a machine is

configured to respond to failed connection attempts then a port scan would elicit a response

that would appear anomalous to normal behavior patterns. Such a scan can be used as an

active fingerprint injection method to embed a noticeable signature into the dataset that

can be retrieved later to identify the host within the anonymized dataset. For this and

similar reasons, it is desirable to have a means to remove measurable anomalies from the

traffic dataset.

Figure (7.14) shows a traffic smoothing procedure that removes anomalous traffic that

is one standard deviation above the mean from the host’s traffic dataset. The result of

these removals is observable in the corresponding self-similarity plots for various hosts. The

granularity of the smoothing is a function of the window size w described in equation (7.7).

7.3.3 Traffic perturbation: anomaly injection

Removing anomalous traffic is only one-half of the traffic-shaping procedure. The second

part is the insert of traffic with targeted similarity scores. This allows one to fully manipulate

the behavior profile of the host in any desirable way. One way of inserting such traffic is to

synthesize this traffic using the techniques discussed in section § 6. Since the state models
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Figure 7.14: Traffic smoothing: self-anomalies – segments of traffic with anomaly scores

above 1 standard-deviation from the mean are removed. Original is shown on the left,

smoothed traffic is shown on the right.
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of the PTM are directly tied to the port values, adding white noise to the models is a simple

way of generating similar behavior models. This can include perturbation of the transition

matrix and the emissions models which measure the volumetric distributions.

Using synthetic data may not always the most attractive solution, however. In many

cases, using authentic data is more desirable. Re-shaping the traffic profile of a host by

inserting other pieces of authentic data may initially seem difficult, though a simple method

is available. This method is to rank individual traffic segments of similar hosts using a

sliding window, sorting segments based on their similarity score and using this as an index

into determining which portions of traffic to insert the host’s traffic that is being reshaped.

Let �θ represent the trained PTM model of the host who’s traffic we are reshaping, and H

represent traffic samples from a set of hosts.

si,j = p(xj [i : i+ w − 1]|�θ) ∀xj ∈ H, i = 1, . . . , |Hj |− w. (7.8)

The above equation essentially calculates a matrix of similarities of segments to traffic

for every host in the dataset. In practice, this exhaustive computation is not necessary –

only the most similar hosts would need to be evaluated. Note that H does not necessarily

have to be the same set of hosts from where the target is chosen from – it is possible to

cross-insert traffic from multiple datasets among each other.

Figure (7.15) shows an example of inserting various ranges of anomalous traffic into the

traffic of a target host. Only a single anomalous segment is inserted in each example in

order for the changes to be easily observable in the plots. As the figures (7.14) and (7.15)

show, reshaping the behavior profile of a host is straight forward using the PTM models.

7.3.4 Nearest-neighbor matching for traffic smoothing

Further still, by partially mixing traffic among different hosts, we can also achieve an in-

terpolation effect on the profiles. This allows us to essentially make users behavior 30%

similar to one specific profile and 70% similar to another, or some other desired ratio. This

is done by taking portions of traffic from the desired profiles and mixing it with the traffic

of the target host. Replication of existing sessions with added perturbations can be used



CHAPTER 7. NETWORK TRACE ANONYMIZATION 143

Figure 7.15: Traffic shaping: inserting anomalies – segments of traffic are modified to induce

self-anomalies. Anomalies are inserted at the half-way mark of each traffic set.



CHAPTER 7. NETWORK TRACE ANONYMIZATION 144

to dynamically shift the behavioral patterns of groups of hosts or individuals, to further

enhance anonymity, reduce outliers, smooth the dataset, and more, all the while allowing

aggregation statistical information to be preserved and information-loss minimized.

7.4 Technical details of implementation

The techniques of merging and reshaping traffic has been described at a high level in this

thesis. This section provides a description of the technical details of implementation involved

in packet-trace manipulation. For statistical datasets such as Netflow records, merging

traffic is trivial as only rows of entries need to be exchanged and modified. For packet

data, the modifications involved are more complex as all changes to the packets must be

undertaken without destroying the TCP sessions that they represent. In addition, some

related technical challenges with merging, as well as post-processing steps in anonymization

are discussed.

7.4.1 Technical challenges in merging traffic

Overlapping TCP windows: TCP sessions between two hosts on the same pair of source

and destination ports cannot overlap in time, as this would mangle the individual connec-

tions and render both packet streams incapable of being sessionized. On occasion, this

event can happen when merging traffic sessions, especially since overlapping sets of ports

used between different hosts indicate a higher similarity measurement. When this happens

there are two options available to fix this problem: first, the time-window of one of the

sessions can be increased so that they no longer overlap. Second, one of the ports on either

session may be modified to break the overlap; usually it’s best to identify the session using

an ephemeral port and modify that to induce minimal change in the data. Modifying the

port in any other case can be done by incrementing its value.

IP and link-layer address obfuscation : The IP and Ethernet headers for the hosts

must be modified to be consistent with the session-layer modifications to the TCP packet

headers. This includes ensuring that the obfuscated IP addresses derived post-merging, are
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consistent in the different protocol layers, as well as the MAC address.

IP ID linearization : The IP ID field is used in TCP/IP for packet fragmentation related

issues. When a packet is fragment during routing it needs to be reassembled at the end

point. In order to track the fragmentation, a unique 32-bit ID is assigned to each IP packet.

This ID is linearly increasing and independent for each host. This property is a TCP/IP

specification and is independent of host behavior. If left untouched, the incrementing sets

of IP ID values may reveal the total number of hosts within a merged cluster. Consider

the following sequence of observed IP ID values: 1,2,17,18,19,154,4,20,155,156,157,5,21,158.

Sorted, this values become: [1,2,3,4,5],[17,18,19,20,21],[154,155,156,157,158] and it is then

obvious that traffic from three separate host were combined. This technique was first de-

scribed by Bellovin as a means of counting hosts behind a NAT [Bellovin, 2002]. In order

to prevent this form of analysis, the IP ID fields of the packets must be linearized. Thus,

1,2,17,18,19,154,4,20,155,156,157,5,21,158 should become 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15.

The base-value of “1” should also be obfuscated so that if an attacker has the other side of

the connection, matching hosts by IP ID sets is not possible.

Reinitializing TCP sequence numbers: TCP sequence numbers are used to keep track

of the moving window in the TCP connection. These values are randomly initiated and

incremented during the session. In order to prevent traffic-matching, all TCP sequence

numbers for each session should be shifted by a random offset.

Post merging self-connections: It is sometimes possible that two hosts who have sent

traffic to each other may be selected to be merged. This is problematic as it would cause

self-to-self traffic instances to show up in the merged dataset. The simplest way to fix this

issue is to scan for self-to-self connections in the merged dataset and drop such connections

entirely.

Post-merging transformations: The behavior-based anonymization transformation de-

scribed in this thesis is meant to be used in tandem with other anonymization frameworks
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such as tcpmkpub or PktAnon. The prefix-preserving quality of the CryptoPan algorithm

makes IP-address selection for the merged clusters simple. One can simply chose the IP ad-

dress of the first member of the cluster. This, along with a prefix-preserving transformation

allows preservation of the subnet structure of the network. Given that packet header values

are modified in this anonymization procedure, all checksums must be recomputed. Functions

for these transformations are available in the aforementioned anonymization frameworks and

can be used after behavior-based anonymization.

7.4.2 Runtime

Training algorithm : The PTM training algorithm consists of two parts. The first is the

transitional probability model for the various states. Given that the transition probability is

updated with each flow sample, the total runtime growth of this component is O(N) where

N is the length of the data, or rather the number of flow entries. The second component of

training consists of the EM-based estimation of the emissions models for each state. This

algorithm runs in (SkN) where S is the number of states and k is the number of iterations

it takes for EM to achieve convergence. For scalar data, which is what this model operates

on, k is usually very small and as Table (7.3) shows, S is also typically very small. Therefore

we have (k, S << N), and the runtime growth of the entire training algorithm grows close

to O(N) time. In practice, training full PTM models for over 82 hosts, representing the ma-

jority of the traffic observed in the dataset, with over 1.6 million instances of extracted flow

statistics, took 0.7 seconds in an unoptimized Matlab implementation, on a 3Ghz machine.

Likelihood Evaluation algorithm runs in O(N): Likelihood evaluation consists of it-

eration through each element of the flow entries once. Therefore the algorithm runs in O(N).

Probability product kernel O(S1S2T ): The runtime of the probability product kernel

depends on the number of states for each model S1 and S2, which, as previously shown,

is very small. T is a parameter control operator which is generally fixed at a small value.

In our experiments it was fixed at 10. Given that most hosts contain a very small num-

ber of states, the growth rate of the PPK is negligible and can be considered fairly constant.
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Bottlenecks: The main bottleneck in the proposed anonymization framework comes from

the cost of processing the packet data. Our algorithm requires flow-level statistics about

the hosts traffic. Therefore the processing time mostly is conditioned on the performance of

tools such as tcptrace[Ostermann, 2003], softflowd and nfcapd, and other similar tools

which can be used to extract flow-layer statistics from PCAP traffic. Within the machine

learning components, the bottleneck resides in the eigenvalue decomposition algorithm,

though this cost is also negligible (runtimes in seconds) compared to the PCAP processing

costs.

7.5 Preservation of statistical properties

This section discusses the influence of anonymization on the statistical features of the data.

The various components of the anonymization transformation are examined, and their effect

on the dataset is discussed. We make the distinction between local and global statistics

as those pertaining to the individual hosts and those pertaining to the entire dataset.

Specifically, we consider the effects of merging and synthesis on these statistics, as these are

the obfuscation techniques that induce the most amount change into the data. The following

sub-sections discuss these two aspects in detail. Specifically, we consider the effects of this

transformation on independent statistics, anomaly detection, behavior statistics, content,

as well as communications structure of the network.

7.5.1 Independent statistics and content

The specific effects of merging and synthesizing data are discussed below. These are the

common characteristics that are typically evaluated during network research, such as ag-

gregate rates, volumes distributions, and content feature such as path MTU and intrusion

detection. The preservation of these properties is important in order to maintain the util-

ity of the dataset. Different transformations, such as synthesis or traffic perturbation, will

induce distinct changes on the data, and how these functions are used – like other similar

anonymization systems [Gamer et al., 2008; ?] – will depend on both the content of the
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network traffic and the policy of the source provider. This section discusses some invariant

properties in the anonymization system.

Volume information : Global volumetric information is completely preserved in the merg-

ing function. Given that merging merely entails re-assigning labels (i.e. IP addresses) to

the individual hosts, the header and payload contents and aggregate statistical information

such as packet counts within the traffic are not changed. Therefore merging has no effect

on volumetric information. With regard to synthesis, the sizes of the synthetic flows are

determined by the emission-models for each state and the transition-distribution for these

states properties that are trained over actual traffic. Given the fact that both distributions

are normalized, the linearity of expectations implies that the overall statistical-mean of the

flow-size distribution will remain unchanged.

Port values: This feature refers to the range and distribution of port values observed in

the dataset. This reflects on the distinct types of services used by the hosts within a net-

work. Merging, as in the previous case, has no effect on the port-value distribution. When

using synthesis, the distribution is entirely consistent with the training traffic, in that no

unobserved ports are inserted into the dataset, and the values that are inserted are done

according to the same distribution as the original model. The transition probability model

of the synthesis algorithm is normalized – this means that the distribution of states (ports)

is maintained in the synthesis.

Session characteristics: Network-implementation-oriented characteristics such as the

distributions of path MTUs, and the corresponding maximum window sizes, are not ef-

fected by the merging transformation, as these are network content characteristics which

are driven by the properties of the network and device implementation, and are not based

on host behavior. From the perspective of the analyst, the set of network sessions that were

observed to originate from several different hosts now appear to originate from the same

host.
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Number of hosts: By merging hosts, the overall number of hosts within the dataset is

naturally reduced. In general, the number of hosts in the anonymized dataset will be close

to N/k, where k is the cluster size. If the balanced spectral partition method is used, then

this value is guaranteed. The same effect applies to evaluations of the number of distinct

devices on the network. Given that header information must be modified to be consistent

with the merging steps, the distribution of network devices with respect to unique content

signatures will be reduced in the same ratio.

Payload content : Packet payload content is not handled by the proposed anonymization

framework. This is because most network data is typically not released with payload con-

tent, and if such information is available the standard obfuscation technique is to hash this

content or to remove it from the dataset entirely.

7.5.2 Preservation of behavior characteristics

This subsection focuses on the specific higher-level behavior characteristics of the net-

work that are preserved. Two behavior-oriented host measurements are presented: the

heavy-hitters distribution problem and a more general anomaly-detection problem. In both

instances, we show the overall shape of the distributions are preserved before and after

anonymization.

Heavy hitters distribution : The protocol-transition model uses volumetric information

in the emissions models for each state. Though the volumetric information that the emis-

sions model track relate to the flow-level statistics of the traffic, there is a positive correlation

between the average flow-size and overall volume of traffic generated by a host. As such,

volumetric information is abstracted in the PTM-tracked behavior profile for a host, and

can be preserved when similar hosts are merged together. Figure (7.16) shows the volu-

metric distribution for the hosts within the Columbia University dataset. The figure shows

volume distribution of heavy hitters on the network before and after the merging transfor-

mation. The results show that the overall shape of the distribution is maintained under

behavior-based clustering. By comparison, the dashed line indicates the result of random
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Figure 7.16: Preservation of the traffic-volume distribution.

mixing.

Services/port distribution : The port-value distribution tracks the distinct number of

ports observed in the traffic for each host. This measurement summarizes the diversity

in the types of services and protocols utilized in the dataset. Figure (7.17) shows the

port distribution for the hosts within the Columbia University dataset before and after

anonymization. As the figures show, the overall shape of the distribution is preserved.

Anomaly detection : At a host-behavior level, we would like to be sure that anonymization

the dataset does not remove statistical anomalies which other behavior-based measurement

systems might be interested in. Anomaly detection is used frequently in behavior-based IDS

systems [Wang et al., 2005; 2006; Song et al., 2009], thus preservation of behavior anomalies

is an valuable feature in the system.

As a general AD system, we use the kernel-density estimation (KDE) procedure de-

scribed in § 5.6.2 to build a non-parametric model for our test network. Without making
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Figure 7.17: Preservation of the shape of the unique-ports distribution. (a) 82 hosts are

shown in the original traffic, (b) 20 pseudo-hosts are shown in the merged traffic.

parametric assumptions on the host behavior distributions, KDE is the most effective ag-

nostic non-parametric density estimation approach, and extends naturally from our kernel

derivations. Let Θ = {θ1, θ2, ..., θN} represent the set of estimation PTM parameters, the

KDE estimate is then:

F (θ∗,Θ) =
1

N

N�

i=1

K(θ∗, θi) (7.9)

F (θ) =

�N
i=K(θ,Θi)�

�θ∈D
�N

i=1K(�θ,Θi)
. (7.10)

Where K represents the probability product kernel. As the equations show, only the

pair-wise kernel estimations are necessary. Using, the PPK, we can bypass the need to

evaluate similarity scores over the entire dataset and solve the estimate using the model

parameters, making this a very fast algorithm. Since F (θ) returns a normalized KDE

likelihood score for a particular host, we invert this measure to obtain an anomaly score:

S = 1− F (θ). To test anomaly detection we detect all

In this experiment we trained a PTM on each host within the Columbia University

dataset and clustered them into 15 different clusters. As Table (7.1) shows, an anomaly was
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(s > µ+ σ) Anomalous host (s > µ+ σ) Anomalous cluster

dhcptemp33.cs.columbia.edu fdr.cs.columbia.edu

dhcptemp33.cs.columbia.edu

picard.cs.columbia.edu

klimt.cs.columbia.edu

Table 7.1: Anomaly detection in original and merged dataset.

detected in the original traffic dataset by finding hosts with anomaly scores one standard

deviation above average for S. On the right, the anomaly detection procedure is repeated

after the traffic belonging to the elements of the individual clusters has been merged. The

anomalous cluster is returned this time, and the members of that cluster are printed using

the original labels. As this example shows, the anomalous host is found once again. Thus,

anomaly detection is preserved in this example. Note that in this example, the original

labels are available. In practice, it wouldn’t be possible to know how many hosts was

in that cluster, or how to segment the traffic so such that he original anomalous host is

identifiable.

Of course, anomaly detection depends entirely on the dataset. In order to demonstrate

generalizability, more than one example is necessary. Therefore, instead of using the score

of one stand deviation above the mean, we simply rank the anomalies and return the top

elements.

Table (7.2) shows the result when retrieving the second most anomalous behavior from

the distribution. Note here that the second host is not considered anomalous by the standard

measurement, nevertheless, when retrieving the labels of the second most anomalous cluster

in the clustered dataset we see this host appear in the result, as expected.

The amount of information preserved is controllable through the use of smoothing trans-

formation described in the Synthesis section. Figure (7.18) shows the embedding of a dataset

before and after a “whitening” transformation where we smoothed the Columbia dataset

using a large number of nearest neighbors. Visually, we can see the disappearance of rec-

ognizable clusters of behavior, as expected.
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Top anomalous hosts Top anomalous clusters

dhcptemp33.cs.columbia.edu fdr.cs.columbia.edu

dhcptemp33.cs.columbia.edu

picard.cs.columbia.edu

klimt.cs.columbia.edu

dhcptemp33.cs.columbia.edu fdr.cs.columbia.edu

kathy-pc.win.cs.columbia.edu dhcptemp33.cs.columbia.edu

picard.cs.columbia.edu

klimt.cs.columbia.edu

web3157.cs.columbia.edu

honda.cs.columbia.edu

cs.columbia.edu

raphson.cs.columbia.edu

kathy-pc.win.cs.columbia.edu

Table 7.2: Ranked anomalies in original and merged datasets.
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(a) Original distribution

(b) Whitened distribution

Figure 7.18: Preservation of statistical information is controllable. (a) shows the embedding

of similarly behaving hosts and (b) shows the same dataset after a whitening transform.
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7.5.3 Intrusion signatures

Snort signatures are another example of content information, and the preservation of these

features is considered in this thesis. Snort is a mostly content-signature-oriented intrusion

detection system, which utilizes a set of human-operator-written rules for recognizing po-

tential attacks in web traffic. Previous studies have examined the effects of network-trace

obfuscation on Snort performance [Yurcik et al., 2007; Lakkaraju and Slagell, 2008]. Their

main results draw two clear conclusions. First, false-positives is the most significant side ef-

fect of using this class of traffic-obfuscation techniques. Second, problems occur specifically

when port values are obfuscated. Because content is typically not released in network traf-

fic datasets, obfuscation usually has no effect on this aspect of detection – only the header

value contents are modified. Given that Snort’s detection system selects sets of applicable

rules based on observed port values, obfuscating these values can effectively short circuit

some detection mechanisms. For example, under the default setting, if a signature exists for

an SSH exploit then that signature is only applied when port 22 traffic is observed. This is

done to decrease the computational cost of running expensive string-matching algorithms

on very large volumes of traffic. The short-circuit effect happens when, during obfuscation,

port 22 is converted to another value. This would prevent the SSH-exploit rule from trig-

gering, leading to false negatives. Conversely, introducing false positives is another concern.

When obfuscating the header values, certain transformations such as randomizing the port

values can have an adverse effect on IDS because these systems look for anomalous traffic

to bogus ports as well. Randomly assigning port values to 0, for example, would trigger

the Snort “Bad TCP Port Value rule.” If signification amounts of port values are changed

for a particular host, certain behavior-based detection mechanisms might fail as well, such

as rules for port scanning, which assumes a certain distribution of port activity within a

window of time.

Given this, we must consider how the behavior-based obfuscation transformations pre-

sented in this thesis effects content-based IDS implementations, such as Snort. Fundamen-

tally, our system does not affect these types of signatures for the several key reasons. First,

consider the obfuscation techniques used – these are primarily, merging of identities and

synthesis of new traffic. In the first case, given that most of the transformation involved
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Dataset 1 - 10 11 - 20 21 - 50 50-100 100-200 200-1000 1000+

LBNL Enterprise 20 5 0 1 0 9 0

NSA Capture 23 1 2 0 1 2 16

West Point Border 27 11 0 0 0 1 8

George Mason Univ. 28 26 10 1 0 0 0

Columbia Univ. 50 28 4 0 0 0 0

UMich. Merit 59 34 27 3 2 10 0

Table 7.3: Distribution of model sizes per dataset, in terms of number of port bins used.

in merging traffic resolves around altering the IP addresses, and there are no modifications

to port values or the packet content, rules related to these features are not effected by this

transformation. Intrusion detection can works as before, with one difference, being that the

resulting alerts are attributed to a different IP address than in the original – hindering exact

source attribution is not a side-effect, in this case, as source-obfuscation is precisely what

anonymization aims to accomplish. Secondly, we consider the effects of using synthesis al-

gorithms to insert new traffic into the dataset. Recall that synthesis within the PTM model

is a essentially a Markov random walk on the PTM model parameters. States within the

model that correspond to observed port activity in the training dataset are traversed and

volumetric information are sampled based on the amount of activity observed in the original

traffic. Given this, it is not possible to introduce unobserved port activity in to the dataset

because an unobserved state is never reached within the synthesis algorithm. This prevents

the introduction of behavior-based anomalies such as the “TCP Port 0” alert Snort, as well

as false positives such as mistaken port scanning. Given that the volumetric information is

sampled from the distribution trained on the actual data, volumetric behavior is consistent

with the original, and false positives such as DDoS attacks would not be introduced.

Table (7.3) shows the sizes of the PTM models in the different datasets. The table shows

that the average model size, which relates to the number of ports observed in that host’s

traffic, is rather small, with most hosts observing less than 10 distinct ports. When merging

similar hosts, overlapping port values would mean that the total number of distinct ports

introduced in the clustered data does not generate a significant increase. This indicates
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that merging different host with distinct ports would not trigger behavior signatures such

as port-scanning rules.

Modification of packet content is not handled by our proposed system – it is reasonable to

assume that no packet content is released by the provider, and if content were included, then

standard obfuscation techniques such as hashing or encryption, such as the primitives offered

by the PktAnon system [Gamer et al., 2008], can be used to obfuscate these components

independent to our system.

Network communications structure

The network communication structure describes the connectivity of the hosts within the

network to each other and the outside world. This feature has studied by modeling the

network dispersion graph and identifying hosts based on the pattern of connections. For

example, the outbound peering cardinality of each host might be an interesting feature to

preserve in the dataset. In addition, graph similarity metrics such as the Jaccard similarity

coefficient may be used to represent the dispersion graph structure of a network in a kernel-

based learning set up. How to incorporate such graphical structure learning into our current

system is discussed in the future works section.

7.6 Connection to existing anonymity metrics

Measuring anonymity is a difficult challenge, especially in the offline data-obfuscation sce-

nario that we study. In this study, we’ve presented a set of transformation algorithms and

demonstrated their accuracy and stability and how they fit together with existing machine

learning theory. Further, we demonstrate how to extend our methods in a range of areas

including incorporating graphical structure of the network to non-parametric kernel density

estimation. As such, our techniques are categorized in the same policy-driven systems such

as tcpmkpub and PktAnon. The techniques presented in this thesis are designed for use in

such a policy-driven environment. For example, the optimal k not only depends on policy,

but also on the dataset itself. Different behavioral distributions would necessitate different

settings for the parameters of our algorithms. In general, unlike specific transformations,
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such as a hash function or a prefix-preserving IP address transformation [Fan et al., 2004],

it is more difficult to measure the anonymity induced by an entire class of transformations,

independent of the data. As an extreme example, if the dataset contained only two hosts

and one of them is highly anomalous, then this clustering methodology obviously would

not be appropriate, since the anonymity-by-crowds paradigm would not fit this scenario.

Fundamentally, anonymity measurement is conditioned on both the data and the policy of

the source provider. Any attempt to present a bound on anonymity independent of this

would be vacuous. Thus, in this section, we show how to connect our work with exist-

ing anonymity metrics, so that different settings of our algorithm may be assigned in an

information-theoretic way.

The following anonymity metrics from existing literature are examined and we show

how they relate to the algorithms proposed in this thesis.

k-anonymity : Trivially, this is the number of members in a cluster. In the merged traffic

dataset, source-attribution is only achievable with O(1/k)-precision given that all elements

of the cluster behave similarly.

l-diversity : This is a measure of entropy within the elements of a specific measure, typi-

cally used in micro-data anonymization analysis, for example, the range of possible values

in a particular measurement. For example, a measurement of red-blood cell in a medical

record presents a larger variance than an entry that can only contain two possible elements

“1” or “0” which might related to whether or not a patient has a certain disease. l-diversity

and can be used to derive anonymization policies that restrict the release of certain fea-

tures that do not exhibit sufficient diversity and could potentially break anonymity. In our

setting l-diversity corresponds to the self-similarity measurement presented in § 7.3.1. The

diversity in a host’s own behavior directly influences the anonymization policy for that host.

If the behavior is consistent, for example, then a higher confidence of anonymity may be

assigned to any clustering, as opposed to hosts with highly erratic behavior where merging

into a crowd does not necessarily guarantee that the unique characteristics of that host does

not stand out.
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t-closeness: This is a measure of similarity between data elements. Elements with statis-

tical properties that are very close to those of other elements may leak information about

each other. For example, consider the range of scores that a committee of reviewers may

assign to a paper. One would like to anonymize the score such that it is no possible to

determine which member assigned which score. However, if all of the scores were the same,

then it is readily apparent what each member’s score was. This is the measure referred to

as t-closeness. In our environment, it naturally corresponds to the kernel similarity mea-

sure between two hosts. The components of the Gram matrix correspond to the individual

t-closeness measures of the dataset exactly.

In addition, given that our algorithm is a clustering-based approach, machine learning-

theory related to measuring the fidelity of clustering algorithms are directly applicable.

The V-Measure technique presented by Rosenberg et al. [Rosenberg and Hirschberg, 2007]

utilizes a homogeneity measure that analyze the similarity members of a cluster, much in

the same way that our parity function analyzes the packet-balance in the resulting merged

traffic data. Additional clustering measurement theory are presented by [Meila, 2007].

Given relationship, we bridge the gap between network trace anonymization kernel-based

machine learning algorithms and cluster analysis, both of which are well studied disciplines.

7.7 Information leakage and potential attacks

This section discusses some of the technical challenges that is associated with this approach

to anonymization. Potential areas of information leakage are discussed and strategies for

the mitigation of these effects on privacy preservation are discussed.

7.7.1 On cover-traffic and the need for synchronized overlay

Given that our approach is essentially an offline analogue of the mixnet model for anonymiza-

tion, the similar timing attacks are applicable. If for example, only one member of a mixnet

is active at a given time, then all of the behavioral characteristics of the traffic is fully de-
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(a) (b)

Figure 7.19: Visual example of the cover-traffic problem. (a) three similar signals are

displayed (b) top plot shows the three signals merged, middle plot shows the aggregate

effect, bottom plot shows the problem when traffic sequences are not properly overlaid.

pendent on that particular user. The same is true for the offline traffic merging case. When

mixing data, consideration of the traffic window is necessary so that different sessions are

indeed overlapping in time. This is the concept of “cover traffic” that has been studied

in the past in related anonymization fields. Cover-traffic is commonly used in network

anonymity research [Freedman and Morris, 2002] and has been discussed in Tor [Dingledine

et al., 2004] and theorized in [Syverson et al., 2001]. Fundamentally, the problem is one of

signal averaging.

Consider the examples presented in Figure (7.19). Here, three similar signals, represent

different behavior profiles captured with the PTM model (see § 7.3.1). The goal is to merge

these so that the characteristics of the traffic are preserved in the aggregate result while,

at the same time, the individual signals cannot be easily de-multiplexed. Figure (7.19)(b)

shows the acceptable and unacceptable merging results. When the signals are properly

aligned with respect to time, the resulting aggregations (in this case represented by the

sum of the signals) combines the qualities of all three. However, when the signals are not

aligned with respect to time, the signals are easily separable and identifiable as distinct

behaviors. This scenario may happen in practice when merging hosts which are not active
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# wwww:ttt:D:ss:OOO...:QQ:OS:Details

#

# wwww - window size (can be * or %nnn or Sxx or Txx)

# "Snn" (multiple of MSS) and "Tnn" (multiple of MTU) are allowed.

# ttt - initial TTL

# D - don’t fragment bit (0 - not set, 1 - set)

# ss - overall SYN packet size (* has a special meaning)

# OOO - option value and order specification (see below)

# QQ - quirks list (see below)

# OS - OS genre (Linux, Solaris, Windows)

# details - OS description (2.0.27 on x86, etc)

Figure 7.20: p0f signature format for passive OS fingerprinting.

at the same time. Thus, it is necessary to take into account the time-window of the traffic

when merging. In practice, is best to change the time-stamps of the sessions in order to

ensure that the resulting traffic is properly overlapping.

7.7.2 Network device fingerprints

Network devices not only exhibit statistical fingerprints, but also content fingerprints as

well. Packet-payloads not considered, the packet header information present discriminative

information about the network device that generated the traffic stream. The field of passive

operating system fingerprinting studies this property. The most well known tool in this

area is p0f.

p0f identifies operating systems based on the following features shown in Figure (7.20).

When negotiating a TCP connection the initiating host sends a SYN packet with informa-

tion about itself. This information consists of the initial window size, the initial time-to-live

value (TTL), and maximum segment size (MSS). These values are based on the implemen-

tation of the TCP stack and are distinct – to a certain degree — among operating systems,

as well as different versions of the same operating system. In addition, characteristics such

as the size of the initial SYN packet, the presence of the do-not-fragment flag, are features

which can be used to determine the type and version of the operating system. Not only are
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operating systems identifiable in this way, but also network devices such as routers, mobile

phones, and any other device which and send and receive TCP data.

In practice, the discriminative power of these features has been found to be only some-

what reliable. Many instances of Windows, for example, use a predictable initial window

size of 65,536 and a TTL of 128. An up-to-date list of the p0f signatures are presented in the

appendix. In our experiments, we’ve found that p0f is only able to recognize devices with

accuracy around 15%, mostly in identifying Windows from Linux machines. Though the

discriminative power of these signatures is not high, care should taken that these signatures

are kept consistent in the anonymized dataset. When assigning group identities, the passive

OS fingerprint of the cluster can be assigned in the same manner as the IP address. This

can be done by selecting one member of the group to represent the rest: the IP address

of that member is assigned to all members of the group, and the corresponding identifying

information such as Ethernet header values and passive OS fingers should be carried over

to the rest of the group as well.

7.7.3 Active attacks and artifact insertion

Active attacks attempt to embed fingerprints into the dataset prior to anonymization so

that they may be recoverable in the transformed data and used for de-anonymization.

This can include the insertion of specially crafted packets with embedded signatures in the

header values, sending traffic to a host on a set of specific ports in a predetermined order

(“port knocking”) or embedding port scans in the traffic so that prefix-preserved subnets

IP addresses may be identified, as described in the background chapter. These attacks do

not effect the assumption about anonymity described in the first section of this chapter.

Given these artifact embeddings, the attacker can only recover the pseudonymous identify

of the target, he cannot infer anything about the other traffic sessions attributed to that

pseudonym. The mixing factor is not conditioned on network subnet topology, but rather on

behavior, thus port-scanning features are obfuscated by nature. Port-knocking signatures,

like content signatures, identify only the pseudonym for the target.
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Concluding remarks

Traffic anonymization is, at its core, a moving challenging; one whose parameters change

with the times as new techniques in emerges. Information that has always existed in the

traffic are extracted in new ways and learned exploited to derive information previously

unknown. The IP ID field was not a source of information leakage until it was used to

count hosts behind a NAT, neither was packet sizes in anonymized netflow data considered

sensitive until it was shown that the distribution of such sizes form a discriminative profile

for the websites visited. Such are the challenges facing network trace anonymization that

make it unique and separate from similar studies in microdata. It has to be reiterated that

trace anonymization is fundamentally risk-management. The techniques we proposed add

a new dimension to trace anonymization and raise the bar for the attacker.
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Introduction

This chapter explains the current imitations of our work, how these limitations are to be

addressed, and describes several potential directions in which this work can be expanded.

These extensions include incorporating the communications structure of the network in the

clustering function, and anonymization approaches involving exchange models instead of

anonymized data.

8.1 Limitations of the behavior-based approach

This section enumerates the different types of limitations in anonymization approach. These

include both algorithmic and conceptual limitations.

TCP-only : The behavior model is conditioned entirely on the TCP traffic generated by

host. Therefore any privacy-piercing signatures that may exist in the other protocols may

be overlooked. Anonymizing the data would require dropping all non-TCP traffic in order

to minimize the chances of potential side-channel information leakage. This is an undesired

downside of the current system. Ideally, the other protocols would factor into the behavior

model as well, or are dealt with in a principled manner consistent with this mixnet approach.

However, given that this is a first step in this direction for network trace anonymization

research, the focus was restricted only to TCP. In future work, other protocols should be

examined.

Time information : As mentioned in the synthesis section, the PTM does not track the

timestamp feature of the data. Therefore, behavior is only track with respect to transi-

tion between each state, and not conditioned on time. Behavior signatures that are time-

dependent could possibly exist in the dataset. For example, if a certain host generates traffic

on a specific port with a certain frequency during the day. It might be possible to isolate

this signal from the mixed dataset post-anonymization, depending on the significance of the

signal-to-noise ratio. This challenging can be addressed by incorporating timing informa-

tion in the models in future work. Modeling the inter-arrival time between network sessions
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is also an important feature that is not yet studied within this thesis. This behavior can be

modeled as an exponential distribution with expected inter-arrivals determined by Poisson

processes.

Scope of behavior : The model described in this thesis measures the aggregate outbound

traffic profile for a host for the behavior profile. As such it treats all such outbound connec-

tions the same, regardless of destination. A stronger measurement might take into account

the end points of each connection so that distinctions can be made based on the type of

connection. Further, incoming traffic profiles are not directly used in the model. This is

not exactly an oversight, as our experiment were performed over incoming traffic behavior

as well; these models generally performed worse as they added more noise to the models.

A host cannot control the type of traffic that it receives; all hosts that are port scanned in

a certain manner may appear similar to each other, for example. How to properly model

incoming traffic and make use of this signal is the subject of future work.

Communications structure : The current system is agnostic to the underlying network

topology. However, this information may prove useful for similarity measurements between

hosts. For example, while two hosts may exercise a different set of services and protocols,

if they have the same set of peers within the network then this should factor into the mea-

surement for similarity. This particular point is discussed in further detail in the following

section.

Content : No packet payload information is used in the behavior profiles. This is a limi-

tation, though it is not a very restrictive one, given that few source provide un-obfuscated

content in the data that they release. However, packet header content is available and is an

under-utilized feature in our models. While we do account for passive OS fingerprints, there

are many ways to make further use of these signatures, such as driving the cluster by first

labeling the host with the OS label, and ensuring that hosts are only clustered with peers

running the same OS. Conceptually, this is fairly straightforward, and can be explored in

future work.
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8.2 Incorporating the network topology in the feature set

One of the more promising directions with which we can extend this work is making use of

network topology information in the behavior modeling. Host-role prediction based solely

on network topology has been studied in the past [Tan et al., 2003]. In the following

subsections, we describe possible ways to incorporate this information.

8.2.1 The traffic-dispersion graph

The traffic dispersion graph measure the connection peering of hosts on a network. This

indicates which machines connect to which other ones, and it is possible to derive some

notion of role from this information.

Consider the figure (8.1). This is a small-world-graph representation of the traffic disper-

sion among a group of Columbia hosts – notice that multiple hosts connect to the “int-ns1”

node. Not surprisingly, this is our department’s primary DNS server. One may wonder why

DNS connections are observable over TCP, this is because DNS results over 1500 bytes in

length are sent over TCP instead of the default UDP. This is one example of how roles may

be easily identifiable based on the traffic communications pattern. Behaviorally, there may

or may not be any significantly discriminative signals from int-ns1, or alternatively if there

is a host with very little traffic but the traffic that it does emit follow a pattern very similar

to a DNS server, such information would be interesting to identify from the data.

8.2.2 Features from structure

Several potential graph-based features exists, these include the outbound-cardinality, which

involves measuring the number of external hosts any particular internal host connects to

as an element of behavior profiling. Looking at similarity as a function of internal all-pairs

shortest paths might help infer some structure information about the subnets and which

hosts act as servers and which are user machines. A related measurement is the Jaccard

similarity coefficient that measure similarity as a function of the size of the set of commons

peers within multiple hops on the graph.

Figure (8.2) shows a the outbound cardinality distribution. This shows the distribution
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Figure 8.1: Small-world-graph connection patterns for a set of hosts on the Columbia net-

work.
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Figure 8.2: Peer cardinality histograms. 1000 hosts on the CU network, sampled over 4
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of hosts based on the number of distinct peers they connected with. As the figures show,

there is a rich distribution of hosts based on this feature. Without looking at any additional

content it is obvious which hosts are web servers as these are the only servers that can

possibly maintain over 80,000 peers. Clustering hosts based on this information should be

explored in future work.

8.2.3 Structure-based host clustering

As discussed previously, there are many potential sets of features recoverable from the net-

work’s dispersion graph. Among these are the peer cardinality and the Jaccard coefficient.

The best way to balance these features with the behavior measurement already examined

is also a matter of future work. Given that our work is based on kernel methods, the imme-

diate intuition is to draw insight from the field of kernel learning. Kernel learning, within

machine learning, is precisely the study of how to combine multiple similarity metrics in

order to improve performance. Some immediately related works in is area include learning

with graph kernels [Vishwanathan et al., 2010] and multiple kernel learning [Gönen and

Alpaydin, 2011].

8.3 Anonymity via model-exchange

In this thesis, we have demonstrated the ability to represent traffic behavior using time-series

models, with favorable accuracy. Also demonstrated is the approach to reverse direction,

of synthesizing packet trace data using these models. Given this, a few potential directions

of research based on model-exchange is immediately available.

Model-comparison and re-synthesis: For certain research purposes only a measure-

ment of similarity in behavior is necessary. This includes intrusion detection, detection of

worm and bot traffic, and other security-related fields. Given this, there might not be a need

to explicitly compare the actual data samples. The PTM already tracks the unique ports

observed within the data, thus a range of behavior-based signatures is already representable.

The NSA dataset for example, contain several instances of port-scanning behavior, which
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were all clustered together in the results in our studies. The ability to cluster malicious

traffic, such as those belonging to worms, bots, and other infected machines, should be

examined in future work to see if this type of behavior model can be exchanged for secu-

rity/forensic research purposes without loss of privacy.

Behavior matching with exchanged models: Query-based system for network trace

sharing has already been explored in the past, such as the SC2D system [Mogul and Arlitt,

2006]. These systems are not widely used because strict sets of quantifiers for network

characteristics are not easily enumerable. In a related field, microdata anonymization based

on differential privacy is growing to be a well-understood theory. DP measures privacy by

deriving bounds based on type of queries that may be submitted to the statistical dataset.

Given this, it is natural to consider the possibility of a behavior-based query system for

network traces. Instead of exchanging traffic, or behavior models, the querying party trains

a model on a segment of traffic that they possess. They can then submit this model to

a query system that would reply with whether or not this behavior pattern was observed

in their own system. In fact, the spectral partition function can be adapted to be used

as a binary-search algorithm for fast query matching. This might be a potential method

with which organization can securely determine the existing of worms and bots on their

networks. Further, results from differential privacy might be applicable in this setting, thus

this would be a potential direction that allows differential privacy to be applied to network

trace anonymization.

8.4 Behavior-driven anonymous VPN

The behavior-based approach studied for offline data anonymization might be extended to

the online setting if we train models for user behavior, group these users based on similarity,

then route their traffic such that traffic belonging to members of the same cluster exits from

the same nodes in an anonymous VPN system. This is essentially adding a behavior-based

circuit construction layer on top of a Tor-like framework. Most enterprise environments

already maintain VPN systems, changing the routing policy to concentrate traffic based on
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behavior might be a simple extension, and one which can provide a higher level of anonymity

in an online setting. Such techniques might be effective in hindering timing-based attacks

used against current anonymous VPN systems. This is another avenue for future work.
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Chapter 9

Conclusions
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This thesis proposes a new approach to behavior-based, statistics-preserving, network

trace source-anonymization, one that is based on novel measurements of host behavior

and similarity, where anonymity and statistics-preservation are congruent objectives in an

unsupervised-learning problem. This approach is compatible with existing anonymization

frameworks, and adds a new layer to our understanding of network trace anonymization.

This thesis presented a new and efficient time-series model for host behavior, trained us-

ing high-level flow-layer meta-data, whose training and likelihood-evaluation times maintain

linear growth in the number of data samples. Evaluation show the accuracy of this model

in recognizing distinct classes of network behavior. A new kernel, motivated by the concept

of probability product kernels, was derived for comparing similarity between models in an

efficient and scalable manner. This proposed kernel is efficient in both runtime and mem-

ory costs, requiring an order of magnitude less computation time than similar methods,

while maintaining high classification accuracy. New graph-partition-motivated clustering

methods, were proposed which utilizes these models and kernels. We showed dramatic im-

provements in both accuracy and runtime over existing methods. New methods for network

behavior visualization were also proposed, based on these techniques. Algorithms for syn-

thesizing network traffic according to targeted behavior, were also provided, with evaluation

results that demonstrate measurable fidelity. Behavior-interpolation, regression, and shap-

ing, as well as the techniques for translating statistical samples back into packet trace data

were explored. The techniques described in this thesis forms a new framework for behavior-

based network trace anonymization. We demonstrated the stability and accuracy of this

approach. Connections to existing anonymization theory are shown and we demonstrate

techniques for measuring anonymization requirements from the data with empirical results

over a range of real traffic datasets.

We showed that source-anonymity is directly related to the size of the anonymity group,

the homogeneity in the behavior of the individual members, and metrics for these qualities

are derived. A machine-learning-motivated framework is proposed with which we can mea-

sure behavior with quantifiable accuracy, and the optimal segmentation of the population

into anonymized groupings is shown to be recoverable under a graph-partitioning prob-

lem, where maximization of cluster-homogeneity is an intrinsic property of the solution.
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Algorithms that guarantee a minimum anonymity set-size are presented, as well as novel

techniques for behavior visualization and information compression. Empirical results on a

range of network traffic datasets demonstrate the superior performance of our methods over

similar techniques in accuracy, space efficiency, and runtime.
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Part I

Appendices
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.1 p0f signature list

#

# p0f - SYN fingerprints

# ----------------------

##########################

# Standard OS signatures #

##########################

# ----------------- Linux -------------------

S1:64:0:44:M*:A:Linux:1.2.x

512:64:0:44:M*:.:Linux:2.0.3x (1)

16384:64:0:44:M*:.:Linux:2.0.3x (2)

# Endian snafu! Nelson says "ha-ha":

2:64:0:44:M*:.:Linux:2.0.3x (MkLinux) on Mac (1)

64:64:0:44:M*:.:Linux:2.0.3x (MkLinux) on Mac (2)

S4:64:1:60:M1360,S,T,N,W0:.:Linux:2.4 (Google crawlbot)

S4:64:1:60:M1430,S,T,N,W0:.:Linux:2.4-2.6 (Google crawlbot)

S2:64:1:60:M*,S,T,N,W0:.:Linux:2.4 (large MTU?)

S3:64:1:60:M*,S,T,N,W0:.:Linux:2.4 (newer)

S4:64:1:60:M*,S,T,N,W0:.:Linux:2.4-2.6

S3:64:1:60:M*,S,T,N,W1:.:Linux:2.6, seldom 2.4 (older, 1)

S4:64:1:60:M*,S,T,N,W1:.:Linux:2.6, seldom 2.4 (older, 2)

S3:64:1:60:M*,S,T,N,W2:.:Linux:2.6, seldom 2.4 (older, 3)

S4:64:1:60:M*,S,T,N,W2:.:Linux:2.6, seldom 2.4 (older, 4)

T4:64:1:60:M*,S,T,N,W2:.:Linux:2.6 (older, 5)

S4:64:1:60:M*,S,T,N,W5:.:Linux:2.6 (newer, 1)

S4:64:1:60:M*,S,T,N,W6:.:Linux:2.6 (newer, 2)

S4:64:1:60:M*,S,T,N,W7:.:Linux:2.6 (newer, 3)

T4:64:1:60:M*,S,T,N,W7:.:Linux:2.6 (newer, 4)

S20:64:1:60:M*,S,T,N,W0:.:Linux:2.2 (1)

S22:64:1:60:M*,S,T,N,W0:.:Linux:2.2 (2)

S11:64:1:60:M*,S,T,N,W0:.:Linux:2.2 (3)
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# Popular cluster config scripts disable timestamps and

# selective ACK:

S4:64:1:48:M1460,N,W0:.:Linux:2.4 in cluster

# This happens only over loopback, but let’s make folks happy:

32767:64:1:60:M16396,S,T,N,W0:.:Linux:2.4 (loopback)

32767:64:1:60:M16396,S,T,N,W2:.:Linux:2.6 (newer, loopback)

S8:64:1:60:M3884,S,T,N,W0:.:Linux:2.2 (loopback)

# Opera visitors:

16384:64:1:60:M*,S,T,N,W0:.:-Linux:2.2 (Opera?)

32767:64:1:60:M*,S,T,N,W0:.:-Linux:2.4 (Opera?)

# Some fairly common mods & oddities:

S22:64:1:52:M*,N,N,S,N,W0:.:Linux:2.2 (tstamp-)

S4:64:1:52:M*,N,N,S,N,W0:.:Linux:2.4 (tstamp-)

S4:64:1:52:M*,N,N,S,N,W2:.:Linux:2.6 (tstamp-)

S4:64:1:44:M*:.:Linux:2.6? (barebone, rare!)

T4:64:1:60:M1412,S,T,N,W0:.:Linux:2.4 (rare!)

# ----------------- FreeBSD -----------------

16384:64:1:44:M*:.:FreeBSD:2.0-4.2

16384:64:1:60:M*,N,W0,N,N,T:.:FreeBSD:4.4 (1)

1024:64:1:60:M*,N,W0,N,N,T:.:FreeBSD:4.4 (2)

57344:64:1:44:M*:.:FreeBSD:4.6-4.8 (RFC1323-)

57344:64:1:60:M*,N,W0,N,N,T:.:FreeBSD:4.6-4.9

32768:64:1:60:M*,N,W0,N,N,T:.:FreeBSD:4.8-5.1 (or MacOS X 10.2-10.3)

65535:64:1:60:M*,N,W0,N,N,T:.:FreeBSD:4.7-5.2 (or MacOS X 10.2-10.4) (1)

65535:64:1:60:M*,N,W1,N,N,T:.:FreeBSD:4.7-5.2 (or MacOS X 10.2-10.4) (2)

65535:64:1:60:M*,N,W0,N,N,T:Z:FreeBSD:5.1 (1)

65535:64:1:60:M*,N,W1,N,N,T:Z:FreeBSD:5.1 (2)

65535:64:1:60:M*,N,W2,N,N,T:Z:FreeBSD:5.1 (3)

65535:64:1:64:M*,N,N,S,N,W1,N,N,T:.:FreeBSD:5.3-5.4

65535:64:1:64:M*,N,W1,N,N,T,S,E:P:FreeBSD:6.x (1)

65535:64:1:64:M*,N,W0,N,N,T,S,E:P:FreeBSD:6.x (2)

65535:64:1:44:M*:Z:FreeBSD:5.2 (RFC1323-)
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# 16384:64:1:60:M*,N,N,N,N,N,N,T:.:FreeBSD:4.4 (tstamp-)

# ----------------- NetBSD ------------------

16384:64:0:60:M*,N,W0,N,N,T:.:NetBSD:1.3

65535:64:0:60:M*,N,W0,N,N,T0:.:-NetBSD:1.6 (Opera)

16384:64:1:60:M*,N,W0,N,N,T0:.:NetBSD:1.6

65535:64:1:60:M*,N,W1,N,N,T0:.:NetBSD:1.6W-current (DF)

65535:64:1:60:M*,N,W0,N,N,T0:.:NetBSD:1.6X (DF)

32768:64:1:60:M*,N,W0,N,N,T0:.:NetBSD:1.6Z or 2.0 (DF)

32768:64:1:64:M1416,N,W0,S,N,N,N,N,T0:.:NetBSD:2.0G (DF)

32768:64:1:64:M*,N,W0,S,N,N,N,N,T0:.:NetBSD:3.0 (DF)

# ----------------- OpenBSD -----------------

16384:64:1:64:M*,N,N,S,N,W0,N,N,T:.:OpenBSD:3.0-3.9

57344:64:1:64:M*,N,N,S,N,W0,N,N,T:.:OpenBSD:3.3-3.4

16384:64:0:64:M*,N,N,S,N,W0,N,N,T:.:OpenBSD:3.0-3.4 (scrub)

65535:64:1:64:M*,N,N,S,N,W0,N,N,T:.:-OpenBSD:3.0-3.4 (Opera?)

32768:64:1:64:M*,N,N,S,N,W0,N,N,T:.:OpenBSD:3.7

# ----------------- Solaris -----------------

S17:64:1:64:N,W3,N,N,T0,N,N,S,M*:.:Solaris:8 (RFC1323 on)

S17:64:1:48:N,N,S,M*:.:Solaris:8 (1)

S17:255:1:44:M*:.:Solaris:2.5-7 (1)

# Sometimes, just sometimes, Solaris feels like coming up with

# rather arbitrary MSS values ;-)

S6:255:1:44:M*:.:Solaris:2.5-7 (2)

S23:64:1:48:N,N,S,M*:.:Solaris:8 (2)

S34:64:1:48:M*,N,N,S:.:Solaris:9

S34:64:1:48:M*,N,N,N,N:.:Solaris:9 (no sack)

S44:255:1:44:M*:.:Solaris:7

4096:64:0:44:M1460:.:SunOS:4.1.x

S34:64:1:52:M*,N,W0,N,N,S:.:Solaris:10 (beta)

32850:64:1:64:M*,N,N,T,N,W1,N,N,S:.:Solaris:10 (1203?)

32850:64:1:64:M*,N,W1,N,N,T,N,N,S:.:Solaris:9.1
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# ----------------- MacOS -------------------

S2:255:1:48:M*,W0,E:.:MacOS:8.6 classic

16616:255:1:48:M*,W0,E:.:MacOS:7.3-8.6 (OTTCP)

16616:255:1:48:M*,N,N,N,E:.:MacOS:8.1-8.6 (OTTCP)

32768:255:1:48:M*,W0,N:.:MacOS:9.0-9.2

32768:255:1:48:M1380,N,N,N,N:.:MacOS:9.1 (OT 2.7.4) (1)

65535:255:1:48:M*,N,N,N,N:.:MacOS:9.1 (OT 2.7.4) (2)

65535:64:1:64:M1460,N,W3,N,N,T,S,E:PI:MacOS:Snow Leopard

# ----------------- Windows -----------------

# Windows TCP/IP stack is a mess. For most recent XP, 2000 and

# even 98, the pathlevel, not the actual OS version, is more

# relevant to the signature. They share the same code, so it would

# seem. Luckily for us, almost all Windows 9x boxes have an

# awkward MSS of 536, which I use to tell one from another

# in most difficult cases.

8192:32:1:44:M*:.:Windows:3.11 (Tucows)

S44:64:1:64:M*,N,W0,N,N,T0,N,N,S:.:Windows:95

8192:128:1:64:M*,N,W0,N,N,T0,N,N,S:.:Windows:95b

# There were so many tweaking tools and so many stack versions for

# Windows 98 it is no longer possible to tell them from each other

# without some very serious research. Until then, there’s an insane

# number of signatures, for your amusement:

S44:32:1:48:M*,N,N,S:.:Windows:98 (low TTL) (1)

8192:32:1:48:M*,N,N,S:.:Windows:98 (low TTL) (2)

%8192:64:1:48:M536,N,N,S:.:Windows:98 (13)

%8192:128:1:48:M536,N,N,S:.:Windows:98 (15)

S4:64:1:48:M*,N,N,S:.:Windows:98 (1)

S6:64:1:48:M*,N,N,S:.:Windows:98 (2)

S12:64:1:48:M*,N,N,S:.:Windows:98 (3

T30:64:1:64:M1460,N,W0,N,N,T0,N,N,S:.:Windows:98 (16)

32767:64:1:48:M*,N,N,S:.:Windows:98 (4)

37300:64:1:48:M*,N,N,S:.:Windows:98 (5)

46080:64:1:52:M*,N,W3,N,N,S:.:Windows:98 (RFC1323+)

65535:64:1:44:M*:.:Windows:98 (no sack)
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S16:128:1:48:M*,N,N,S:.:Windows:98 (6)

S16:128:1:64:M*,N,W0,N,N,T0,N,N,S:.:Windows:98 (7)

S26:128:1:48:M*,N,N,S:.:Windows:98 (8)

T30:128:1:48:M*,N,N,S:.:Windows:98 (9)

32767:128:1:52:M*,N,W0,N,N,S:.:Windows:98 (10)

60352:128:1:48:M*,N,N,S:.:Windows:98 (11)

60352:128:1:64:M*,N,W2,N,N,T0,N,N,S:.:Windows:98 (12)

# What’s with 1414 on NT?

T31:128:1:44:M1414:.:Windows:NT 4.0 SP6a (1)

64512:128:1:44:M1414:.:Windows:NT 4.0 SP6a (2)

8192:128:1:44:M*:.:Windows:NT 4.0 (older)

# Windows XP and 2000. Most of the signatures that were

# either dubious or non-specific (no service pack data)

# were deleted and replaced with generics at the end.

65535:128:1:48:M*,N,N,S:.:Windows:2000 SP4, XP SP1+

%8192:128:1:48:M*,N,N,S:.:Windows:2000 SP2+, XP SP1+ (seldom 98)

S20:128:1:48:M*,N,N,S:.:Windows:SP3

S45:128:1:48:M*,N,N,S:.:Windows:2000 SP4, XP SP1+ (2)

40320:128:1:48:M*,N,N,S:.:Windows:2000 SP4

S6:128:1:48:M*,N,N,S:.:Windows:XP, 2000 SP2+

S12:128:1:48:M*,N,N,S:.:Windows:XP SP1+ (1)

S44:128:1:48:M*,N,N,S:.:Windows:XP SP1+, 2000 SP3

64512:128:1:48:M*,N,N,S:.:Windows:XP SP1+, 2000 SP3 (2)

32767:128:1:48:M*,N,N,S:.:Windows:XP SP1+, 2000 SP4 (3)

# Windows 2003 & Vista

8192:128:1:52:M*,W8,N,N,N,S:.:Windows:Vista (beta)

32768:32:1:52:M1460,N,W0,N,N,S:.:Windows:2003 AS

65535:64:1:52:M1460,N,W2,N,N,S:.:Windows:2003 (1)

65535:64:1:48:M1460,N,N,S:.:Windows:2003 (2)

# Odds, ends, mods:

S52:128:1:48:M1260,N,N,S:.:Windows:XP/2000 via Cisco

65520:128:1:48:M*,N,N,S:.:Windows:XP bare-bone

16384:128:1:52:M536,N,W0,N,N,S:.:Windows:2000 w/ZoneAlarm?

2048:255:0:40:.:.:Windows:.NET Enterprise Server

44620:64:0:48:M*,N,N,S:.:Windows:ME no SP (?)
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S6:255:1:48:M536,N,N,S:.:Windows:95 winsock 2

32000:128:0:48:M*,N,N,S:.:Windows:XP w/Winroute?

16384:64:1:48:M1452,N,N,S:.:Windows:XP w/Sygate? (1)

17256:64:1:48:M1460,N,N,S:.:Windows:XP w/Sygate? (2)

# No need to be more specific, it passes:

*:128:1:48:M*,N,N,S:U:-Windows:XP/2000 while downloading (leak!)

# ----------------- BSD/OS ------------------

8192:64:1:60:M1460,N,W0,N,N,T:.:BSD/OS:3.1-4.3 (or MacOS X 10.2)

###########################################

# Appliance / embedded / other signatures #

###########################################

# ---------- Firewalls / routers ------------

S12:64:1:44:M1460:.:@Checkpoint:(unknown 1)

S12:64:1:48:N,N,S,M1460:.:@Checkpoint:(unknown 2)

4096:32:0:44:M1460:.:ExtremeWare:4.x

S32:64:0:68:M512,N,W0,N,N,T,N,N,?12:.:Nokia:IPSO w/Checkpoint NG FP3

S16:64:0:68:M1024,N,W0,N,N,T,N,N,?12:.:Nokia:IPSO 3.7 build 026

S4:64:1:60:W0,N,S,T,M1460:.:FortiNet:FortiGate 50

8192:64:1:44:M1460:.:@Eagle:Secure Gateway

# ------- Switches and other stuff ----------

4128:255:0:44:M*:Z:Cisco:7200, Catalyst 3500, etc

S8:255:0:44:M*:.:Cisco:12008

S4:255:0:44:M536:Z:Cisco:IOS 11.0

60352:128:1:64:M1460,N,W2,N,N,T,N,N,S:.:Alteon:ACEswitch

64512:128:1:44:M1370:.:Nortel:Contivity Client

# ---------- Caches and whatnots ------------

8190:255:0:44:M1428:.:Google:Wireless Transcoder (1)

8190:255:0:44:M1460:.:Google:Wireless Transcoder (2)

8192:64:1:64:M1460,N,N,S,N,W0,N,N,T:.:NetCache:5.2

16384:64:1:64:M1460,N,N,S,N,W0,N:.:NetCache:5.3
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65535:64:1:64:M1460,N,N,S,N,W*,N,N,T:.:NetCache:5.3-5.5 (or FreeBSD 5.4)

20480:64:1:64:M1460,N,N,S,N,W0,N,N,T:.:NetCache:4.1

S44:64:1:64:M1460,N,N,S,N,W0,N,N,T:.:NetCache:5.5

32850:64:1:64:N,W1,N,N,T,N,N,S,M*:.:NetCache:Data OnTap 5.x

65535:64:0:60:M1460,N,W0,N,N,T:.:CacheFlow:CacheOS 4.1

8192:64:0:60:M1380,N,N,N,N,N,N,T:.:CacheFlow:CacheOS 1.1

S4:64:0:48:M1460,N,N,S:.:Cisco:Content Engine

27085:128:0:40:.:.:Dell:PowerApp cache (Linux-based)

65535:255:1:48:N,W1,M1460:.:Inktomi:crawler

S1:255:1:60:M1460,S,T,N,W0:.:LookSmart:ZyBorg

16384:255:0:40:.:.:Proxyblocker:(what’s this?)

65535:255:0:48:M*,N,N,S:.:Redline: T|X 2200

# ----------- Embedded systems --------------

S9:255:0:44:M536:.:PalmOS:Tungsten T3/C

S5:255:0:44:M536:.:PalmOS:3/4

S4:255:0:44:M536:.:PalmOS:3.5

2948:255:0:44:M536:.:PalmOS:3.5.3 (Handera)

S29:255:0:44:M536:.:PalmOS:5.0

16384:255:0:44:M1398:.:PalmOS:5.2 (Clie)

S14:255:0:44:M1350:.:PalmOS:5.2.1 (Treo)

16384:255:0:44:M1400:.:PalmOS:5.2 (Sony)

S23:64:1:64:N,W1,N,N,T,N,N,S,M1460:.:SymbianOS:7

8192:255:0:44:M1460:.:SymbianOS:6048 (Nokia 7650?)

8192:255:0:44:M536:.:SymbianOS:(Nokia 9210?)

S22:64:1:56:M1460,T,S:.:SymbianOS:? (SE P800?)

S36:64:1:56:M1360,T,S:.:SymbianOS:60xx (Nokia 6600?)

S36:64:1:60:M1360,T,S,W0,E:.:SymbianOS:60xx

32768:32:1:44:M1460:.:Windows:CE 3

# Perhaps S4?

5840:64:1:60:M1452,S,T,N,W1:.:Zaurus:3.10
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32768:128:1:64:M1460,N,W0,N,N,T0,N,N,S:.:PocketPC:2002

S1:255:0:44:M346:.:Contiki:1.1-rc0

4096:128:0:44:M1460:.:Sega:Dreamcast Dreamkey 3.0

T5:64:0:44:M536:.:Sega:Dreamcast HKT-3020 (browser disc 51027)

S22:64:1:44:M1460:.:Sony:Playstation 2 (SOCOM?)

S12:64:0:44:M1452:.:AXIS:Printer Server 5600 v5.64

3100:32:1:44:M1460:.:Windows:CE 2.0

#####################################

# Generic signatures - just in case #

#####################################

*:128:1:52:M*,N,W0,N,N,S:.:@Windows:XP/2000 (RFC1323+, w, tstamp-)

*:128:1:52:M*,N,W*,N,N,S:.:@Windows:XP/2000 (RFC1323+, w+, tstamp-)

*:128:1:52:M*,N,N,T0,N,N,S:.:@Windows:XP/2000 (RFC1323+, w-, tstamp+)

*:128:1:64:M*,N,W0,N,N,T0,N,N,S:.:@Windows:XP/2000 (RFC1323+, w, tstamp+)

*:128:1:64:M*,N,W*,N,N,T0,N,N,S:.:@Windows:XP/2000 (RFC1323+, w+, tstamp+)

*:128:1:48:M536,N,N,S:.:@Windows:98

*:128:1:48:M*,N,N,S:.:@Windows:XP/2000
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