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ABSTRACT

Graph Embedding and Nonlinear Dimensionality
Reduction

Blake Shaw

Traditionally, spectral methods such as principal component analysis (PCA) have been

applied to many graph embedding and dimensionality reduction tasks. These methods aim

to find low-dimensional representations of data that preserve its inherent structure. How-

ever, these methods often perform poorly when applied to data which does not lie exactly

near a linear manifold. In this thesis, I present a set of novel graph embedding algorithms

which extend spectral methods, allowing graph representations of high-dimensional data or

networks to be accurately embedded in a low-dimensional space. I first propose minimum

volume embedding (MVE) which, like other leading dimensionality reduction algorithms,

first encodes the high-dimensional data as a nearest-neighbor graph, where the edge weights

between neighbors correspond to kernel values between points, and then embeds this graph

in a low-dimensional space. Next I present structure preserving embedding (SPE), an algo-

rithm for embedding unweighted graphs where similarity between nodes is not known. SPE

finds low-dimensional embeddings which explicitly preserve graph topology, meaning a con-

nectivity algorithm, such as k-nearest neighbors, will recover the edges of the input graph

from only the coordinates of the nodes after embedding. I further explore preserving graph

structure during embedding, and find the concept applicable to dimensionality reduction,

large-scale network visualization, and metric learning for link prediction. This thesis posits

that simply preserving pairwise distances, as with many spectral methods, is insufficient for

capturing the structure of many datasets and that preserving both local distances and graph

topology is crucial for producing accurate low-dimensional representations of networks and

high-dimensional data.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Graph embedding algorithms place vertices at points on a surface, typically Euclidean

space, and connect vertices with an arc if the vertices have an edge between them. There

exist many graph embedding algorithms with different goals ranging from drawing graphs

so that they have certain aesthetic qualities to embedding graphs in VLSI chip designs to

minimize fabrication cost [Chung, 1997, Battista et al., 1999]. For example, a common

objective for graph drawing is to minimize edge crossings, where it has been shown that

all graphs can be embedded in 3-dimensional Euclidean space without any edges crossing.

Only for the specific case of planar graphs is a zero-crossing embedding possible in 2D.

Graph embedding is a useful tool for approximately solving hard combinatorial problems

geometrically. For instance, Arora et al. [2004] approximate the NP-hard sparsest cut

problem by first embedding a graph and then using hyperspheres to separate points. From

among these many possible objectives this thesis will focus on developing graph embedding

algorithms suited for dimensionality reduction, visualization, and metric learning.

Embedding algorithms are helpful for gaining insight into complex data sets described

by high-dimensional features. Inherent in many datasets is a small set of natural parameters

which capture the important sources of variation in the data. Extracting these parameters

reveals the underlying structure, allowing for better data exploration, visualization, and

modeling of the complex system. For example, Sirovich and Kirby [1987] showed that

although images of faces are often described by high-dimensional vectors of pixel intensities,

the variations in face images can be accurately captured by a few dozen key dimensions,
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also known as “eigenfaces”. Similar patterns emerge in high-dimensional data arising in

many areas of research, such as bioinformatics, robot navigation, and natural language

processing [Tenenbaum et al., 2000, Bowling et al., 2005]. The small number of hidden

degrees of freedom that capture the different continuous modes of variation in the data

describe a low-dimensional manifold which can be represented as a graph specifying which

points on the manifold are neighbors. Properly embedding this graph can recover the

hidden low-dimensional coordinates. We first present minimum volume embedding (MVE),

an algorithm for nonlinear dimensionality reduction designed to extend principal component

analysis (PCA) to be able to recover nonlinear manifolds by employing graph embedding.

Both MVE and PCA maximize the amount of variance of the data that is captured by

the low-dimensional embedding, an objective we define as spectral fidelity; however, where

PCA preserves all distances between data points, MVE preserves only local distances, those

accurately measured along the natural manifold of the data as specified by a graph built

from strong local pairwise relationships. MVE uses semidefinite programming and spectral

decomposition to directly optimize the eigenspectrum of the data to preserve as much

energy as possible within the few dimensions available to the embedding, simultaneously

minimizing energy in directions orthogonal to the embedding, keeping the data in a so-called

minimum volume manifold.

Graphs not only are useful for encoding neighborhood information in high-dimensional

datasets, but are a natural representation for network data as well. Similar to high-

dimensional data, network data is difficult to visualize and represent in a low-dimensional

space. Network data is prevalent in fields ranging from computer vision, to sociology, to

computational biology. We are motivated to apply graph embedding to this natural setting:

given only an unweighted graph, where vertices and edges represent pairwise interactions

between entities, embed the graph such that the low-dimensional coordinates for every

vertex implicitly encode the binary connectivity. It is difficult to properly apply MVE

to unweighted graphs; one must choose an appropriate graph-based kernel or assume all

neighbors to be equidistant. To address this problem setting directly, we present structure

preserving embedding (SPE), an algorithm for embedding unweighted, undirected graphs

in Euclidean space such that the resulting embedding is low-dimensional and preserves
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the global topology of the input graph. Topology is preserved if a connectivity algorithm,

such as k-nearest neighbors, can recover the original edges of the input graph exactly from

the coordinates of the vertices after embedding. Similar to MVE, SPE is formulated as a

semidefinite program combined with a singular value decomposition (SDP + SVD). The ob-

jective of the SDP ensures that the learned kernel matrix is low-rank. The linear constraints

of the SDP enforce the connectivity structure of the input graph. Traditional graph em-

bedding techniques such as spectral embedding and Laplacian eigenmaps do not explicitly

preserve topology and therefore the resulting visualizations are often less informative.

Preserving graph topology during embedding is applicable to a wide range of problem

settings and allows for a variety of implementations. We further demonstrate that pre-

serving graph topology is compatible with preserving the distances between certain points:

introducing SPE style constraints into MVE (MVE+SP) further increases the quality of

the embeddings of high-dimensional data; when local distances and graph topology are pre-

served, a nearest-neighbor classifier maintains its performance even after low-dimensional

embedding. Furthermore, we present structure preserving metric learning (SPML) which

extends SPE to the setting when nodes in a network are described by features as well as

connectivity information, allowing for more accurate link prediction.

This thesis is organized as follows. First we introduce the problem of dimensional-

ity reduction and graph embedding, highlighting related work, and discussing motivating

problems. In Chapters 2 and 3 we introduce MVE and SPE respectively, focusing on two

key themes: finding low-dimensional embeddings, and different ways of preserving graph

structure. Next, in Chapters 4 and 5 we discuss two key extensions to SPE: introducing

structure preserving constraints into MVE (MVE+SP), and solving SPE for large graphs

using stochastic gradient descent. In Chapter 6 we introduce a new metric learning algo-

rithm based on preserving graph structure (SPML) that allows for accurate link prediction

in networks described by node features as well as connectivity.



CHAPTER 1. INTRODUCTION 4

1.1 Related Work

1.1.1 Dimensionality Reduction

There is a rich history of algorithms for dimensionality reduction, progressing towards

more efficient tools for capturing the significant structures in ever-larger and more complex

datasets. Principal component analysis (PCA) [Jolliffe, 1986] and Multidimensional Scaling

(MDS) [Cox and M.Cox, 1994] are the canonical methods for dimensionality reduction

[Williams, 2001]. MDS aims to find a set of low-dimensional coordinates that best preserves

pairwise distances in the original high-dimensional space. PCA finds linear projections of

the data which have the greatest variance, effectively rotating the data such that the first

dimension captures the most variance of the data, the second dimension captures the second

most, and so on. Both PCA and MDS are typically solved by spectral decomposition, and

are equivalent when MDS is used with Euclidean distances. When the data lies near a linear

manifold, PCA and MDS will recover a small set of coordinates which describes variations

in the data aligned with this linear manifold.

However, PCA is limited as a purely linear method, and thus many extensions to PCA

have been proposed, most notably kernel PCA [Schölkopf et al., 1998], which performs the

spectral decomposition in kernel space and is therefore able to capture certain types of non-

linear variations in the data via the choice of different kernels. More recent work such as

Isomap [Tenenbaum et al., 2000], locally linear embedding (LLE) [Roweis and Saul, 2000],

and Laplacian eigenmaps [Belkin and Niyogi, 2002] assume the data lies near a nonlinear

manifold, and thus represent the data as a weighted graph in order to better honor those

nonlinearities. Isomap essentially performs MDS but uses geodesic distances computed from

a nearest-neighbor graph on the data. Locally linear embedding preserves local neighbor-

hoods instead of distances, using the nearest-neighbors of each point to define reconstruction

coefficients that are preserved during embedding. Laplacian eigenmaps performs a spectral

decomposition of the graph Laplacian of the nearest-neighbor graph. The key intuition

underlying these techniques is that it is important to measure distances along the manifold

of the data and not through arbitrary dimensions in high-dimensional space; moving off

the manifold corresponds to hallucinating datapoints that could not be generated by the
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underlying parameters that generate the data.

Maximum variance unfolding (MVU) [Weinberger et al., 2004] similarly operates on

a graph formed from the data, preserving local distances but allowing large distances not

measured along the manifold to vary as the manifold is “unfolded” by means of a semidefinite

program (SDP). MVU is built on top of kernel principal component analysis, first learning a

kernel matrix which better captures the structure of the nonlinear manifold, and then, like

PCA, decomposing that kernel matrix by means of an SVD to find the d eigenvectors with

the largest eigenvalues, which correspond to the d dimensions with the largest variance.

When using PCA for dimensionality reduction, there is corruption when eigenvectors

with non-zero eigenvalues are truncated; pairwise distances in the reduced dimensional-

ity space do not match the original distances. MVU addresses this problem implicitly to

some degree by preserving only local distances; thus, in practice less eigenenergy is lost

when the dimensions with smallest variance are truncated. In a previous publication [Shaw

and Jebara, 2007], we introduce a cost function which explicitly minimizes the amount of

eigenenergy lost by truncation, and thus better maintains as much eigenenergy as possible

in d dimensions. And in a later article [Shaw and Jebara, 2011a], we show that this cost

function is related to the spectral fidelity of the embedded data which we define as the per-

centage of original variance preserved. PCA maximizes spectral fidelity by definition. If we

loosen the assumption that all pairwise distances should be preserved to all local pairwise

distances should be preserved, we see that MVE is the natural algorithm for maximizing

spectral fidelity while preserving local structure.

Many recent dimensionality reduction techniques begin by first learning a kernel matrix

with specific properties and then decomposing that kernel matrix to create an embedding

[Tenenbaum et al., 2000, Weinberger et al., 2004, Javanmard and Montanari, 2011]. Similar

to how Isomap replaces Euclidean distances with geodesic distances before performing MDS,

these methods learn a new kernel matrix for use with kernel PCA. MVU learns a kernel

matrix which preserves local distances while maximizing variance in all dimensions. Action

Respecting Embedding (ARE) [Bowling et al., 2005] learns a kernel matrix where movements

in the low-dimensional space are specifically tied to metadata about which actions were

taken by a robot to make that movement. Colored MVU [Song et al., 2008] similarly
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preserves local distances but exploits labels in the data to better separate classes in the

embedding. Similar to these methods, MVE maximizes spectral fidelity while preserving

local distances.

In Figure 1.1, we introduce the problem of dimensionality reduction with the classic

swiss-roll example; the goal is to recover an accurate 2D embedding of 1000 datapoints

sampled with noise from a smooth nonlinear manifold in 3D. In this comparison, PCA

simply produces the 2D projection that maximizes variance. t-SNE [van der Maaten and

Hinton, 2008], a popular method for visualization based on preserving a probability distri-

bution during embedding, is also unable to capture the structure of the underlying manifold,

seeming to cluster parts of the manifold together. Laplacian eigenmaps, MVU, and MVE

produce 2D embeddings which properly show the variations along the manifold. In this

thesis, we focus on recovering embeddings which capture the smooth variations aligned

with the underlying manifold, and thus focus on techniques and datasets suited to manifold

learning and graph embedding.

1.1.2 Graph Embedding

When the input data is a binary adjacency matrix as opposed to high-dimensional data,

many of these graph-based dimensionality reduction algorithms can be applied directly.

Spectral embedding essentially performs PCA on the adjacency matrix. Similarly, Laplacian

eigenmaps employs a spectral decomposition of the graph Laplacian [Belkin and Niyogi,

2002]. In many cases these spectral methods offer significant improvements over spring

embedding techniques, which often employ heuristics and are prone to getting stuck in local

minima. However, in practice decomposing the adjacency matrix or graph Laplacian often

yields many eigenvectors with non-zero eigenvalues, and thus choosing a small set of these

eigenvectors as dimensions for embedding does not adequately represent the underlying

structure of the input graph. To address this issue, we have developed structure preserving

embedding [Shaw and Jebara, 2009], a convex method that learns a positive semidefinite

kernel matrix whose spectral decomposition yields a small set of eigenvectors which preserve

the topology of the input graph. Topology is preserved if applying a connectivity algorithm

such as k-nearest neighbors, b-matching, or maximum weight spanning tree to an embedding
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Figure 1.1: From 3D to 2D. The Swiss roll example illustrates the problem of recovering

a low-dimensional manifold from nonlinear high-dimensional data. The 2D embedding

recovered by PCA (b) does not capture the underlying manifold. t-SNE (d) appears to

unnecessarily clump together parts of the underlying manifold. MVE, MVU, and Laplacian

eigenmaps (f,e,c) recover the underlying 2D structure of the data.
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(e) Möbius Band

Figure 1.2: Embedding the classical Möbius Ladder Graph. Given the adjacency matrix

(a), the visualizations produced by spectral embedding and spring embedding (b and c) do

not accurately capture the graph topology. The SPE embedding (d) uses few dimensions

and matches the topology of the input graph exactly.

returns the input adjacency matrix exactly.

Traditional graph embedding algorithms such as spectral embedding or spring embed-

ding techniques do not explicitly preserve the topology of the input graph. Consider Figure

1.2, which shows the results of using these algorithms to visualize the classical Möbius lad-

der graph. The spectral embedding seems to have collapsed certain pairs of nodes, and does

not resemble a true Möbius band. Furthermore, the eigenspectrum indicates 6 dominant

eigenvectors, when intuitively we expect to be able to represent the graph accurately using

fewer than 6 dimensions. The left spring embedding is a good diagram of the input graph;

however, we see that the characteristic twist of the Möbius strip is not accurately captured.

A simple nearest-neighbor-finding algorithm would connect the nodes along the red dotted

lines, not the blue ones specified by the adjacency matrix, and thus topology is not pre-
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served. Because the objective function of spring embedding is non-convex, poor random

initialization will often produce undesirable results, as shown with the spring embedding

on the right. We are motivated to find simple tools for properly visualizing graphs such as

the Möbius ladder, as well as graphs built from high-dimensional data such as the Swiss

roll. In this thesis, we will focus on MVE and SPE, and highlight two important aspects of

graph embedding: creating low-dimensional embeddings and preserving graph structure.

1.1.3 Optimization Techniques and Complexity

Many embedding algorithms are based on an eigendecomposition and thus their running

time complexity scales cubicly with the number of data points. Furthermore, for methods

based on learning a kernel matrix to be used with kPCA, the constraint that the kernel

matrix must be a valid mercer kernel typically means the kernel learning algorithm involves

a semidefinite program (SDP) which, when solved by an interior point method also scale

cubicly in terms of the number of data points and constraints [Borchers, 1997]. SDPs have

been successfully applied to many combinatorial problems on graphs such as the max-cut

problem [Goemans and Williamson, 1995] and the vertex-cover problem [Kleinberg and

Goemans, 1995]. Furthermore, there has been considerable research focused on methods for

speeding up the underlying optimizations of embedding algorithms, and also on approximate

methods for handling large-scale data.

There have been notable speedups proposed for MVU which can similarly be applied to

MVE. In Weinberger et al. [2005], the authors propose a landmark method where a small

sample of points denoted as “landmarks” are embedded into a low-dimensional space via

MVU and the rest of the points are linearly reconstructed in the low-dimensional space

by their relationships to the landmarks. Similarly in Weinberger et al. [2007], the author

proposes learning a kernel matrix which is factorized as a set of basis vectors formed from

eigenvectors of the graph Laplacian and a smaller positive semidefinite (PSD) matrix which

is optimized via an SDP. In A. Kleiner [2010], the authors propose a method for speeding up

a variety of SDPs including MVU, by transforming the semidefinite program into a sequence

of two-variable optimizations, exploiting the fact that linear combinations of PSD matrices

are also PSD, and thus the explicit PSD constraint can be dropped if the initial iterate is
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PSD and further iterates are linear combinations of outer products of rank 1 matrices.

To allow SPE to scale to large graphs we employ an SDP solver by Burer and Monteiro

[2003] which solves the SDP using an optimization over a low-rank factorization; however

the method still does not allow SPE to scale much past graphs with 1000 nodes. Zhuang

et al. [2009] have since demonstrated a significant speedup to MVE and SPE by formulating

the optimization as a saddle-point optimization which is solved via a fast iterative algorithm.

Their method provides a 10-30x speedup for MVE and 50-90x speedup for SPE. To better

address the need to embed large graphs, we introduce in Shaw and Jebara [2011b] a method

for optimizing SPE based on stochastic gradient decent [Robbins and Monro, 1951, Bottou,

2003] which sacrifices convexity but in practice allows the algorithm to embed graphs of up

to fifty thousand nodes. More details about large-scale SPE can be found in Section 5.

1.1.4 Metric Learning

There exists a natural connection between graph embedding and metric learning algorithms.

MVE and SPE are essentially unsupervised metric learning algorithms, learning a set of

distances between nodes or data points with special properties (specifically that they can can

be represented by low-dimensional vectors). Metric learning is often applied to supervised

problems such as classification by employing graph-based constraints [Weinberger and Saul,

2009, Chechik et al., 2010]. These methods first build a k-nearest neighbors (kNN) graph

from training data with a fixed k, and then learn a Mahalanobis distance metric which tries

to keep connected points with similar labels close while pushing away class impostors, pairs

of points which are connected but of a different class. Fundamentally, these supervised

methods aim to learn a distance metric such that applying a connectivity algorithm (for

instance, k-nearest neighbors) under the metric will produce a graph where no point is

connected to others which have different class labels. In practice, these constraints are

enforced with some slack. Once the metric is learned, the class label for an unseen datapoint

can be predicted by the majority vote of nearby points under the learned metric.

These SPE-like constraints for learning a metric that is a good indicator of class labels

suggest that we can learn a metric that is a good indicator of the correct graph topology as

well. To accomplish this goal we present an algorithm Structure Preserving Metric Learning
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(SPML). Like these previous metric learning methods, SPML aims to learn a metric that,

when combined with a connectivity algorithm and node features data, produces a graph

that matches as closely as possible the original input connectivity structure. Instead of

pushing away class impostors, SPML pushes away graph impostors, points which are close

in terms of distance but which should remain unconnected for structural reasons indicated

by the connectivity matrix. SPML is similar to SPE. SPE learns coordinates for nodes

in a graph such that applying a connectivity algorithm to those node coordinates yields

the original adjacency matrix. Where SPE learns an embedding explicitly from only the

target adjacency matrix, SPML learns a metric corresponding to a linear transformation of

additional node features given as input. Like SPE, SPML can be optimized by a cutting-

plane approach similar to structured prediction algorithms, explicit SDP constraints, or fast

gradient updates.

1.2 Notation and Background

Formally the problem of graph embedding can be stated as follows: given a graphG = (V,E)

with n = |V | nodes and |E| edges, find for each node a vector yi ∈ Rd for i = 1, . . . , n.

In this thesis we focus on low-dimensional embeddings where d is small. Often the edges

of the graph G are parametrized by an adjacency matrix A = BN×N specifying which

of the n nodes are connected. We can represent the embedding of n vertices as a single

matrix: Y = [y1,y2, . . . ,yn] of size d × n. For purposes of dimensionality reduction it is

useful to consider the nodes as corresponding to a set of n objects: xi ∈ Ω for i = 1, . . . , n

where Ω is an arbitrary space (commonly RD for some large D), and a valid kernel function

Wij = k(xi,xj) specifying the similarity between pairs of objects. W is referred to as the

Gram matrix or kernel matrix, and for graph-embedding-based dimensionality reduction

algorithms, W is used as the weights associated with the edges of G.

The fundamental optimization underlying traditional spectral methods as well as the

algorithms proposed in this thesis is eigedecomposition. Given a square n × n matrix K,

the matrix can be factorized as K =
∑

i λiviv
>
i where each λi is an eigenvalue of K with

corresponding eigenvector vi. We can factorize K = Y>Y by constructing Y as the stacked



CHAPTER 1. INTRODUCTION 12

eigenvectors of K scaled by the square root of their eigenvalues. This mapping from K to

Y forms the basis for the kernel view of principal component analysis. If all of eigenvalues

of K are non-negative, K is positive semi-definite, denoted as K � 0. We commonly exploit

the useful property that tr(K) =
∑

i λi.

Another key optimization tool used in this work is semidefinite programming. A semidef-

inite program (SDP) is a convex optimization over a semidefinite matrix which has a linear

objective function and a set of linear constraints, and takes the form:

max
K�0

tr(EK)

s.t. tr(BiK) = gi for i = 1 . . . p

where E denotes the linear objective, and each Bi and gi denote one of of the p linear

constraints of the optimization. An SDP is essentially a linear program (LP) with the

additional constraint that the target variable must form a PSD.



CHAPTER 2. MINIMUM VOLUME EMBEDDING 13

Chapter 2

Minimum Volume Embedding

Minimum volume embedding (MVE) is an algorithm for non-linear dimensionality reduc-

tion and weighted graph embedding. In Section 2.1, we introduce the concept of spectral

fidelity and illustrate its utility as a cost function for dimensionality reduction, formulating

the problem as an optimization over the eigenvalues of a kernel matrix. We then introduce

the sequential SDP machinery for optimizing general eigenfunctions of this class by com-

bining semidefinite programming (SDP) with singular value decompositions (SVD). The

dimensionality reduction algorithm MVE is then presented in Section 2.1.4 as a means for

optimizing spectral fidelity. In Sections 2.1.5 and 2.2, MVE is expanded into a flexible

framework for properly embedding many kinds of high-dimensional data, graphs, and trees.

We consider a variety of algorithmic choices, including different kernels, graph-building

techniques, and variations on the optimization constraints. In Section 2.3 we present a

variety of synthetic and real-world experiments which highlight the improvements of MVE

compared to other methods.

2.1 Fidelity and Objective Functions for Dimensionality Re-

duction

We closely analyze the objectives of PCA, MVU, and MVE and define a new quantity “spec-

tral fidelity” as a natural measure for evaluating the quality of dimensionality reduction.

Intuitively, the dimensionality of an embedding should match the number of underlying
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Figure 2.1: Images of a teapot rotating on a table. Although each image is represented by

many pixels, there exists only one inherent degree of freedom in the data: the angle of the

teapot [Weinberger et al., 2004].

parameters in the data. When a dataset consists of a large number of seemingly unrelated

features, in many cases these features are nonlinearly dependent on a small set of hidden

modes of variability inherent in the data. Consider, for example, images taken of a teapot

rotating on a table [Weinberger et al., 2004] as shown in Figure 2.1; each image can be

represented by a datapoint in RD, where the D dimensions correspond to a rasterized list

of pixel intensity values. In this case there is one feature per pixel, and these D features

drastically change from one image to the next. However, there exists only one underlying

mode of variation in this dataset: the angle of rotation of the teapot. An embedding with

high spectral fidelity would have only one significant dimension, corresponding exactly to

this angle of rotation.

Specifically, spectral fidelity measures how much of the variance of the original data is

preserved by the embedding. PCA naturally maximizes spectral fidelity, while preserving

all pairwise distances in the data. We show that by using a sequential SDP technique MVE

also maximizes spectral fidelity while preserving only local distances measured along the

natural manifold of the data thus addressing a major shortcoming of PCA by being able to

capture nonlinear modes of variation.

2.1.1 PCA and MVU

PCA centers and rotates the data such that the d-dimensions of the embedding have the

highest variance. Given as input the n × n Gram matrix W where Wij = k(xi,xj), W is
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first centered:

Ŵ = W − 1

n
W1− 1

n
1>W +

1

n2
1>W1,

where 1 is the ones matrix of size n × n. Ŵ is then decomposed into its eigenvectors and

eigenvalues Ŵvi = λivi. Choosing the d eigenvectors of Ŵ with largest eigenvalues as each

of the d dimensions of the embedding, yi =
√
λivi for i = 1, . . . , d where λi > λi+1, PCA

maximizes the amount of variance captured in the top d dimensions.

If there are less than d-dimensions with non-zero variance then PCA has perfectly pre-

served all pairwise relationships in the data while reducing the dimensionality to d. However,

as the number of dimensions with non-zero variance grows larger than d, the embedding

more poorly approximates all the pairwise distances, because PCA has truncated dimen-

sions with important information. If the data lies near a nonlinear manifold embedded in

high-dimensional space, we cannot trust large distances which are not measured along the

manifold. All entries of the Gram matrix W cannot be trusted equally since the simple

linear kernel function used to create W rarely represents perfect geodesic distances between

all pairs of points. If we relax the constraint that all pairwise distances must be preserved

exactly to the constraint that only local distances must be preserved, is it possible to use

fewer dimensions, and thus also not truncate meaningful variations in the data?

Maximum variance unfolding (MVU) is built upon this intuition, preserving only local

distances described by a graph on the data, while unfolding the graph to capture nonlin-

earities. MVU learns a kernel matrix K by optimizing

max
K∈K

tr(K)

s.t. K =

∀K ∈ Rn×n

∣∣∣∣∣∣∣∣∣
K � 0∑

ijKij = 0

Kii +Kjj − 2Kij = Wii +Wjj − 2Wij ∀i,j s.t. Aij = 1

 .

The binary adjacency matrix A ∈ Bn×n specifies which local distances are preserved.

The optimization is also constrained to ensure K is centered and a valid kernel matrix.

Maximizing the trace of K corresponds to “unfolding” the graph. Similar to PCA, after
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learning K, the embedding is found by using the d eigenvectors of K with largest eigenvalues

yi =
√
λivi for i = 1, . . . , d where Kvi = λivi and λi > λi+1. In practice, MVU trades off

preserving all distances for preserving only local distances but using far fewer dimensions.

Unfortunately, the objective function maxK∈K tr(K) can be problematic. Maximizing the

trace is equivalent to maximizing variance in all dimensions, essentially pulling the data

apart in all directions; this objective can cause a variety of degeneracies, as illustrated

by the star graph example in Figure 2.2 and the S-curve example in Figure 2.3. We see

that MVU pulls the star graph into an n-dimensional ball. Pulling the data apart in all

dimensions runs counter to the intuition of reducing dimensionality. Ideally, we would like

to maximize variance only in the d dimensions available to the embedding, and not drive

variance into all n dimensions as is the case with MVU.
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(c) MVE

Figure 2.2: The star graph example illustrates a common deficiency with MVU. Below each

embedding is the eigenspectrum. We see that MVU puffs the data out into an n-dimensional

ball, where MVE recovers the inherent 2D structure in the data.

2.1.2 Fidelity

As shown in Jolliffe [1986] and Schölkopf et al. [1998], the first d eigenvectors found by

PCA carry more variance than any other d orthogonal directions, and the variance of the

data captured by each eigenvector is proportional to the corresponding eigenvalue [Srebro,

2004]. From this perspective, PCA can be seen as maximizing the ratio of the sum of

top eigenvalues to the sum of all eigenvalues. Furthermore, because tr(K) =
∑n

i=1 λi, we

see that MVU is trying to maximize all eigenvalues and thus maximize variance. This
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Figure 2.3: The torn S-curve example shows when the 2D manifold is ripped, MVU incor-

rectly pulls the data into 3D, where MVE recovers the original 2D manifold.

connection between the variance of each dimension of the embedding and the eigenvalues

of K begs the question: is it possible to maximize the amount of variance captured by the

d dimensions available for embedding, similar to PCA, but only preserve local distances,

similar to MVU?

Definition 1 Given a kernel matrix K, the spectral fidelity of a d-dimensional embedding

Y computed from the d eigenvectors of K with largest eigenvalues is the normalized sum

of the eigenvalues captured by the embedding: F (K, d) =
∑d
i=1 λi∑n
i=1 λi

where Kvi = λivi and

λi > λi+1.

Because the eigenvalues of K are directly related to the variance of the original data,

spectral fidelity measures how much variance is preserved in a low-dimensional embedding.

PCA naturally maximizes spectral fidelity by choosing the orthonormal leading eigenvectors

v1, . . . ,vd as the embedding such that K =
∑d

i=1 λiviv
>
i . Now consider the following

formulation for maximizing spectral fidelity:

max
K

Fβ(K, d) = max
K

β
d∑
i=1

λi −
n∑
i=1

λi. (2.1)

It is clear that, for some choice of β ∈ R+, maxK Fβ(K, d) = maxK F (K, d). In practice β is

tuned to maximize F(K, d). From this perspective, setting d = n and β = 2 recovers the cost

function for MVU. Note that MVU maximizes spectral fidelity to some degree; however, in

essence MVU is pulling the data in n dimensions. We want to directly optimize this spectral

function for a small value of d. We see that Equation 2.1 is precisely the objective proposed
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for the MVE algorithm [Shaw and Jebara, 2007] when β = 2, maximizing the amount

of eigen-energy in the first few dimensions and explicitly minimizing the truncation loss

associated with the PCA step. Thus MVE is a natural extension to PCA; both maximize

spectral fidelity; MVE simply relaxes the constraint of preserving all distances to preserving

local distances aligned with the underlying manifold.

Note that maximizing spectral fidelity alone is not a proper objective for dimensionality

reduction. Spectral fidelity captures how much loss of variance there is when moving from

a N dimensional embedding to a d dimensional embedding. Therefore, spectral fidelity is

only useful when coupled with a set of constraints that exactly preserve some important

property such as preserving local distances. Given that all local distances are preserved in

K, maximizing fidelity will minimize any loss of variance associated with truncating the

embedding at d dimensions.

2.1.3 Optimizing Spectral Functions

In order to optimize Equation 2.1, we need to develop machinery for optimizing over the

eigenvalues of a positive semidefinite kernel matrix [Boyd]. Building on the work from

Overton and Womersley [1993], we show that spectral functions of the form

g(K) =
∑
i

αiλi (2.2)

are convex, and can be optimized by alternating SDP and SVD optimizations. It is easy to

see that F2(K, d) = g(K) when αi = 1 for i = 1, . . . , d and αi = −1 for i = d+ 1, . . . , n.

Theorem 2 The sum of the top d eigenvalues of a positive semidefinite matrix K, fd(K) =∑d
i=1 λi is convex in K.

See Overton and Womersley [1993] for proof.

Theorem 3 The weighted sum of the eigenvalues of a positive semidefinite matrix K

g(K) =
∑n

i=1 αiλi is convex in K if the weights and eigenvalues are arranged in nonin-

creasing order, αi ≥ αi+1 and λi ≥ λi+1.
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Proof Rewrite the function g(K) as a combination of fd(K) functions as follows:

g(K) = αnfn(K) +

n−1∑
i=1

(αi − αi+1) fi(K)

Verify that the terms in the parentheses are non-negative since αi ≥ αi+1. Thus we have

a conic combination of functions fd(K) which are all convex in K which shows that g(K)

convex in K.

Clearly, maximizing this convex function could yield local maxima; however, because the

function is convex, fast convergence is possible by variational maximization of a lower bound.

Furthermore, by initializing at the PCA or MVU solution, the method is guaranteed to

increase the spectral fidelity from these typically good starting solutions.

Consider rewriting Equation 2.2 in the following way which makes the relationship

between K, its eigenvalues λi and its eigenvectors vi more explicit. Furthermore, assume

we are given a set of linear constraints K ∈ K which preserve local distances as in the MVU

algorithm. To maximize spectral fidelity, we will optimize

max
K∈K

g(K) = max
K∈K

n∑
i=1

αiλi

s.t. Kvi = λivi, v>i vj = δij , λi ≥ λi+1 ≥ 0 αi ≥ αi+1, ∀i, j (2.3)

where δij = 1 if i = j and δij = 0 otherwise. Now consider applying the following theorem,

the proof of which can be found in 8.1.1.

Theorem 4 For any K ∈ Rn×n such that K � 0, Kvi = λivi, v>i vj = δij , λi ≥ λi+1, and

αi ≥ αi+1 for i = 1...n:

n∑
i=1

αiλi = max

u1, . . . ,un

u>i uj = δij

tr

(
K

n∑
i=1

αiuiu
>
i

)
.

Theorem 4 allows us write a variational version of the problem in Equation 2.3 which is

straightforward to maximize. The variational version makes the choice of eigenvectors an
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additional parameter:

max
K∈K

max

u1, . . . ,un

u>i uj = δij

tr

(
K

n∑
i=1

αiuiu
>
i

)
. (2.4)

When we maximize over the additional parameter, we get the formulation in Equation 2.3.

Thus, we can now approach the eigenfunction maximization problem as an alternating

maximization found by iterating between solving for the best K given u1, . . . ,un and then

solving for the best u1, . . . ,un given K. This can be accomplished efficiently by interleav-

ing SDP and SVD optimizations. Furthermore, we now have the machinery to maximize

spectral fidelity by setting α1,...,d = β− 1 and αd+1,...,n = −1 and maximizing Equation 2.3.

2.1.4 Minimum Volume Embedding Algorithm

Using the framework presented above for optimizing spectral functions, we present mini-

mum volume embedding (MVE), an efficient algorithm which directly optimizes the eigen-

spectrum of high-dimensional data in order to produce a low-dimensional embedding with

maximum spectral fidelity. We first present a simplified view of the core algorithm, and

then explore a variety of extensions and adaptations.

MVE reduces dimensionality by solving a graph embedding problem, first finding a

sparse graph G that captures strong local pairwise affinities in the data, and then “unfold-

ing” this graph to create a low-dimensional embedding. Each of the n nodes in G typically

represents a high-dimensional data point xi ∈ RD for i = 1, . . . , n, but each node can rep-

resent any object which allows for pairwise similarities to be computed using a valid kernel

function. The similarities between nodes are captured by a Gram matrix of kernel values

W ∈ Rn×n. The edges of G are represented as an adjacency matrix A ∈ Bn×n which

indicates strong pairwise affinities as defined by W. For example, W could be formed us-

ing a linear kernel function on the data, and A formed by an algorithm such as k-nearest

neighbors. We discuss other choices for kernels and graph-building algorithms in Section

2.1.5.

Given this sparse graph G, our goal is to compute a low-dimensional embedding of G:

yi ∈ Rd for i = 1, . . . , n, where d � D and the underlying structure of G is preserved.
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We assume that G represents a nonlinear manifold of low dimension arbitrarily embedded

in a high-dimensional space; from this perspective our task is then to rotate and unfold

the graph in order to produce a new set of coordinates, the axes of which more directly

correspond to sources of variations along the underlying manifold.

MVE learns a kernel matrix K by maximizing a lower bound on spectral fidelity, subject

to the constraints that K is positive-semidefinite, centered, and local distances are preserved.

K is then decomposed using kernel PCA to find the d dimensions for the embedding. The

objective function,

max
K∈K

Fβ(K, d) = max
K∈K

β
d∑
i=1

λi −
n∑
i=1

λi (2.5)

essentially unfolds and flattens the data, while the constraints

K =

∀K ∈ Rn×n

∣∣∣∣∣∣∣∣∣
K � 0∑

ijKij = 0

Kii +Kjj − 2Kij = Wii +Wjj − 2Wij ∀i,j s.t. Aij = 1

 (2.6)

enforce the graph structure, essentially acting as rigid rods between neighboring points.

We optimize Equation 2.5 by iteratively maximizing the variational lower bound derived in

Section 2.1.3. The ideal solution involves sweeping β across various settings to find when

fidelity is precisely minimized, however we have found strong empirical validation for setting

β = 2. Algorithm 1 summarizes the steps of graph embedding using MVE, and the following

theorem guarantees the convergence of the algorithm, the proof of which can be found in

8.1.2.

Theorem 5 The iterative MVE algorithm is guaranteed to monotonically increase the ob-

jective function Fβ(K, d) = β
∑d

i=1 λi−
∑n

i=1 λi where K ∈ Rn×n,K � 0,Kvi = λivi, v
>
i vj =

δij , λi ≥ λi+1 and β ≥ 0.

MVE is implemented in Matlab, using the SDP optimization package CSDP [Borchers,

1997]. Code is available online [Shaw and Jebara, 2008]. The running time of one iteration

of MVE is identical to that of MVU: O(n3 + C3) where n is the number of data points and

C is the number of constraints of the optimization, and C scales with the number of nonzero

entries in A.
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Figure 2.4: The objective value for 10 runs of MVE with random initializations (instead

of initializing with PCA or MVU). We see that despite different initial conditions MVE

converges reliably to the same solution. The dataset for this experiment is a subset of the

‘Twos’ dataset shown in more detail in Figure 2.5.

In practice, even a few iterations of MVE greatly improves upon either the PCA or

MVU solution, and typically MVE requires less than a dozen iterations to converge. Each

iteration of MVE is guaranteed to increase the objective function and thus improve the

spectral fidelity of the initial solution (such as PCA or MVU). Although we have not

guaranteed that MVE finds a global optimum, we empirically show that MVE reliably

converges to the same solution despite drastically different initial conditions. In Figure 2.4,

we see 10 random initializations of MVE for d = 1 on a subset of the Twos dataset (shown

in greater detail in Section 2.3). Instead of initializing with the PCA or MVU solution, W is

randomly initialized. Smart initialization can significantly reduce the number of iterations

of the MVE optimization but does not in practice change the optimum found.

2.1.5 Kernel Functions and Graphs

The primary input to MVE is a Gram matrix W and sparse connectivity matrix A. These

matrices describe which pairwise distances defined by W are preserved in the embedding

learned by MVE.

Definition 6 Define the distance between a pair of points (i, j) with respect to a given

positive semidefinite Gram matrix W, as Dij = Wii +Wjj − 2Wij.
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Algorithm 1 Minimum Volume Embedding

Input: a Gram matrix W ∈ Rn×n, sparse connectivity A ∈ Bn×n, and parameters d, β, κ.

1: Initialize K←W

2: K ← {K � 0,
∑

ijKij = 0,Kii +Kjj − 2Kij = Wii +Wjj − 2Wij ∀i,j s.t. Aij = 1}

3: repeat

4: Solve for the eigenvectors v1, . . . ,vn and eigenvalues and λ1 ≥ λ2 ≥ . . . ≥ λn of K

using an SVD.

5: B← β
d∑
i=1

viv
>
i −

n∑
i=1

viv
>
i

6: K← K̂

7: K̂← argmaxK∈K tr(KB) {Found via SDP}

8: until ‖K− K̂‖ ≤ κ

9: Perform SVD on K̂ to compute the d leading eigenvectors v̂i and corresponding eigen-

values λ̂i, and set yi ←
√
λ̂iv̂i for i = 1, . . . , d

10: return y1, . . . ,yd

We see that if W is formed via a linear kernel function, then D is the matrix of squared

Euclidean distances between all pairs of points. If one is given a kernel describing the

exact distances between all pairs of points, running MVE is unnecessary; kPCA will yield

a low-dimensional embedding which best preserves those distances. However, in practice

one is rarely given a well-suited kernel that approximates variations only along a nonlinear

manifold. Thus MVE uses a sparse graph A to specify which distances are aligned with the

manifold, and should be preserved exactly, and which distances are measured along spurious

directions in high-dimensional space and should be free to vary. Running MVE with a fully

connected A matrix is equivalent to using kPCA because the graph is structurally rigid

[Asimov and Roth, 1978]; as A becomes more sparse, the graph becomes flexible and MVE

is given more freedom to unfold the underlying manifold. The relationship between the

rigidity of these graphs and the existence of unique embedding solutions is an active area of

research in rigidity theory [Singer and Cucuringu, 2009, Javanmard and Montanari, 2011].
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Because MVE requires only a Gram matrix describing the pairwise relationships in the

data, MVE is well-suited to embedding datasets arising from fields which use specialized

kernels, such as bioinformatics or natural language processing [Lodhi et al., 2002]. The ma-

trix W need only be a positive semidefinite Gram matrix. Given a set of n objects: xi ∈ Ω

for i = 1, . . . , n, one computes W via a kernel function Wij = k(xi,xj) = 〈φ(xi), φ(xj)〉.

For high-dimensional data, common choices of k(xi,xj) include the linear, polynomial and

RBF kernels.1 Also note that MVE is to able to handle input of a distance matrix speci-

fying pariwise distances dij instead of the Gram matrix W. This setting might be useful

for embedding objects where only explicit distances are known, and no kernel function is

specified. In this case, the distance preserving constraint of MVE can be modified to be

Kii +Kjj − 2Kij =
√
dij ∀i,j s.t. Aij = 1.

In certain datasets, such as those arising from social networks, the sparse connectivity

structure A is given explicitly as input; it is then straightforward to run MVE. Otherwise,

A must be found directly from the Gram matrix W. A specifies a sparse graph; when

Aij = 1 points i and j are neighbors, and they can be thought of as being connected by a

rigid rod that preserves the distance between them during unfolding. We present a variety

of methods for finding the connectivity structure A.

Thresholding

The simplest method for connecting neighbors is to connect all points whose pairwise dis-

tances (as defined by W) are less than a threshold parameter ε, setting Aij = 1 for any

Dij < ε and setting Aij = 0 elsewhere. This method is also known as ε-balls.

1

Linear k(xi,xj) = x>i xj

Polynomial k(xi,xj) = (x>i xj + 1)p

RBF k(xi,xj) = exp
(
− ||xi−xj ||2

2σ2

)
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k-nearest Neighbors

The k-nearest neighbor (kNN) algorithm finds an A ∈ Bn×n in which each node is connected

to the k nodes to which it is the closest:

arg min
A

∑
ij

DijAij s.t.
∑
j

Aij = k,Aii = 0, Aij ∈ {0, 1} ∀i,j .

The algorithm minimizes
∑

ij DijAij by greedily selecting for each node a the k smallest

distances of Daj and setting those corresponding entries in Aaj to 1 and 0 elsewhere, where

k is a parameter of the algorithm. In this article, we refer to kNN as the symmetric version,

where A is symmetrized by setting Aij = max(Aij , Aji). It is also possible to symmetrize

A by setting Aij = min(Aij , Aji).

b-matching

Given a set of desired degrees for each node b1, . . . , bn, we can find the best connectivity

matrix that maintains the constraints that the ith node must have exactly bi neighbors:

arg min
A

∑
ij

DijAij s.t.
∑
j

Aij = bi, Aij = Aji, Aii = 0, Aij ∈ {0, 1} ∀i,j .

Note that when all of the degrees are uniformly set to a single value b we get a b-regular

graph. This graph is different from the corresponding kNN graph when k = b because

the kNN graph may contain nodes that have degree much higher or lower than k due to

symmetrization. For example, although each node picks k of its neighbors to connect to,

there are no constraints limiting how many times a node can be picked as another node’s

neighbor. In practice, certain “popular” nodes can have high degree because although they

only choose k neighbors, many more than k other nodes pick that node as a neighbor.

The graphs produced by b-matching often produce a smoother manifold. In Section 2.3

we show a comparison on the AOL search dataset that illustrates the differences between

kNN and b-matching. In our experiments we use fast b-matching code based on loopy belief

propagation by Huang and Jebara [2007].
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Minimum Weight Spanning tree

The minimum weight spanning tree algorithm finds a subgraph that connects all nodes

together forming a tree whose edge distances are minimal

arg min
A

∑
ij

DijAij s.t. Aij ∈ {0, 1} ∀i,j , A ∈ T

where T is the set of all possible adjacency matrices corresponding to trees with n nodes.

Fast computation of a minimum weight spanning tree can be accomplished with Prim’s

algorithm [Prim, 1957].

Embedding Networks with MVE

If the input Gram matrix W comes directly from the weights of a sparse weighted graph

or network, we can use W directly with MVE and set Aij = 1 where Wij > 0 and zero

elsewhere. MVE provides a strong advantage (compared to MVU for example) when the

connectivity structure is not a uniformly sampled mesh but takes on different structures,

such as the “hubs and spokes” structure found in many network datasets, as illustrated by

the star graph example in Figure 2.2 and discussed in Section 2.1.1. This advantage allows

us to visualize many networks represented as weighted graphs by directly running MVE on

the network using the sparse connectivity implied by W (instead of the connectivity from

an algorithm such as k-nearest neighbors). Results on a coauthorship network are shown

in Section 2.3. MVE can be used to embed trees as well. In this case it is useful to add

additional constraints to the optimization to prevent the embedding from collapsing from

sparse connectivity. An additional set of constraints is added that prevents any pairwise

distances from shrinking:

Kii +Kjj − 2Kij ≥Wii +Wjj − 2Wij ∀i,j when Aij = 0.

We apply this formulation, called MVE-full, to phylogenetic data and provide a comparison

with other methods in Section 2.3.
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2.2 Preserving Structure

It is crucial to preserve the important relationships in the data as specified by A. We

consider a variety of different methods for formulating a set of linear constraints on K to

preserve the structure of A during embedding. The simplest method is to preserve local

distances: adding a constraint for each edge in A that specifies that the distance between

a pair of points must be preserved before and after the embedding

Kii +Kjj − 2Kij = Wii +Wjj − 2Wij ∀i,j s.t. Aij = 1.

A stronger condition is to preserve local isometry, preserving not only local distances but

also local angles [Weinberger et al., 2004]. This corresponds to preserving the distances

between neighbors, and between the neighbors of neighbors as well:

Kii +Kjj − 2Kij = Wii +Wjj − 2Wij ∀i,j s.t. Aij = 1 or ∃k where Aik = 1 and Akj = 1.

Despite preserving local distances and local angles, a connectivity algorithm may not recover

the same A from both the original data and the embedding. We refer to satisfying this

stricter constraint as preserving the topology of the input data and provide more details

on preserving graph topology with MVE in Section 4 after we have introduced structure

preserving embedding in the next section.

2.3 MVE Experiments

The following experiments compare MVE, MVU, and PCA on a variety of synthetic and real-

world datasets, including images of handwritten twos, a coauthorship network, phylogenetic

trees, and search engine data. We provide a qualitative comparison of the visualizations

as well as quantitative comparison of the spectral fidelity of the different embeddings. A

good visualization of data should preserve the local pairwise relationships as precisely as

possible. In many cases, visualizing data in 2D requires truncating extra dimensions with

useful information, and thus pairwise local distances in the 2D space are less accurately

represented. Therefore, the spectral fidelity of an embedding, the amount of the variance

that is captured in 2D, is a strong indicator of how accurately the visualization preserves



CHAPTER 2. MINIMUM VOLUME EMBEDDING 28

local distances. Note that in these experiments, PCA, MVU, and MVE all preserve local

distances exactly in terms of K, however algorithms that score higher in terms of spectral

fidelity for d = 2 better represent K using only 2 dimensions and thus better represent

the original local distances. In Table 2.1 we provide a summary of the spectral fidelity

scores of all the experiments which directly compare PCA, MVU, and MVE. For all MVE

experiments we set β = 2, and use a linear kernel function for both MVE and MVU.

PCA MVU MVE

Swiss Roll 72.5% 99.9% 100%

Star Graph 95.0% 29.9% 100%

Torn S-Curve 97.3% 96.7% 100%

Handwritten Twos 20.6% 80.8% 98.8%

Coauthorship Network 5.9% 95.3% 99.2%

Table 2.1: Fidelity of 2D embeddings as percentage of total eigenvalue summation for PCA,

MVU, and MVE. MVE consistently captures more of the variance of the data in 2D. The

maximum spectral fidelity score is shown in bold.

In Figure 2.5 we see 4000 images of handwritten twos from the MNIST dataset [LeCun

et al., 2001]. For MVU and MVE the connectivity matrix was constructed using b-matching

graph with b=4. Considering the MVE embedding more closely, we see that on the right

there are twos with looped bottoms, where on the left they look like the letter ‘z’, and at

the top they become squashed. The eigenspectrum of the data shows that PCA needs many

dimensions for embedding, and thus the top 2D projection shown here is less informative

than the embeddings from MVU and MVE. Similarly, MVU only captures 81% of the

variance in 2D while MVE captures almost 99% offering a more accurate 2D visualization.

In Figure 2.6 we show a coauthorship network of 379 scientists [Newman, 2006]. In

this experiment, we are given as input a score for how often each pair of authors publish

together. These scores define a sparse weighted graph that can be directly embedded with
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Figure 2.5: 4000 images of handwritten twos from the MNIST dataset embedded with

PCA, MVU, and MVE. Next to each method is the normalized eigenspectrum represented

as a pie chart, and the percent of the variance captured in 2D. With a spectral fidelity

score of 98.75%, MVE almost perfectly represents the original local distances using only 2

dimensions.
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MVE and MVU without using a kernel or connectivity algorithm. Similarly, PCA is also

performed directly on the sparse weighted graph. The eigenspectrum for PCA indicates

that the algorithm requires many dimensions to represent the data, and the corresponding

embedding clearly shows each node being puffed out into a high-dimensional space. The

MVU embedding captures a large amount of the variance of the data; however, MVU

appears to collapse many of the subgroups, such as the one on the far right, where the

MVE embedding represents this data better in 2D, capturing almost all of the variance

described by the original graph. An expanded plot of the MVE embedding with author

labels is shown in Figure 2.9.

Figures 2.7 and 2.8 show the results of visualizing the phylogenetic trees of 30 species

of salamanders and 56 species of crustaceans. The data consists of features which describe

the external anatomy of each species, as well the phylogenetic tree [Kemp et al., 2003].

We use a linear kernel function on the anatomy features as input, and the phylogenetic

tree as connectivity. It is clear that MVE-full provides the best visualization, preserving

98.7% of the variance in 2D. Figure 2.10 compares the k-nearest neighbors and b-matching

connectivity algorithms using MVU and MVE. The dataset consists of the top 200 search

terms for AOL [Sadetsky, 2006], and the features are the frequency of searches by over

100,000 users. The parameters k and b were both set to 4 for this experiment. We see that

when using kNN, certain search terms (such as “billing” in this example) become highly

connected hubs, causing MVU and MVE to crowd other search terms around these popular

nodes. The b-matching constraints however, force each node to have precisely b neighbors,

and thus yields a more regular conectivity and a smoother manifold of search terms. In

the MVE b-matching manifold, shopping search terms are placed in the bottom left, and

travel/flight related terms are placed in the upper left. In the other embeddings, these

natural groupings are harder to identify.

2.3.1 An Application to Spatiotemporal Data

We next consider an application of manifold learning to spatiotemporal data. On average

over 500,000 yellow taxi cab trips are recorded every day in New York City, capturing

the collective movement patterns of millions of individuals. This massive high-dimensional
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Figure 2.6: A coauthorship network of 379 scientists in network theory embedded by PCA,

MVU, and MVE. We see that PCA is inadequate for visualizing the structure of this

weighted graph, capturing only 5.9% of the variance in 2D. MVU captures a significant

amount of variance, but collapses and folds offshoots of the main network. MVE provides

the clearest visualization of this dataset, capturing the relationships in the data almost

perfectly in 2D.
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Figure 2.7: Embeddings of the phylogenetic tree for 30 species of salamanders.
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Figure 2.8: Embeddings of the phylogenetic tree for 56 species of crustaceans.

dataset necessitates tools such as dimensionality reduction and clustering algorithms in

order to better understand the flow patterns of an urban area. Each city block can be

described by a high-dimensional vector of counts representing how much flow there is to

and from all other city blocks for each hour of the week. From these high-dimensional vectors

we can apply Minimum Volume Embedding (MVE) [Shaw and Jebara, 2007] or spectral

clustering [Ng et al., 2001] to visualize the similarities between places. Furthermore, we can

identify the hubs and authorities of the flow network. Similar to how PageRank [Page et al.,

1999] finds the most authoritative places on the web, we can compute PlaceRank to find

authoritative places in the physical world. These algorithms applied to this spatiotemporal

dataset offer a unique perspective on the collective behavior of millions of people moving

around New York City.

The input dataset consists of the latitude, longitude, and timestamps for the start and

endpoints of 22.5 million New York taxi cab trips spanning 6 months between January and

June 2009. For our analysis we consider the 2000 busiest city blocks, each of which has

a minimum of 20 pickups or dropoffs per day. The flow data is represented as a directed
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adjacency matrix At ∈ Rn×n for each of the T = 168 hours in a week where each entry Ati,j

counts the number of trips from block i to block j in weekhour t. The similarity between

places can be expressed as a linear kernel: W =
∑T

t=1
1
2

(
AtAt> + At>At

)
, where two

places are considered similar if they have similar amounts of flow to other places at similar

times of the week. The flow data is publicly available at http://www.metablake.com/

data/nyflow/.

Given W, we can apply Minimum Volume Embedding (MVE) to learn low-dimensional

coordinates for each place yi ∈ Rd for i = 1, . . . , n which best capture the variance of

the original high-dimensional data where each place is described by D = 672, 000 flow

features corresponding to the in/out flow for all 2000 blocks stratified by the 168 weekhours

(D = 672, 000 = 2× 2000× 168). When applying MVE with d = 3, we find that over 99%

of the variance of these original features can be preserved. In Figure 2.11(a) we translate

these three coordinates to RGB to color code each city block, allowing us to visualize the

smooth modes of variation in the flow patterns of places in the city. We see a clear uptown

vs. downtown distinction (light green vs. pink), and major hubs such as Times Square

and Grand Central station (red) clearly standing out from the areas around them. Figures

2.11(b) and 2.11(c) show the result of applying spectral clustering to the Gram matrix W

to assign one of k = 12 labels to each place, thus visualizing the natural neighborhoods that

emerge out of the data. It is suprising that this map looks very similar to a neighborhood

map of New York City without including any explicit neighborhood information. Figures

2.11(d) and 2.11(e) show heat maps representing the hubs and authorities in the cab flow

network which were computed by finding the stationary vector of the total flow adjacency

matrix A =
∑T

t=1 At and its transpose using the power method. Places with high authority

values have inbound traffic from many other high authority places; similarly places with

high hub values have outbound traffic to many other hubs. The algorithms in Figure 2.3.1

provide a set of complementary views of this unique high-dimensional dataset, allowing us

to easily visualize patterns in the flow of taxis between New York City blocks.

http://www.metablake.com/data/nyflow/
http://www.metablake.com/data/nyflow/
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Figure 2.9: MVE embedding with author labels of the network science coauthorship data

shown in Figure 2.6. Note the clear major hubs in the network, such as Barabasi and

Newman.
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Figure 2.10: Embeddings of the top 200 AOL search terms. 40 of the search terms have been

labeled. This figure compares MVU and MVE with k-nearest neighbors and b-matching as

connectivity algorithms. Note that highly connected popular nodes can dominate the kNN

embedding causing a hub and spokes structure, where the b-matching constraints create

regular graphs and smoother manifolds.
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(a) MVE (b) Spectral Clustering

(c) Spectral Clustering (downtown) (d) Hubs (e) Authorities

Figure 2.11: Minimum Volume Embedding, Spectral Clustering and PlaceRank Hubs and

Authorities applied to NYC taxi data
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Chapter 3

Structure Preserving Embedding

To embed graphs which are unweighted and undirected, we need to formulate new objectives

and constraints. Because we are given only a binary adjacency matrix as input A ∈ Bn×n,

there are no distances to preserve and thus MVE is not suited for this task. To address

this setting we present structure preserving embedding (SPE). In Section 3.1, we formalize

the concept of preserving graph structure as opposed to local distances, and show how

structure preserving constraints can be defined as a set of linear inequalities for a variety of

different connectivity algorithms. In Section 3.2 we derive an objective function suited to

embedding unweighted undirected graphs which favors low-dimensional embeddings close

to the spectral embedding solution. The SPE algorithm is built using the SDP + SVD

framework, combining the low-dimensional objective with structure preserving constraints.

Section 3.3 describes the SPE algorithm in detail, and Section 3.4 shows experiments using

SPE to embed a variety of real and synthetic graphs.

3.1 Preserving Graph Topology with Linear Constraints

Our goal is to learn an embedding which preserves the topology of an unweighted undirected

input graph defined as an adjacency matrix A ∈ Bn×n. The embedding is represented by

a positive semidefinite Gram matrix K ∈ Rn×n whose spectral decomposition yields the

low-dimensional embedding . We propose the following definition for preserving graph

structure.
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Definition 7 Given a graph with adjacency matrix A, an embedding represented as a Gram

matrix K is structure preserving with respect to a connectivity algorithm G, if G(K) = A.

The connectivity algorithm G : Rn×n → Bn×n accepts as input a kernel matrix K, and

outputs an adjacency matrix Ã = G(K). Several popular choices for G include k-nearest

neighbors, epsilon-balls, maximum weight spanning trees, and maximum weight generalized

matching (also known as b-matching). The following sections show that for these choices of

G it is possible to enumerate linear constraints on K to ensure that G(K) = A.

3.1.1 Nearest Neighbor Graphs

Preserving the structure of graphs created by nearest neighbor algorithms requires enumer-

ating only a small set of linear constraints on K. The k-nearest neighbor algorithm (knn)

discussed in Section 2.1.5 connects each node to the k neighbors to which the node has

shortest distance, where k is an input parameter; therefore, we must enforce that for each

node the distances to all other nodes to which it is not connected must be larger than the

distance to the furthest connected neighbor of that node:

Dij > (1−Aij) max
m

(AimDim).

Recall Definition 6 which states that the distance between a pair of points (i, j) with respect

to a given positive semidefinite kernel matrix is a linear function of K: Dij = Kii +

Kjj − 2Kij . Similarly, preserving an ε-neighborhood graph can be achieved with the linear

constraints on K:

Dij(Aij −
1

2
) ≤ ε(Aij −

1

2
).

If for each node the connected distances are less than the unconnected distances (or some

ε), a greedy algorithm such as knn or ε-balls will find the exact same neighbors for that

node, and thus the connectivity computed from K is exactly A.

3.1.2 Maximum Weight Subgraphs

Unlike nearest neighbor algorithms which select edges greedily for each node, maximum

weight subgraph algorithms select edges from a weighted graph to produce a subgraph

which has total maximal weight [Fremuth-Paeger and Jungnickel, 1999].
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Definition 8 Given a kernel matrix K, define the weight between two points (i, j) as the

negated pairwise distance between them: Zij = −Dij = −Kii −Kjj + 2Kij.

For example, b-matching finds the maximum weight subgraph while also enforcing that

every node has a fixed degree bi for i = 1...n:

G(K) = argmax
Ã

∑
ij

ZijÃij

s.t.
∑
j

Ãij = bi, Ãij = Ãji, Ãii = 0, Ãij ∈ B.

Similarly, a maximum weight spanning tree algorithm finds the maximum weight subgraph

such that G(K) ∈ T , where T is the set of all tree graphs:

G(K) = argmax
Ã

∑
ij

ZijÃij s.t. Ã ∈ T .

Once again, linear constraints force K to preserve the structure of the input graph. Un-

fortunately, for such algorithms, we must avoid enumerating too many constraints of the

form:

∑
ij

ZijAij ≥
∑
ij

ZijÃij .

In order to avoid an exponential enumeration, the most violated inequalities can be in-

troduced sequentially using a cutting plane approach discussed in more detail in Section

3.3.

3.2 A Low-Rank Objective Function

Popular graph embedding methods such as spectral embedding and Laplacian eigenmaps

employ spectral decomposition of the adjacency matrix A, graph Laplacian L = D−A, or

normalized graph Laplacian L = I−D−
1
2 AD−

1
2 , where D = diag(A1) [Belkin and Niyogi,

2002, Koren, 2005]. Spectral embedding uses the leading d eigenvectors of A as coordinates,

where Laplacian eigenmaps uses the d eigenvectors of L with the smallest non-zero eigen-

values. Note that for regular graphs, embeddings computed from the graph Laplacian or

the adjacency matrix are equivalent. These techniques may produce embeddings with few
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coordinates by using the most dominant eigenvectors first; however, in practice the matrices

A or L are often not low rank, and many eigenvectors have non-zero eigenvalues.

Similar to these spectral methods, we would like to decompose K and use the top d

eigenvectors as coordinates. The linear structure-preserving constraints from the previous

section define a convex hull of possible matrices K. From this set we would like to choose

a K that is low-rank. Thus when we use the eigenvectors of K as coordinates for the

nodes, only low-dimensional coordinates will be necessary. Consider choosing the objective

function maxK�0 tr(KA). When optimized without structure preserving constraints, it

yields a K that agrees exactly with a low-rank version of spectral embedding, using the

leading eigenvector of A as the embedding. We have not yet introduced structure preserving

constraints, and are only limiting the trace norm of K to avoid the objective function from

growing unboundedly, and constraining K to be positive semidefinite. We claim that this

objective function attempts to recover a low-rank version of spectral embedding. The proof

of the following theorem can be found in 8.1.3.

Theorem 9 For any symmetric binary matrix A, such that Avi = λivi, v>i vj = δij, λi ≥

λi+1, Aii = 0 for i = 1...n, if λ1 > λi for i = 2...n, the objective function maxK�0 tr(KA)

subject to tr(K) ≤ 1 is optimized by setting K = v1v
>
1 . If there exists an i such that

λ1 = λi, the objective function will recover K =
∑

i|λi=λ1 βiviv
>
i where βi ≥ 0 for i = 1...n.

In practice, optimizing this objective function without constraints is equivalent to run-

ning spectral embedding and using the top eigenvector as the embedding coordinates, or if

there are ties for the top eigenvector using a conic combination of the top eigenvectors. In

the next section we will see that when structure preserving constraints are introduced, the

embedding will be corrected, typically requiring more than 1 dimension, but ensuring that

the structure of the input graph can be reconstructed directly from the embedding.

3.3 Structure Preserving Embedding Algorithm

Structure preserving embedding, like MVE, employs a semidefinite program (SDP) to learn

K, and then decomposes K with a spectral decomposition to find the embedding coordinates
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Ring Graph w/ noise C = 1000 C = 5 C ! 2 C = 0
(a) Ring Graph

Ring Graph w/ noise C = 1000 C = 5 C ! 2 C = 0
(b) w/ noise

Ring Graph w/ noise C = 1000 C = 5 C ! 2 C = 0
(c) C = 1000

Ring Graph w/ noise C = 1000 C = 5 C ! 2 C = 0
(d) C = 5

Ring Graph w/ noise C = 1000 C = 5 C ! 2 C = 0
(e) C = 2.5

Ring Graph w/ noise C = 1000 C = 5 C ! 2 C = 0
(f) C = 0

Figure 3.1: By adjusting the input paramter C for Algorithm 2, SPE is able to handle

noisy graphs. From left to right and top to bottom, we see a perfect ring graph embedded

by SPE, a noisy line added to the graph at random , and then the results of using SPE on

the noisy graph with C set to 1000, 5, 2.5, and 1. Note when C is small, SPE reproduces

the rank-1 spectral embedding.

yi ∈ Rd for i = 1, . . . , n. The SDP has constraints K = {K � 0, tr(K) ≤ 1,
∑

ij Kij = 0}

which limit the trace norm of K and ensure K is centered. Depending on the choice of con-

nectivity algorithm G, structure preserving constraints are introduced either initially (for

greedy methods such as k-nearest neighbors), or iteratively using a cutting-plane method

(for maximum weight subgraph methods). All constraints other than the semidefinite con-

straint are linear in K and share a global slack variable ξ. The convex objective function

of the SDP maxK∈K,ξ≥0 tr(KA) − Cξ ensures a low-rank K that will have few dominant

eigenvectors and thus d will typically be small. The additional term Cξ allows some vio-

lations of the structure preserving constraints, and the use of a finite C assures a solution

to the SDP is always possible. As shown with other cutting-plane techniques [Finley and

Joachims, 2008], the global slack variable ξ encourages fast convergence and helps avoid

numerical problems. Figure 3.1 illustrates the effects of varying C on a synthetic graph

with added noise.

When the connectivity algorithm G is k-nearest neighbors, the SDP does not need to be
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Algorithm 2 Structure Preserving Embedding for k-nearest neighbor constraints.

Input: A ∈ Bn×n, connectivity algorithm G, and parameter C

1: K ← {K � 0, tr(K) ≤ 1,
∑

ij Kij = 0}

2: Solve SDP K̃ = arg maxK∈K,ξ≥0 tr(KA)−Cξ s.t. Dij > (1−Aij) maxm(AimDim)− ξ

3: Perform SVD on K̂ to compute the n leading eigenvectors v̂i and corresponding eigen-

values λ̂i, and set yi ←
√
λ̂iv̂i for i = 1, . . . , n

4: return y1, . . . ,yn

iterated. Algorithm 2 outlines the two-step algorithm. When the connectivity algorithm G

is a maximum weight subgraph method (such as b-matching), we need to select constraints

from a possibly exponentially large set of the form:

tr(ZA)− tr(ZÃ) ≥ 4(Ã,A)− ξ ∀Ã ∈ G

where 4(Ã,A) = 1
n2

∑
ij |Ãij − Aij |, and Ã ∈ G states that Ã is in the family of graphs

formed by a connectivity algorithm G, such as b-matchings or trees. Fundamentally this

constraint is enforcing that the true embedding solution (represented here as Z which is a

linear function of K) produces a higher weight match with the input graph than with any

other graphs by some margin 4(Ã,A). We select and add these cutting-plane constraints

sequentially, first running the optimization without any constraints, (yielding the rank-1

spectral embedding solution), and then adding the most violated constraint and running

the optimization again. We can find the most violated constraint at each iteration by

computing the adjacency matrix Ã that maximizes tr(Z̃Ã) s.t. Ã ∈ G using a maximum

weight subgraph method, where Z̃ is computed from K̃, the learned kernel matrix from the

previous iteration. Once we have Ã we can introduce the constraint

(tr(ZA)− tr(ZÃ)) ≥ 4(Ã,A)− ξ.

The algorithm converges when

|tr(Z̃Ã)− tr(Z̃A)| ≤ κ,

where κ is an input parameter. Algorithm 3 outlines the steps of SPE with cutting plane

constraints.
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Algorithm 3 Structure Preserving Embedding with cutting-plane constraints

Input: A ∈ Bn×n, connectivity algorithm G, and parameters C, κ

1: K ← {K � 0, tr(K) ≤ 1,
∑

ij Kij = 0}

2: repeat

3: K̃← argmaxK∈K,ξ≥0 tr(KA)− Cξ {Found via SDP}

4: Z̃← 2K̃− diag(K̃)1> − 1diag(K̃)>

5: Ã← argmaxA tr(Z̃A) s.t. Ã ∈ G {Find biggest violator}

6: if |tr(Z̃Ã)− tr(Z̃A)| ≥ κ then

7: add constraint tr(ZA)− tr(ZÃ) > 4(Ã,A)− ξ

8: end if

9: until |tr(Z̃Ã)− tr(Z̃A)| ≤ κ

10: Perform SVD on K̂ to compute the n leading eigenvectors v̂i and corresponding eigen-

values λ̂i, and set yi ←
√
λ̂iv̂i for i = 1, . . . , n

11: return y1, . . . ,yn

The complexity of the semidefinite program is O(n3 + C3) where C denotes the num-

ber of constraints. For k-nearest neighbor graphs there are many constraints, C scales

with the number of edges in the input graph; however, in practice a large number of these

constraints are inactive, and therefore a working set method is effective. For maximum

weight subgraphs, we add constraints iteratively, and therefore only a small set of cutting

plane constraints need to be enforced. It has been shown that cutting plane algorithms

with quadratic objectives and linear constraints converge in polynomial time [Finley and

Joachims, 2008]; unfortunately, these guarantees do not immediately apply to our semidefi-

nite program; however, cutting plane algorithms have been successfully deployed in settings

beyond structured prediction and quadratic programming [Sontag and Jaakkola, 2008]. We

have been able to run SPE on graphs with approximately 1000 nodes and 10000 edges. SPE

is implemented in MATLAB, and uses CSDP and SDP-LR as the underlying SDP solvers

for the greedy and iterative versions respectively [Burer and Monteiro, 2003]. The SDP-LR

solver is a natural fit for our low-rank objective, recasting the optimization over K ∈ Rn×n

as an optimization over R ∈ Rn×d where K = R>R and d < N .
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Figure 3.2: Classical graphs embedded with spectral embedding (top row a-d), and embed-

ded with SPE w/ kNN (bottom row e-h). Eigenspectra are shown to the right. SPE finds

a small number of dimensions that highlight many of the symmetries of these graphs.

3.4 SPE Experiments

We validate SPE by comparing it to purely spectral methods for visualizing a variety of

synthetic and real-world datasets. Spectral methods often find many dominant eigenvec-

tors, and thus the top 2D projection hides many meaningful coordinates which indicate

the structure of the input graph. Figure 3.2 shows a variety of classical graphs visualized

by SPE and spectral embedding. The corresponding eigenspectrum is shown next to each

embedding. We see that the SPE embeddings are compact and visually informative. In

Figure 3.3 we apply SPE to visualizing molecules. The physical 3D embedding of each

molecule is shown on the left. The goal of the embedding algorithms is to embed the data

in 2D using only the connectivity information of the molecule (which atoms are bonded

together). SPE is able to find coordinates for the atoms which more clearly resemble the

true physical structure of the molecule. Figures 3.2 and Figure 3.3 were created using SPE

with k-nearest neighbor constraints. Figure 3.4 shows a visualization of the links between

981 political blogs [Adamic and Glance, 2005]. Because of the scale-free degree distribution

of links between these websites, Laplacian eigenmaps finds many possible dimensions, and
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Figure 3.3: Two comparisons of molecule embeddings (top row and bottom). The SPE

w/kNN embedding (right) more closely resembles the true physical embedding of the

molecule (left), despite being given only connectivity information.

creates a high-dimensional hubs-and-spokes embedding, requiring nodes with high-degree

to have neighbors very far away. Many of the dimensions found by spectral embedding

are redundant; SPE is able to accurately represent the structure of this network using only

2 dimensions (as indicated by the eigenspectrum below each embedding). Also next to

each eigenspectrum is the percent error from reconstructing the adjacency matrix using

only 2 dimensions, where error is defined as the Hamming distance between the adjacency

matrix reconstructed from the low-dimensional embedding, and the original adjacency ma-

trix: 4(Ã,A) = 1
n2

∑
ij |Ãij − Aij |. The SPE embedding was created using b-matching

constraints.
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(a) Normalized Laplacian

2.971%

(b) Spectral Embedding
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(c) SPE

Figure 3.4: The link structure of 981 political blogs. Conservative are labeled red, and liberal

blue. Also shown is the % error of the adjacency matrix created from the 2D embedding, and

the resulting eigenspectrum from each method. Not shown here is un-normalized Laplacian

eigenmaps, whose embedding is similar to the normalized case and reconstruction error is

55.8%. Note that SPE is able to achieve the lowest error rate, representing the data using

only 2 dimensions.
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Chapter 4

Dimensionality Reduction with

Structure Preserving Constraints

We have shown that MVE maximizes the spectral fidelity of a low-dimensional embedding,

preserving a set of local distances while driving variance into the top d dimensions. Like

other manifold learning methods for dimensionality reduction, MVE unfolds a graph built

from reliable pairwise relationships in the data. During the unfolding of this graph, distances

between connected nodes are constrained; however, distances between unconnected nodes

are free to vary, and thus a graph built from the embedding might no longer match the

graph built from the original data. Consider the toy problem illustrated in Figure 4.1. All

distances along edges are preserved, but MVU (or similarly MVE) has collapsed pairs of

points in such a way that they are now closer than the original neighbors of those points.

By modifying the MVE algorithm to include the structure preserving constraints de-

veloped for SPE, we can constrain the embeddings to preserve topology as well as local

distances. Combining the distance preserving constraints from MVE with the k-nearest

neighbor constraints from SPE yields the following new set of constraints for MVE+SP:

K =


∀K ∈ RN×N

∣∣∣∣∣∣∣∣∣∣∣∣

K � 0∑
ijKij = 0

Dij = Wii +Wjj −Wij −Wji ∀i,j s.t. Aij = 1

Dij > (1−Aij) maxm(AimDim) ∀i,j


. (4.1)
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(a) Original Barbell Graph
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(b) Embedded with MVU
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(c) Embedded with MVE+SP

Figure 4.1: The “barbell graph” (left) is a toy example which illustrates a common problem

with unfolding-based methods for dimensionality reduction. In certain cases, unfolding can

collapse parts of the graph on top of itself. We see that the diamond in the middle gets

collapsed to a single point by MVU (middle). Adding graph topology preserving constraints

(right) prevents the diamond from collapsing. Note MVE produces a similar embedding to

MVU in this example.

Algorithm 4 Minimum Volume Embedding w/ Structure Preserving Constraints

Input: a Gram matrix W ∈ Rn×n, sparse connectivity A ∈ Bn×n, and parameters d, β, κ.

1: Initialize K←W

2: K ← {K � 0,
∑

ijKij = 0}

3: Add constraints to K : {Dij = Wii +Wjj − 2Wij ∀i,j s.t. Aij = 1}

4: Add constraints to K : {Dij > (1−Aij) maxm(AimDim)− ξ ∀i,j}

5: repeat

6: Solve for the eigenvectors v1, . . . ,vn and eigenvalues and λ1 ≥ λ2 ≥ . . . ≥ λn of K

using an SVD.

7: B← β
d∑
i=1

viv
>
i −

n∑
i=1

viv
>
i

8: K← K̂

9: K̂← argmaxK∈K tr(KB) {Found via SDP}

10: until ‖K− K̂‖ ≤ κ

11: Perform SVD on K̂ to compute the d leading eigenvectors v̂i and corresponding eigen-

values λ̂i, and set yi ←
√
λ̂iv̂i for i = 1, . . . , d

12: return y1, . . . ,yd
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The steps of MVE+SP are shown in Algorithm 4. Similarly, it is possible to iterate

MVE+SP, enforcing cutting plane constraints to preserve the graph structure corresponding

to a maximum weight subgraph method. In the next Section we demonstrate that without

explicitly preserving graph topology, many dimensionality reduction algorithms will alter

the local topology of each point, despite preserving local distances, and thus produce less

accurate embeddings.

4.1 MVE+SP Experiments

The tendency for manifold-learning algorithms to collapse parts of the manifold is evident

with real-world data as well as synthetic examples (as shown earlier in Figure 4.1). Preserv-

ing a k-nearest neighbor graph during dimensionality reduction means a nearest-neighbor

classifier is guaranteed to perform equally well using the low-dimensional embedding as with

the original high-dimensional dataset. Without explicitly preserving graph topology, many

unsupervised dimensionality reduction algorithms will drastically alter local neighborhoods

of each point, despite preserving all local distances, and thus these methods will perform

poorly when used for classification. Table 4.1 shows the improvement of MVE+SP over

other methods in terms of classification accuracy using a 1-nearest neighbor classifier on a

variety of 2D embeddings.

For each UCI dataset in Table 4.1, we sampled 120 points from the two largest classes,

and embedded the data in 2D using KPCA, MVU, MVE, and MVE+SP. After embed-

ding we measured the resulting performance of a 1NN classifier on the low-dimensional

embedding. Cross-validation was used to find the optimal value of k for each algorithm

(except KPCA) and dataset, where k specifies the number of neighbors used to build a

graph with kNN from the input data. The data was split 60/20/20 into training/cross-

validation/testing groups, and Table 4.1 shows the results of averaging 50 folds. The All-

Dimension column on the right indicates the performance of a 1NN classifier on the original

data using all features. MVE+SP performs better than all other low-dimensional meth-

ods, and despite using only 2 features per datapoint, yields higher accuracy than using all

of the original features for the datasets Ionosphere, Ecoli, and OptDigits. In these cases,
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KPCA MVU MVE MVE+SP All-Dimensions

Ion. 0.660± 0.101 0.850± 0.062 0.812± 0.077 0.871± 0.065 0.788± 0.085

Cars 0.661± 0.075 0.701± 0.110 0.716± 0.082 0.781± 0.073 0.793± 0.083

Derm. 0.588± 0.089 0.636± 0.081 0.648± 0.094 0.663± 0.096 0.763± 0.080

Ecoli 0.949± 0.036 0.956± 0.040 0.948± 0.038 0.960± 0.039 0.956± 0.034

Wine 0.680± 0.088 0.685± 0.090 0.683± 0.090 0.697± 0.079 0.715± 0.079

4 vs. 9 0.944± 0.043 0.992± 0.016 0.996± 0.013 0.998± 0.010 0.986± 0.025

Table 4.1: Average classification accuracy and standard deviation of a 1-nearest neighbor

classifier on UCI datasets: Ionosphere, Cars, Dermatology, Ecoli, Wine, and OptDigits 4

vs 9. MVE+SP has higher accuracy than other low-dimensional methods and also beats

All-Dimensions on Ionosphere, Ecoli, and OptDigits. Other class pairs for OptDigits are

not shown since all methods achieved near 100% accuracy.

MVE+SP finds coordinates which capture the key modes of variation in the data, disre-

garding noisy dimensions that reduce accuracy when using all input features. It is clear

from this experiment that manifold-collapsing is an unfortunate consequence when reducing

dimensionality, even when using algorithms which are not graph-based such as KPCA. Only

by explicitly preserving graph topology during dimensionality reduction can we guarantee

that we preserve an input graph exactly, not just its local properties.

MVE+SP is an unsupervised dimensionality reduction method and thus is not intended

to compete with supervised techniques such as linear discriminant analysis (LDA) or large

margin nearest neighbors (LMNN) [R. Fisher, 1936, Weinberger and Saul, 2009]. However,

it is clear from the experiments above that using dimensionality reduction algorithms as

a pre-processing step before subsequent classification tasks, a common setup, can reduce

the performance of a classifier. MVE+SP, however, is capturing a more accurate low-

dimensional embedding of the data and is maintaining and sometimes helping classification

rates. Preserving local distances and global topology while aggressively unfolding a graph
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built from the data appears to address the deficiencies of other techniques.
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Chapter 5

Fast Solvers for Large-Scale Graph

Embedding

In this section, we present a low-rank approximation to the original SPE algorithm, imple-

mented using a fast custom solver based on projected stochastic gradient descent, which

allows SPE to scale to larger networks.

5.1 Algorithm

Given a network of n nodes represented as a graph with adjacency matrix A ∈ Bn×n, SPE

finds an embedding L ∈ Rd×n such that d is small and running a connectivity algorithm

such as k-nearest neighbors on L returns A. As first proposed, SPE learns a matrix K

via a semidefinite program (SDP) and then decomposes K = L>L by performing singular

value decomposition. In contrast, we propose optimizing L directly. Although for d < N ,

this problem is now non-convex, because of the stochastic nature of the optimizer we have

found the algorithm does not suffer from local minima in practice.

SPE for greedy nearest-neighbor constraints solves the following SDP:

max
K∈K

tr(KA)

Dij > (1−Aij) max
m

(AimDim) ∀i,j

where Dij = Kii +Kjj − 2Kij and K = {K � 0, tr(K) ≤ 1,
∑

ijKij = 0}. The constraints
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require the embedding of each node to be more distant from its non-neighbors than its

neighbors. Let S = {E1,E2, ...Em} be the set of all triplet constraints, where each El is a

constraint matrix corresponding to a triplet (i, j, k) such that Aij = 1 and Aik = 0. This set

of all triplets clearly subsumes the distance constraints above, and allows each individual

constraint to be written as tr(ElK) > 0 where tr(ElK) = Kjj − 2Kij + 2Kik − Kkk.

Temporarily dropping the centering and scaling constraints, we can now formulate the SDP

above as maximizing the following objective function over L:

f(L) = ρtr(L>LA)−
∑
l∈S

max(tr(ElL
>L), 0).

Note that we have introduced a Lagrange multiplier ρ as an additional parameter which

trades off between the loss term and regularization term. We will maximize f(L) via pro-

jected stochastic subgradient decent. Define the subgradient in terms of a single randomly

chosen triplet:

∇(f(L),El) =


2L(ρA−El) if tr(ElL

>L) > 0

0 otherwise

and for each randomly chosen triplet constraint El, if tr(ElL
>L) > 0 then update L ac-

cording to:

Lt+1 = Lt + η∇(f(Lt),El)

where the step-size η = 1√
t

[Nedic and Bertsekas, 2001]. After each step, we can use

projection to enforce that tr(L>L) ≤ 1 and
∑

ij(L
>L)ij = 0, by subtracting the mean from

L and dividing each entry of L by its Frobenius norm. L is initialized either randomly or

from the solution of spectral embedding or Laplacian eigenmaps [Belkin and Niyogi, 2002].

Algorithm 5 shows the steps of Large-scale Structure Preserving Embedding.

In practice, instead of optimizing over a single randomly chosen triplet at each iteration,

we find it useful to randomly select a node at each iteration, and use the gradient computed

from all impostor triplets, since it is only for these triplets that a gradient step is taken. As

shown in Figure 5.1 an impostor is a node which violates the neighborhood of another node.

For each impostor triplet {i, j, k}, i is the randomly chosen target node, j is the furthest

connected neighbor of i and k is a node unconnected to i but currently closer than j.
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Algorithm 5 Large-Scale Structure Preserving Embedding

Input: A ∈ Bn×n, dimensionality d, regularizer parameter ρ, and maximum iterations T

1: Initialize L0 ← rand(d, n)

(or optionally initialize to spectral embedding or Laplacian eigenmaps solution)

2: t← 0

3: repeat

4: ηt ← 1√
t+1

5: i← rand(1 . . . n)

6: j = arg minj ‖ Li − Lj ‖2 ∀j s.t. A(i, j) = 1

7: E← zeros(n× n), Ejj ← 1, Eij ← −1, Eji ← −1

8: for all k s.t. ‖ Li − Lk ‖2 < ‖ Li − Lj ‖2 AND A(i, k) = 0 do

9: Eik ← 1, Eki ← 1, Ekk ← −1

10: end for

11: ∇t ← 2Lt (ρA−E)

12: Lt+1 ← Lt + ηt∇t

13: {Subtract out mean}

14: Lt+1 = Lt+1

‖Lt+1‖2 {Project on to unit sphere}

15: t← t+ 1

16: until t ≥ T

17: return L
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Figure 5.1: The red nodes are identified as impostors to the neighborhood of the center

node (dark blue), because the impostors (red) are closer than the furthest of the connected

nodes (light blue).

5.2 Experiments

In Figure 5.2 we see two embeddings of the Enron email network [Leskovec et al., 2005].

Each of the 36692 nodes in the network represents a person, and there exist edges between

each pair of people who have communicated via email. Because of the high degree of many

of the nodes in the network, it is likely impossible to find a 2D embedding which preserves

topology exactly – meaning all nodes have zero impostors. The network may require a

higher dimensional embedding. However, we see that the 2D visualization produced by

SPE has far fewer impostors than that produced by spectral embedding, and thus provides

a more accurate visualization.
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(a) Spectral embedding (b) SPE-SGD
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Figure 5.2: The Enron email network embedded into 2D by spectral embedding (a), and

SPE-SGD (b). The plot on the right shows how many nodes have fewer than x impostors.

We see that embedding this network into 2D yields many impostors; however, on aver-

age, nodes in the SPE embedding have many fewer impostors than nodes in the spectral

embedding.
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Chapter 6

Learning a Metric from a Network

Many real-world networks are described by both connectivity information and features for

every node. In this chapter, we present structure preserving metric learning (SPML), an

algorithm for learning a Mahalanobis distance metric from a network features such that the

learned distances are tied to the inherent connectivity structure of the network. Like struc-

ture preserving embedding, SPML learns a metric which is structure preserving, meaning a

connectivity algorithm such as k-nearest neighbors will yield the correct connectivity when

applied using the distances from the learned metric. We show a variety of synthetic and

real-world experiments where SPML predicts link patterns from node features more accu-

rately than standard techniques. We further demonstrate a method for optimizing SPML

based on stochastic gradient descent which removes the running-time dependency on the

size of the network and allows the method to easily scale to networks of thousands of nodes

and millions of edges.

6.1 Introduction

The proliferation of social networks on the web has spurred many significant advances in

modeling networks Airoldi et al. [2008], Chang and Blei [2010], Leskovec and Horvitz [2008],

Leskovec et al. [2005], Namata et al. [2010], Newman [2003], Yang et al. [2009]. However,

while many efforts have been focused on modeling networks as weighted or unweighted

graphs Newman [2004], or constructing features from links to describe the nodes in a net-
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work Middendorf et al. [2004], Xu and Li [2006], few techniques have focused on real-world

network data which consists of both node features in addition to connectivity information.

Many social networks are of this form; on services such as Facebook, Twitter, or LinkedIn,

there are profiles which describe each person, as well as the connections they make. The

relationship between a node’s features and connections is often not explicit. For example,

people “friend” each other on Facebook for a variety of reasons: perhaps they share similar

parts of their profile such as their school or major, or perhaps they have completely dif-

ferent profiles. We want to learn the relationship between profiles and links from massive

social networks such that we can better predict who is likely to connect. To model this re-

lationship, one could simply model each link independently, where one simply learns what

characteristics of two profiles imply a possible link. However, this approach completely

ignores the structural characteristics of the links in the network. We posit that modeling

independent links is insufficient, and in order to better model these networks one must

account for the inherent topology of the network as well as the interactions between the

features of nodes. We thus propose structure preserving metric learning (SPML), a method

for learning a distance metric between nodes that preserves the structural network behavior

seen in data.

6.1.1 Background

Metric learning algorithms have been successfully applied to many supervised learning tasks

such as classification [Chechik et al., 2010, Weinberger and Saul, 2009]. These methods first

build a k-nearest neighbors (kNN) graph from training data with a fixed k, and then learn a

Mahalanobis distance metric which tries to keep connected points with similar labels close

while pushing away class impostors, pairs of points which are connected but of different

classes. Fundamentally, these supervised methods aim to learn a distance metric such that

applying a connectivity algorithm (for instance, k-nearest neighbors) under the metric will

produce a graph where no point is connected to others with different class labels. In practice,

these constraints are enforced with slack. Once the metric is learned, the class label for an

unseen datapoint can be predicted by the majority vote of nearby points under the learned

metric.
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Unfortunately, these metric learning algorithms are not easily applied when we are given

a network as input instead of class labels for each point. Under this new regime, we want

to learn a metric such that points connected in the network are close and points which

are unconnected are more distant. Intuitively, certain features or groups of features should

influence how nodes connect, and thus it should be possible to learn a mapping from features

to connectivity such that the mapping respects the underlying topological structure of the

network. Like previous metric learning methods, SPML learns a metric which reconciles the

input features with some auxiliary information such as class labels. In this case, instead of

pushing away class impostors, SPML pushes away graph impostors, points which are close

in terms of distance but which should remain unconnected in order to preserve the topology

of the network. Thus SPML learns a metric where the learned distances are inherently tied

to the original input connectivity.

Preserving graph topology is possible by enforcing simple linear constraints on distances

between nodes Shaw and Jebara [2009]. By adapting the constraints from structure pre-

serving embedding, we formulate simple linear structure preserving constraints for metric

learning that enforce that neighbors of each node are closer than all others. Furthermore,

we adapt these constraints for an online setting similar to PEGASOS Shalev-Shwartz et al.

[To appear] and OASIS Chechik et al. [2010], such that we can apply SPML to large net-

works by optimizing with stochastic gradient descent (SGD) [Robbins and Monro, 1951,

Bottou, 2003].

6.2 Structure preserving metric learning

Given as input an adjacency matrix A ∈ Bn×n, and node features X ∈ Rd×n, structure

preserving metric learning (SPML) learns a Mahalanobis distance metric parameterized by

a positive semidefinite (PSD) matrix M ∈ Rd×d , where M � 0. The distance between two

points under the metric is defined as

DM(xi,xj) = (xi − xj)
>M(xi − xj).

When the metric is the identity M = Id, DM(xi,xj) represents the squared Euclidean

distance between the i’th and j’th points. Learning M is equivalent to learning a linear
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scaling on the input features LX where M = L>L and L ∈ Rd×d. SPML learns an M

which is structure preserving, as defined in Definition 10. Given a connectivity algorithm

G, SPML learns a metric such that applying G to the input data using the learned metric

produces the input adjacency matrix exactly.1 Possible choices for G include maximum

weight b-matching, k-nearest neighbors, ε-neighborhoods, or maximum weight spanning

tree.

Definition 10 Given a graph with adjacency matrix A, a distance metric parametrized

by M ∈ Rd×d is structure preserving with respect to a connectivity algorithm G, if

G(X,M) = A.

6.2.1 Preserving graph topology with linear constraints

To preserve graph topology, we use the same linear constraints as structure preserving

embedding (SPE) Shaw and Jebara [2009], but apply them to M, which parameterizes the

distances between points. A useful tool for defining distances as linear constraints on M is

the transformation

DM(xi,xj) = x>i Mxi + x>j Mxj − x>i Mxj − x>j Mxi, (6.1)

which allows linear constraints on the distances to be written as linear constraints on the

M matrix. For different connectivity schemes below, we present linear constraints which

enforce graph structure to be preserved.

Nearest neighbor graphs The k-nearest neighbor algorithm (k-nn) connects each node

to the k neighbors to which the node has shortest distance, where k is an input parameter;

therefore, setting k to the true degree for each node, the distances to all disconnected nodes

must be larger than the distance to the farthest connected neighbor:

DM(xi,xj) > (1−Aij) max
l

(AilDM(xi,xl)),∀i, j.

1In the remainder of the paper, we interchangeably use G to denote the set of feasible graphs and the

algorithm used to find the optimal connectivity within the set of feasible graphs.
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Similarly, preserving an ε-neighborhood graph obeys linear constraints on M: DM(xi,xj) ≤

ε, ∀{i, j|Aij = 1}, and DM(xi,xj) ≥ ε, ∀{i, j|Aij = 0}. If for each node the connected dis-

tances are less than the unconnected distances (or some ε), i.e., the metric obeys the above

linear constraints, Definition 10 is satisfied, and thus the connectivity computed under the

learned metric M is exactly A.

Maximum weight subgraphs Unlike nearest neighbor algorithms, which select edges

greedily for each node, maximum weight subgraph algorithms select edges from a weighted

graph to produce a subgraph which has total maximal weight [Fremuth-Paeger and Jung-

nickel, 1999]. Given a metric parametrized by M, let the weight between two points (i, j) be

the negated pairwise distance between them: Zij = −DM(xi,xj) = −(xi−xj)
>M(xi−xj).

For example, maximum weight b-matching finds the maximum weight subgraph while also

enforcing that every node has a fixed degree bi for each i’th node. The formulation for

maximum weight spanning tree is similar. Unfortunately, like for SPE, preserving structure

for these algorithms requires enforcing many linear constraints of the form: tr(Z>A) ≥

tr(Z>Ã), ∀Ã ∈ G. This reveals one critical difference between structure preserving con-

straints of these algorithms and those of nearest-neighbor graphs: there are exponentially

many linear constraints. To avoid an exponential enumeration, the most violated inequal-

ities can be introduced sequentially using a cutting-plane approach as shown in the next

section.

6.2.2 Algorithm derivation

By combining the linear constraints from the previous section with a Frobenius norm (de-

noted || · ||F) regularizer on M and regularization parameter ρ, we have a simple semidefinite

program (SDP) which learns an M that is structure preserving and has minimal complexity.

Algorithm 6 summarizes the naive implementation of SPML when the connectivity algo-

rithm is k-nearest neighbors, which is optimized by a standard SDP solver. For maximum

weight subgraph connectivity (e.g., b-matching), we use a cutting-plane method Joachims

et al. [2009], iteratively finding the worst violating constraint and adding it to a working-

set. We can find the most violated constraint at each iteration by computing the adjacency
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matrix Ã that maximizes tr(Z̃Ã) s.t. Ã ∈ G, which can be done using various methods

Fremuth-Paeger and Jungnickel [1999], Huang and Jebara [2007, 2011]. Each added con-

straint enforces that the total weight along the edges of the true graph is greater than total

weight of any other graph by some margin. Algorithm 7 shows the steps for SPML with

cutting-plane constraints.

Algorithm 6 Structure preserving metric learning with nearest neighbor constraints

Input: A ∈ Bn×n, X ∈ Rd×n, and parameter ρ

1: K = {M � 0, DM(xi,xj) ≥ (1−Aij) maxl(AilDM(xi,xl)) + 1− ξ ∀i,j}

2: M̃← argminM∈K
ρ
2 ||M||

2
F + ξ {Found via SDP}

3: return M̃

Algorithm 7 Structure preserving metric learning with cutting-plane constraints

Input: A ∈ Bn×n, X ∈ Rd×n, connectivity algorithm G, and parameters ρ, κ

1: K = {M � 0}

2: repeat

3: M̃← argminM∈K
ρ
2 ||M||

2
F + ξ {Found via SDP}

4: Z̃← 2X>M̃X− diag(X>M̃X)1> − 1diag(X>M̃X)>

5: Ã← argmaxÃ tr(Z̃>Ã) s.t. Ã ∈ G {Find worst violator}

6: if |tr(Z̃>Ã)− tr(Z̃>A)| ≥ κ then

7: add constraint to K : tr(Z>A)− tr(Z>Ã) > 1− ξ

8: end if

9: until |tr(Z̃>Ã)− tr(Z̃>A)| ≤ κ

10: return M̃

Unfortunately, for networks larger than a few hundred nodes or for high-dimensional

features, these SDPs do not scale adequately. The complexity of the SDP scales with

the number of variables and constraints, yielding a worst-case time of O(d3 + C3) where

C = O(n2). By temporarily omitting the PSD requirement on M, Algorithm 7 becomes

equivalent to a one-class structural support vector machine (structural SVM). Stochastic

SVM algorithms have been recently developed that have convergence time with no de-

pendence on input size Shalev-Shwartz et al. [2007]. Therefore, we develop a large-scale
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algorithm based on projected stochastic subgradient descent. The proposed adaptation re-

moves the dependence on n, where each iteration of the algorithm is O(d2), sampling one

random constraint at a time. We can rewrite the optimization as unconstrained over an

objective function with a hinge-loss on the structure preserving constraints:

f(M) =
ρ

2
||M||2F −

1

|S|
∑

(i,j,k)∈S

max(DM(xi,xj)−DM(xi,xk) + 1, 0).

Here the constraints have been written in terms of hinge-losses over triplets, each consisting

of a node, its neighbor and its non-neighbor. The set of all such triplets is S = {(i, j, k)|Aij =

1, Aik = 0}. Using the distance transformation in Equation 6.1, each of the |S| constraints

can be written using a sparse matrix E(i,j,k), where

E
(i,j,k)
jj = 1, E

(i,j,k)
ik = 1, , E

(i,j,k)
ki = 1, , E

(i,j,k)
ij = −1, E

(i,j,k)
ji = −1, , E

(i,j,k)
kk = −1,

and whose other entries are zero. By construction, sparse matrix multiplication of E(i,j,k)

indexes the proper elements related to nodes i, j, and k, such that tr(E(i,j,k)X>MX) is

equal to DM(xi,xj)−DM(xi,xk). The subgradient of f at M is then

∇f = ρM +
1

|S|
∑

(i,j,k)∈S+

XE(i,j,k)X>,

where S+ = {(i, j, k)|DM(xi,xj) − DM(xi,xk) + 1 > 0}. If for all triplets this quantity

is negative, there exists no unconnected neighbor of a point which is closer than a point’s

farthest connected neighbor – precisely the structure preserving criterion for nearest neigh-

bor algorithms. In practice, we optimize this objective function via stochastic subgradient

descent. We sample a batch of triplets, replacing S in the objective function with a random

subset of S of size B. If a true metric is necessary, we intermittently project M onto the

PSD cone. We use a learning rate of ηt ← 1
ρt similar to stochastic SVMs [Shalev-Shwartz

et al., 2007] . Full details about constructing the constraint matrices and minimizing the

objective are shown in Algorithm 8.

6.2.3 Analysis

In this section, we provide analysis for the scaling behavior of SPML using SGD. A primary

insight is that, since Algorithm 8 regularizes with the L2 norm and penalizes with hinge-loss,
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Algorithm 8 Structure preserving metric learning with nearest neighbor constraints and

optimization with projected stochastic subgradient descent

Input: A ∈ Bn×n, X ∈ Rd×n, and parameters ρ, T,B

1: M1 ← Id

2: for t from 1 to T − 1 do

3: ηt ← 1
ρt

4: E← 0n,n

5: for b from 1 to B do

6: (i, j, k)← Sample random triplet from S = {(i, j, k) | Aij = 1, Aik = 0}

7: if DMt(xi,xj)−DMt(xi,xk) + 1 > 0 then

8: Ejj ← Ejj + 1, Eik ← Eik + 1, Eki ← Eki + 1

9: Eij ← Eij − 1, Eji ← Eji − 1, Ekk ← Ekk − 1

10: end if

11: end for

12: ∇t ← XEX> + ρMt

13: Mt+1 ←Mt − ηt∇t

14: Optional: Mt+1 ← [Mt+1]
+ {Project onto the PSD cone}

15: end for

16: return MT
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omitting the positive semidefinite requirement for M and vectorizing M makes the algorithm

equivalent to a one-class, linear support vector machine with O(n3) input vectors. Thus, the

stochastic optimization is an instance of the PEGAGOS algorithm Shalev-Shwartz et al.

[2007], albeit a cleverly constructed one. The running time of PEGASOS does not depend

on the input size, and instead only scales with the dimensionality, the desired optimization

error on the objective function ε and the regularization parameter ρ. The optimization

error ε is defined as the difference between the found objective value and the true optimal

objective value, f(M̃)−minM f(M).

Theorem 11 Assume that the data is bounded such that max(i,j,k)∈S ||XE(i,j,k)X>||2F ≤ R,

and R ≥ 1. During Algorithm 8 at iteration T , with ρ ≤ 1/4, and batch-size B = 1, let

M̄ = 1
T

∑T
t=1 Mt be the average M so far. Then, with probability of at least 1− δ,

f(M̄)−min
M

f(M) ≤ 84R2 ln(T/δ)

ρT
.

Consequently, the number of iterations necessary to reach an optimization error of ε is

Õ( 1
ρε).

Proof The theorem is proven by realizing that Algorithm 8 is an instance of PEGASOS

without a projection step on one-class data, since Corollary 2 in Shalev-Shwartz et al. [To

appear] proves this same bound for traditional SVM input, also without a projection step.

The input to the SVM is the set of all d×d matrices XE(i,j,k)X> for each triplet (i, j, k) ∈ S.

Note that the large size of set S plays no role in the running time; each iteration requires

O(d2) work. Assuming the node feature vectors are of bounded norm, the radius of the input

data R is constant with respect to n, since each is constructed using the feature vectors

of three nodes. In practice, as in the PEGASOS algorithm, we propose using MT as the

output instead of the average, as doing so performs better on real data, but an averaging

version is easily implemented by storing a running sum of M matrices and dividing by T

before returning.

Figure 6.2(b) shows the training and testing prediction performance on one of the exper-

iments described in detail in Section 6.3 as stochastic SPML converges. The area under the
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receiver operator characteristic (ROC) curve is measured, which is related to the structure

preserving hinge loss, and the plot clearly shows fast convergence and quickly diminishing

returns at higher iteration counts.

6.2.4 Variations

While stochastic SPML does not scale with the size of the input graph, evaluating distances

using a full M matrix requires O(d2) work. Thus, for high-dimensional data, one approach

is to use principal component analysis or random projections to first reduce dimensionality.

It has been shown that n points can be mapped into a space of dimensionality O(log n/ε2)

such that distances are distorted by no more than a factor of (1± ε) Dasgupta and Gupta

[2003], Johnson and Lindenstrauss [1984]. Another approach is to to limit M to be nonzero

only along the diagonal. Diagonalizing M reduces the amount of work to O(d).

If modeling cross-feature interactions is necessary, another option for reducing the com-

putational cost is to perform SPML using a low-rank factorization of M. In this case, all

references to M can be replaced with L>L, thus inducing a true metric without projection.

The updated gradient with respect to L is simply

∇t ← 2XEX>L> + ρLt.

Using a factorization also allows replacing the regularizer with the Frobenius norm of the

L matrix, which is equivalent to the nuclear norm of M [Rennie and Srebro, 2005]. Unfor-

tunately, using this formulation causes the objective to no longer be convex, but seems to

work well in practice. Finally, when predicting links of new nodes, SPML does not know

how many connections to predict. To address this uncertainty, we propose a variant to

SPML called degree distributional metric learning (DDML), which simultaneously learns

the metric as well as parameters for the connectivity algorithm. Details on DDML and

low-rank SPML are provided in Sections 6.4 and 6.5 respectively.

6.3 Experiments

We present a variety of synthetic and real-world experiments that elucidate the behavior of

SPML. First we show how SPML performs on a simple synthetic dataset that is easily visu-
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alized in two dimensions and which we believe mimics many traditional network datasets.

We then demonstrate favorable performance for SPML in predicting links of the Wikipedia

document network and the Facebook social network.

6.3.1 Synthetic example

To better understand the behavior of SPML, consider the following synthetic experiment.

First n points are sampled from a d-dimensional uniform distribution. These vectors repre-

sent the true features for the n nodes X ∈ Rd×n. We then compute an adjacency matrix by

performing a minimum-distance b-matching on X. Next, the true features are scrambled by

applying a random linear transformation: RX where R ∈ Rd×d. Given RX and A, the goal

of SPML is to learn a metric M that undoes the linear scrambling, so that when b-matching

is applied to RX using the learned distance metric, it produces the input adjacency matrix.

Figure 6.1 illustrates the results of the above experiment for d = 2, n = 50, and b = 4.

In Figure 6.1(a), we see an embedding of the graph using the true features for each node

as coordinates, and connectivity generated from b-matching. In Figure 6.1(b), the random

linear transformation has been applied. We posit that many real-world datasets resemble

plot 6.1(b), with seemingly incongruous feature and connectivity information. If we apply

b-matching to the scrambled data, it produces connections shown in Figure 6.1(c). Finally,

by learning M via SPML (Algorithm 7) and computing L by Cholesky decomposition of

M, we can recover features LRX (Figure 6.1(d)) that respect the structure in the target

adjacency matrix and thus more closely resemble the true features used to generate the

data.

6.3.2 Link prediction

We compare SPML to a variety of methods for predicting links from node features: Eu-

clidean distances, relational topic models (RTM) , and traditional support vector machines

(SVM). A simple baseline for comparison is how well the Euclidean distance metric per-

forms at ranking possible connections. Relational topic models learn a link probability

function in addition to latent topic mixtures describing each node Chang and Blei [2010].

For the SVM, we construct training examples consisting of the pairwise differences between
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(a) True network (b) Scrambled features & true connectivity

(c) Scrambled features & implied connec-

tivity

(d) Recovered features & true connectivity

Figure 6.1: In this synthetic experiment, SPML finds a metric that inverts the random

transformation applied to the features (b), such that under the learned metric (d) the

implied connectivity is identical to the original connectivity (a) as opposed to inducing a

different connectivity (c).
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node features. Training examples are labeled positive if there exists an edge between the

corresponding pair of nodes, and negative if there is no edge. Because there are potentially

O(n2) possible examples, and the graphs are sparse, we subsample the negative examples

so that we include a randomly chosen equal number of negative examples as positive edges.

Without subsampling, the SVM is unable to run our experiments in a reasonable time. We

use the SVMPerf implementation for our SVM Joachims [2006], and the authors’ code for

RTM Chang and Blei [2010].

Interestingly, an SVM with these inputs can be interpreted as an instance of SPML using

diagonal M and the ε-neighborhood connectivity algorithm, which connects points based

on their distance, completely independently of the rest of the graph structure. We thus

expect to see better performance using SPML in cases where the structure is important.

The RTM approach is appropriate for data that consists of counts, and is a generative model

which recovers a set of topics in addition to link predictions. Despite the generality of the

model, RTM does not seem to perform as well as discriminative methods in our experiments,

especially in the Facebook experiment where the data is quite different from bag-of-words

features. For SPML, we run the stochastic algorithm with batch size 10. We skip the PSD

projection step, since these experiments are only concerned with prediction, and obtaining

a true metric is not necessary. SPML is implemented in MATLAB and requires only a few

minutes to converge for each of the experiments below.

Wikipedia articles We apply SPML to predicting links on Wikipedia pages. Imagine

the scenario where an author writes a new Wikipedia entry and then, by analyzing the word

counts on the newly written page, an algorithm is able to suggest which other Wikipedia

pages it should link to. We first create a few subnetworks consisting of all the pages

in a given category, their bag-of-words features, and their connections. We choose three

categories: “graph theory topics”, “philosophy concepts”, and “search engines”. We use a

word dictionary of common words with stop-words removed. For each network, we split the

data 80/20 for training and testing, where 20% of the nodes are held out for evaluation.

On the remaining 80% we cross-validate (five folds) over the parameters for each algorithm

(RTM, SVM, SPML), and train a model using the best-scoring regularization parameter.
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(a) Average ROC curve for Wikipedia Experiment: “graph theory topics”
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(b) Convergence behavior of SPML optimized via SGD on Facebook

Data

Figure 6.2: Average ROC performance for the “graph theory topics” Wikipedia experiment

(top) shows a strong lift for SPML over competing methods. We see that SPML converges

quickly with diminishing returns after many iterations (bottom).
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For SPML, we use the diagonal variant of Algorithm 8, since the high-dimensionality of the

input features reduces the benefit of cross-feature weights. On the held-out nodes, we task

each algorithm to rank the unknown edges according to distance (or another measure of link

likelihood), and compare the accuracy of the rankings using receiver operator characteristic

(ROC) curves. Table 6.1 lists the statistics of each category and the average area under the

curve (AUC) over three train/test splits for each algorithm. A ROC curve for the “graph

theory” category is shown in Figure 6.2(a). For “graph theory” and “search engines”,

SPML provides a distinct advantage over other methods, while no method has a particular

advantage on “philosophy concepts”. One possible explanation for why the SVM is unable

to gain performance over Euclidean distance is that the wide range of degrees for nodes in

these graphs makes it difficult to find a single threshold that separates edges from non-edges.

In particular, the “search engines” category had an extremely skewed degree distribution,

and is where SPML shows the greatest improvement.

We also apply SPML to a larger subset of the Wikipedia network, by collecting word

counts and connections of 100,000 articles in a breadth-first search rooted at the article

“Philosophy”. The experimental setup is the same as previous experiments, but we use a

0.5% sample of the nodes for testing. The final training algorithm ran for 50,000 iterations,

taking approximately ten minutes on a desktop computer. The resulting AUC on the edges

of the held-out nodes is listed in Table 6.1 as the “Philosophy Crawl” dataset. The SVM

and RTM do not scale to data of this size, whereas SPML offers a clear advantage over

using Euclidean distance for predicting links.

Facebook social networks Applying SPML to social network data allows us to more

accurately predict who will become friends based on the profile information for those users.

We use Facebook data [Traud et al., 2011], where we have a small subset of anonymized

profile information for each student of a university, as well as friendship information. The

profile information consists of gender, status (meaning student, staff, or faculty), dorm,

major, and class year. Similarly to the Wikipedia experiments in the previous section,

we compared SPML to Euclidean, RTM, and SVM. For SPML, we learn a full M via

Algorithm 8. For each person, we construct a sparse feature vector where there is one
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Table 6.1: Wikipedia (top), Facebook (bottom) dataset and experiment information. Shown

below: number of nodes n, number of edges m, dimensionality d, and AUC performance.

n m d Euclidean RTM SVM SPML

Graph Theory 223 917 6695 0.624 0.591 0.610 0.722

Philosophy Concepts 303 921 6695 0.705 0.571 0.708 0.707

Search Engines 269 332 6695 0.662 0.487 0.611 0.742

Philosophy Crawl 100,000 4,489,166 7702 0.547 – – 0.601

Harvard 1937 48,980 193 0.764 0.562 0.839 0.854

MIT 2128 95,322 173 0.702 0.494 0.784 0.801

Stanford 3014 147,516 270 0.718 0.532 0.784 0.808

Columbia 3050 118,838 251 0.717 0.519 0.796 0.818

feature corresponding to every possible dorm, major, etc. for each feature type. We select

only people who have indicated all five feature types on their profiles. Table 6.1 shows

details of the Facebook networks for the four schools we consider: Harvard, MIT, Stanford,

and Columbia. We perform a separate experiment for each school, randomly splitting the

data 80/20 for training and testing. We use the training data to select parameters via five-

fold cross validation, and train a model. The AUC performance on the held-out edges are

also listed in Table 6.1. It is clear from the quantitative results that structural information

is contributing to higher performance for SPML as compared to other methods.

By looking at the weight of the diagonal values in M normalized by the total weight, we

can determine which feature differences are most important for determining connectivity.

Figure 6.3 shows the normalized weights averaged by feature types for Facebook data. Here

we see the feature types compared across four schools. For all schools except MIT, the

graduating year is most important for determining distance between people. For MIT,

dorms are the most important features. A possible explanation for this difference is that

MIT is the only school in the list that makes it easy for students to stay in a residence for

all four years of their undergraduate program, and therefore which dorm one lives in may
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Figure 6.3: Comparison of Facebook social networks from four schools in terms of feature

importance computed from the learned structure preserving metric.

affect more strongly the people they connect to.

6.4 Degree Distributional Metric Learning

While SPML using k-nearest neighbors learns a structure preserving metric, one of its

limitations is in predicting full graphs in an out-of-sample setting. On the training data,

the degree of each node is known, so the connectivity algorithm connects the exact number

of neighbors as necessary to reconstruct the input graph. On a new set of nodes, however,

the target degree is unknown. One method to address this is to learn a non-stationary degree

preference function over node features that relates the features of a node to its target degree.

As one possible variant to structure preserving metric learning (SPML), degree dis-

tributional metric learning (DDML) simultaneously learns a metric while also learning a

parameterized, non-stationary degree preference function used to compute the connectiv-

ity of nodes. This extension can be understood as SPML with an adaptive connectivity

algorithm, rather than the default k-nearest neighbors.

The connectivity algorithm uses a degree preference function g, which takes a node’s

feature vector x and a target degree k, and is parameterized by matrix S ∈ Rd×n. The
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score is then computed via

g(k|x; S) =

k∑
k′=1

x>sk′ .

The score of a graph A is then the sum of all edge distances and the degree preference

functions for each node

F (A|X; M,S) =
∑
ij

AijDM(xi,xj)−
∑
i

g

∑
j

Aij |xi; S

 .

The objective for DDML is otherwise analogous to that of SPML:

f(M) =
ρ

2
||M||2 −

∑
Ã∈Bn×n

max(F (A|X; M,S)− F (Ã|X; M,S) + ∆(A, Ã), 0),

where ∆ denotes Hamming distance. This objective is solvable via the cutting-plane style

optimization by iteratively finding the worst-violating Ã and adding it to a constraint set.

For concave degree preference functions, the worst-violated constraint can be found by

converting the problem to a maximum weight b-matching on an augmented graph [Huang

and Jebara, 2009], thus an additional concavity constraint on g is added to the optimization.

A similar approach to the stochastic SPML algorithm is also possible to perform DDML

much faster, and, by parameterizing the degree preference function only up to a fixed

maximum degree, also eliminates the dependence of the running time on the size of the

graph. As in stochastic SPML, a DDML objective can be written in terms of triplets

of nodes i, neighbor j, disconnected node triplets k. Let A(i,j,k) denote the false graph

produced by toggling the edge between nodes i and j and the edge between nodes i and k.

The DDML objective using the triplet-style constraints is

fdeg(M) =
ρ

2
||M||2 − 1

|S|
∑

(i,j,k)∈S

max(F (A|X; M,S)− F (A(i,j,k)|X; M,S) + 1, 0).

The difference in scores decomposes into four scalar values, since the only differences chang-

ing A to A(i,j,k) are that A(i,j,k) is missing edge (i, j), gains edge (i, k), the degree of node

j decreases by one and the degree of node k increases by one. Thus, the difference can be

computed by evaluating the distance from node i to node j, the distance from node i to

node k, the change in degree preference score from the degree of node j to its degree minus
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one, and the change in degree preference from the degree of node k from its degree plus

one. Let the degrees of all nodes be stored in array c, such that the degree of node j is c[j].

The difference is then computable as

F (A|X; M,S)−F (A(i,j,k)|X; M,S) = DM(xi,xj)−DM(xi,xk) + x>j s(c[j]−1) − x>k s(c[k]+1).

This formulation eliminates the need for the expensive separation oracle and allows stochas-

tic optimization. The gradient update for the metric parameter M is the same as in SPML.

The gradient with respect to s(c[j]−1) is xj and the gradient with respect to s(c[k]+1) is

(−xk).

To retain coherence between the different degree functions, we add a requirement that

the resulting degree preference function for each node is concave. One way to enforce

concavity is by stochastically sampling a node i per iteration, and projecting S such that

entries in x>i S are in decreasing order.

The pseudocode for stochastic DDML is in Algorithm 9.

6.4.1 Experiments

Using DDML on the same Wikipedia experiments from Table 6.1, we score comparable

AUC to SPML. On “graph theory”, “philosophy concepts”, and “search engines”, DDML

scores AUCs of 0.691, 0.746, and 0.725. While these scores are quite close to those of SPML,

the DDML variant provides a tradeoff between running time and model richness. In the

case of the Wikipedia category “philosophy concepts”, DDML even provides a performance

improvement, which may indicate a clear signal in degree preference learnable from the

word counts.

6.5 Low-rank structure preserving metric learning

In this section, we present the low-rank variant of SPML first introduced in Section 2.4.

The low-rank variant computes all distances using a factorization L ∈ Rr×d of M = L>L,

eliminating the need to compute a d × d matrix. Existing metric learning algorithms use

similar low-rank factorizations Weinberger and Saul [2009]. Low-rank SPML has an addi-

tional parameter r, which limits the rank of M by explicitly determining the size of L. The
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Algorithm 9 Stochastic degree distributional metric learning

Input: A ∈ Bn×n, X ∈ Rd×n, and parameters ρ, T,B

1: M1 ← Id, S1 ← 0d,n

2: Compute degree array c s.t. c[i] =
∑

j Aij , ∀i

3: for t from 1 to T − 1 do

4: ηt ← 1
ρt

5: E← 0n,n

6: S′ ← ρS

7: for b from 1 to B do

8: (i, j, k)← Sample random triplet from S = {(i, j, k) | Aij = 1, Aik = 0}

9: if F (A|X; Mt,St)− F (A(i,j,k)|X; Mt,St) + 1 > 0 then

10: Ejj ← Ejj + 1, Eik ← Eik + 1, Eki ← Eki + 1

11: Eij ← Eij − 1, Eji ← Eji − 1, Ekk ← Ekk − 1

12: s′c[j] ← s′c[j] + xj

13: s′c[k] ← s′c[k] − xk

14: end if

15: end for

16: ∇t ← XEX> + ρMt

17: Mt+1 ←Mt − ηt∇t

18: St+1 ← St − ηtS′

19: i← Sample random index

20: Project S so x>i S is monotonically nonincreasing

21: Optional: Mt+1 ← [Mt+1]
+ {Project onto the PSD cone}

22: end for

23: return MT
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Figure 6.4: ROC curve for various algorithms on the “philosophy concepts” category.

optional projection onto the PSD cone is no longer necessary because L>L always forms a

valid metric by construction. This optimization not convex, but initial experimental results

seem to show that the stochastic optimization avoids local minima in practice. Algorithm

10 details the steps of low-rank SPML.

We run low-rank SPML on the Harvard Facebook data, fixing ρ = 1e − 5 and varying

the rank parameter r. The ROC curves and AUC scores using training data for different

ranks are in Figure 6.5. With greater rank, SPML has more flexibility to construct a

metric that fits the training data, but lower rank provides a tradeoff between efficiency and

reconstruction quality. It is clear from this dataset that a rank of r = 5 is sufficient to

represent the structure preserving metric, while reducing the number of parameters from

d2 =37,249 to d×r = 965. Training fewer parameters requires less time, and allows low-rank

SPML to handle large-scale networks with many nodes and high-dimensional features.

6.6 Discussion

We have demonstrated a fast convex optimization for learning a distance metric from a

network such that the distances are tied to the network’s inherent topological structure.

The structure preserving distance metrics introduced in this article allow us to better model

and predict the behavior of large real-world networks. Furthermore, these metrics are
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Algorithm 10 Low-rank structure preserving metric learning with nearest neighbor con-

straints and optimization with projected stochastic subgradient descent

Input: A ∈ Bn×n, X ∈ Rd×n, and parameters ρ, T,B, r

1: L1 ← rand(r, d) {Initialize L}

2: for t from 1 to T − 1 do

3: ηt ← 1
ρt

4: E← 0n,n

5: for b from 1 to B do

6: (i, j, k)← Sample random triplet from S = {(i, j, k) | Aij = 1, Aik = 0}

7: if ||Ltxi − Ltxj ||2 − ||Ltxi − Ltxk||2 + 1 > 0 then

8: Ejj ← Ejj + 1, Eik ← Eik + 1, Eki ← Eki + 1

9: Eij ← Eij − 1, Eji ← Eji − 1, Ekk ← Ekk − 1

10: end if

11: end for

12: ∇t ← 2XEX>L>t + ρLt

13: Lt+1 ← Lt − ηt∇t

14: end for

15: return LT
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Figure 6.5: Performance of low-rank SPML on training data varying the rank parameter,

run on a single Facebook school. The results imply that a significantly smaller rank than

the true feature dimensionality is sufficient to fit the training data.
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as lightweight as independent pairwise models, but capture structural dependency from

features making them easy to use in practice for link-prediction.
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Chapter 7

Conclusion

This thesis proposes a set of novel graph embedding and dimensionality reduction algo-

rithms: MVE, SPE, and SPML. By building on the foundation of spectral methods such

as PCA, but relaxing the constraint of preserving all pairwise distances to only preserv-

ing local distances and graph topology, these algorithms are able to better capture the

inherent structure in datasets which have non-linear variations. In this thesis we highlight

two important aspects of graph embedding: creating low-dimensional embeddings, and pre-

serving graph structure. We present a variety of objectives for enforcing low-dimensional

embeddings, and schemes for preserving different kinds of graph structure using linear con-

straints. We further demonstrate methods for efficiently implementing these algorithms

using semidefinite programs and stochastic gradient descent, and show the utility of these

graph embedding algorithms for applications to visualization, dimensionality reduction, and

modeling problems. The key contributions of this thesis are the following:

• The “spectral fidelity” measure was derived and shown to be a natural objective for

dimensionality reduction

• Minimum Volume Embedding (MVE) was developed as a tool for nonlinear dimension-

ality reduction and weighted graph embedding. MVE was shown to provide a natural

extension to PCA for recovering nonlinear manifolds and capturing more variance in

fewer dimensions than many state-of-the-art algorithms on a variety of synthetic and

real-world experiments.
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• Structure Preserving Embedding (SPE) was developed for embedding unweighted

undirected graphs, and applied to visualizing many synthetic and real-world graphs

and networks.

• The general concept of preserving graph topology using linear constraints was devel-

oped and applied to graph embedding (SPE), dimensionality reduction (MVE+SP),

and metric learning (SPML).

• Structure Preserving Metric Learning (SPML) was developed and shown to produce

favorable results in a variety of link prediction tasks.

• A fast optimization scheme for SPE and SPML was proposed based on projected

stochastic subgradient descent that allows these methods to scale to graphs with

hundreds of thousands of nodes.

There exist several possible directions for future work. One obvious extension of SPML

is to make the algorithm work in a truly online fashion. It should be possible to exploit

SPML’s lack of dependence on graph size to learn a structure preserving metric on massive-

scale graphs, e.g., the entire Wikipedia site. Since each iteration requires only sampling a

random node, following a link to a neighbor, and sampling a non-neighbor, this can all be

done in an online fashion as the algorithm crawls a network such as the worldwide web,

learning a metric that may gradually change over time. Another particular area of interest is

incorporating structure preserving constraints into collaborative filtering algorithms. Many

collaborative filtering algorithms such as maximum margin matrix factorization (MMMF)

[Rennie and Srebro, 2005] seek to find low-rank representations of users and items that

can be used for recommendation. These matrix factorizations can be viewed as a non-

symmetric case of many of the spectral decompositions used in this thesis. Preserving local

distances and graph topology allows us to better capture non-linearities in the data when

using PCA; perhaps a similar technique can be applied to an SVD where we are embedding

two distinct sets of objects. Another interesting area to explore is the connections between

large-scale SPE and spring embedding techniques. Where SPE is a convex optimization

that exactly preserves graph topology and therefore exists in a different realm than many

popular spring embedding techniques for visualizing graphs, the large-scale version of SPE
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which uses stochastic gradient descent is approximate and no longer convex, and in fact the

gradient update rule is similar to some existing spring embedding methods [Battista et al.,

1999].
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Chapter 8

Appendix

8.1 Proofs

8.1.1 Maximizing over Arbitrary Orthonormal Vectors

Theorem 4 For any K ∈ Rn×n such that K � 0, Kvi = λivi, v>i vj = δij , λi ≥ λi+1, and

αi ≥ αi+1 for i = 1...n:

n∑
i=1

αiλi = max

u1, . . . ,un

u>i uj = δij

tr

(
K

n∑
i=1

αiuiu
>
i

)
.

Proof First manipulate the left-hand side algebraically, maintaining the additional con-

straints:

n∑
i=1

αiλi =
n∑
i=1

tr(αiλiviv
>
i )

=

n∑
i=1

tr(αiKviv
>
i )

= tr

(
K

n∑
i=1

αiviv
>
i

)
.

Then rewrite the quantity on the right-hand side as the product of two eigendecompositions

of positive semidefinite matrices K = VΛV> and Z =
n∑
i=1

αiuiu
>
i = UΩU> where Ω =
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diag(α1 . . . αn):

tr

(
K

n∑
i=1

αiuiu
>
i

)
= tr (KZ) = tr

(
VΛV>UΩU>

)
.

Instead of optimizing over an arbitrary set of vectors, we can equivalently maximize U over

the set of orthonormal matrices O, also known as the Stiefel manifold. Since tr(MN) =

tr(NM), we can rewrite the above as:

max

u1, . . . ,un

u>i uj = δij

tr

(
K

n∑
i=1

αiuiu
>
i

)
= max

U∈O
tr
(
VΛV>UΩU>

)

= max
U∈O

tr((U>V)Λ(U>V)>Ω)

= max
R∈O

tr(RΛR>Ω).

This optimization over R is known as a homogenous quadratically constrained quadratic

program (QQP) [Anstreicher and Wolkowicz, 2001] and has the solution R∗ as the product

of the diagonalizers of Λ and Ω. Because both Λ and Ω are already diagonal matrices,

R∗ must be a permutation matrix, and if the diagonal entries of Λ and Ω are arranged

in decreasing order, then R∗ = I and the optimal eigenvectors of Z must satisfy U = V.

Thus, maximizing g over arbitrary orthonormal vectors

max

u1, . . . ,un

u>i uj = δij

tr

(
K

n∑
i=1

αiuiu
>
i

)

is equivalent to setting those vectors to

tr

(
K

n∑
i=1

αiviv
>
i

)
s.t. K ∈ K, Kvi = λivi, v>i vj = δij , λi ≥ λi+1, αi ≥ αi+1, ∀i, j

under the more rigid set of constraints. In other words, maximization over arbitrary or-

thonormal vectors is equivalent to setting them to the eigenvectors of the matrix K.
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8.1.2 Objective Function of MVE Monotonically Increases

Theorem 5 The iterative MVE algorithm is guaranteed to monotonically increase the ob-

jective function Fβ(K, d) = β
∑d

i=1 λi−
∑n

i=1 λi where K ∈ Rn×n,K � 0,Kvi = λivi, v
>
i vj =

δij , λi ≥ λi+1 and β ≥ 0.

Proof For any K ∈ K, recall that Fβ(K, d) =

max

v1, . . . ,vn

v>i vj = δij

tr

[
K

(
β

d∑
i=1

viv
>
i −

n∑
i=1

viv
>
i

)]
.

Define the function:

g(K,v1, . . . ,vn) = tr

[
K

(
β

d∑
i=1

viv
>
i −

n∑
i=1

viv
>
i

)]
.

Thus, Fβ(K, d) is the maximization of g(K,v1, . . . ,vn) over eigenvectors. Assume we have

a current setting of K denoted Kt and a current setting of the eigenvectors vt1, . . . ,v
t
n. In

general, we must have:

Fβ(Kt, d) ≥ g(Kt,v t
1 , . . . ,v

t
n).

After Step 5 of the MVE algorithm we obtain:

Fβ(Kt, d) = g(Kt,v t+1
1 , . . . ,v t+1

n ).

After Step 7 of the MVE algorithm, the SDP ensures that:

g(Kt+1,v t+1
1 , . . . ,v t+1

n ) ≥ g(Kt,v t+1
1 , . . . ,v t+1

n ).

Since Fβ(K, d) is a maximization of g(K,v1, . . . ,vn),

Fβ(Kt+1, d) ≥ g(Kt+1,v t+1
1 , . . . ,v t+1

n )

≥ g(Kt,v t+1
1 , . . . ,v t+1

n )

≥ Fβ(Kt, d)

showing that Fβ(Kt, d) ≤ Fβ(Kt+1, d) after each loop of the MVE algorithm and Fβ(K, d)

increases monotonically.
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8.1.3 Low-rank Objective Function for SPE

Theorem 9 For any symmetric binary matrix A, such that Avi = λivi, v>i vj = δij, λi ≥

λi+1, Aii = 0 for i = 1...n, if λ1 > λi for i = 2...n, the objective function maxK�0 tr(KA)

subject to tr(K) ≤ 1 is optimized by setting K = v1v
>
1 . If there exists an i such that

λ1 = λi, the objective function will recover K =
∑

i|λi=λ1 βiviv
>
i where βi ≥ 0 for i = 1...n.

Proof Rewrite the matrices in terms of the eigendecomposition of the positive semidefinite

matrix K = UΛU> and the symmetric matrix A = VΛ̃V>, and insert into the objective

function:

max
K�0

tr(KA) = max
Λ∈L,U∈O

tr(UΛU>VΛ̃V>)

where L is the set of positive semidefinite diagonal matrices and O is the set of orthonormal

matrices also known as the Stiefel manifold. By Von Neumann’s lemma, we have:

max
U∈O

tr(UΛU>VΛ̃V>) = λ>λ̃.

Here λ is a vector containing the diagonal entries of Λ in decreasing order λ1 ≥ λ2 ≥

. . . ≥ λn and λ̃ is a vector containing the diagonal entries of Λ̃ in decreasing order, i.e.

λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n. Therefore, the full optimization problem can be rewritten in terms of

an optimization over non-negative eigenvalues

max
K�0,tr(K)≤1

tr(KA) = max
λ≥0,λ>1≤1

λ>λ̃

where we also have to satisfy λ>1 ≤ 1 since tr(K) ≤ 1. To maximize the objective function

λ>λ̃ simply set λ1 = 1 and the remaining λi = 0 for i = 2, . . . , n which produces the

maximum λ̃1, the top eigenvalue of A.

max
K�0,tr(K)≤1

tr(KA) = λ̃1.

Thus, the solution to the maximization problem over K must be K = v1v
>
1 (up to a scaling

factor) where v1 is the leading eigenvector of A. If there are ties in A for its top eigenvalues,

the weight of λ can be spread arbitrarily among the leading eigenvalues of A to maximize

λ>λ̃ and thus K is a conic combination of the outer products of the top eigenvectors of
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A. In this case when there are multiple top eigenvalues, K has rank at most equal to the

multiplicity of the top eigenvalue of A.
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Léon Bottou. Stochastic learning. In Advanced Lectures on Machine Learning, pages 146–

168, 2003.



BIBLIOGRAPHY 90

M. Bowling, A. Ghodsi, and D. Wilkinson. Action respecting embedding. ACM Interna-

tional Conference Proceeding Series, 119:65–72, 2005.

Stephen Boyd. Convex optimization of graph laplacian eigenvalues. In in International

Congress of Mathematicians, pages 1311–1319.

S. Burer and R. D. C. Monteiro. A nonlinear programming algorithm for solving semidefinite

programs via low-rank factorization. Mathematical Programming (series B), 95(2):329–

357, 2003.

J. Chang and D. Blei. Hierarchical relational models for document networks. Annals of

Applied Statistics, 4:124–150, 2010. doi: 10.1214/09-AOAS309.

G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning of image

similarity through ranking. J. Mach. Learn. Res., 11:1109–1135, March 2010.

F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, February 1997.

ISBN 0821803158.

T. Cox and M.Cox. Multidimensional Scaling. Chapman & Hall, 1994.

S. Dasgupta and A. Gupta. An elementary proof of a theorem of johnson and lindenstrauss.

Random Struct. Algorithms, 22:60–65, January 2003. ISSN 1042-9832. doi: 10.1002/rsa.

10073. URL http://portal.acm.org/citation.cfm?id=639790.639795.

T. Finley and T. Joachims. Training structural svms when exact inference is intractable.

In Proc. of 25th International Conference on Machine Learning, pages 304–311, 2008.

C. Fremuth-Paeger and D. Jungnickel. Balanced network flows, a unifying framework for

design and analysis of matching algorithms. Networks, 33(1):1–28, 1999.

M. X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:

1115–1145, 1995.

http://portal.acm.org/citation.cfm?id=639790.639795


BIBLIOGRAPHY 91

B. Huang and T. Jebara. Loopy belief propagation for bipartite maximum weight b-

matching. In Proceedings of the Eleventh International Conference on Artificial Intel-

ligence and Statistics, volume 2 of JMLR: W&CP, pages 195–202, 2007.

B. Huang and T. Jebara. Exact graph structure estimation with degree priors. In ICMLA,

pages 111–118, 2009.

B. Huang and T. Jebara. Fast b-matching via sufficient selection belief propagation. In Pro-

ceedings of the Fourteenth International Conference on Artificial Intelligence and Statis-

tics, 2011.

A. Javanmard and A. Montanari. Localization from incomplete noisy distance measure-

ments. March 2011.

T. Joachims. Training linear SVMs in linear time. In ACM SIG International Conference

On Knowledge Discovery and Data Mining (KDD), pages 217 – 226, 2006.

T. Joachims, T. Finley, and C. Yu. Cutting-plane training of structural svms. Machine

Learning, 77(1):27–59, 2009.

W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert space. Con-

temporary Mathematics, (26):189–206, 1984.

I. T. Jolliffe. Principal Components Analysis. Springer-Verlag, 1986.

C. C. Kemp, T. L. Griffiths, S. Stromsten, and J. B. Tenenbaum. Semi-supervised learning

with trees. In In Advances in Neural Information Processing Systems, page 2004. MIT

Press, 2003.

Jon Kleinberg and Michel X. Goemans. The lovasz theta function and a semidefinite pro-

gramming relaxation of vertex cover. SIAM Journal on Discrete Mathematics, 11:196–

204, 1995.

Yehuda Koren. Drawing graphs by eigenvectors: Theory and practice. Computers and

Mathematics with Applications, 49:2005, 2005.



BIBLIOGRAPHY 92

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-

ment recognition. In Intelligent Signal Processing, pages 306–351. IEEE Press, 2001.

J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging net-

work. ACM WWW, 2008. URL http://scholar.google.de/scholar.bib?q=info:

dvYmn_qj6NQJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=

citation&cd=0.

J. Leskovec, J Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking

diameters and possible explanations. In Proc. of the Eleventh ACM SIGKDD Interna-

tional Conference on Knowledge Discovery in Data Mining, 2005.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification

using string kernels. Journal of Machine Learning Research, 2:419–444, March 2002.

M. Middendorf, E. Ziv, C. Adams, J. Hom, R. Koytcheff, C. Levovitz, and G. Woods.

Discriminative topological features reveal biological network mechanisms. BMC Bioin-

formatics, 5:1471–2105, 2004.

G. Namata, H. Sharara, and L. Getoor. A survey of link mining tasks for analyzing noisy and

incomplete networks. In Link Mining: Models, Algorithms, and Applications. Springer,

2010.

Angelia Nedic and Dimitri P. Bertsekas. Incremental subgradient methods for nondifferen-

tiable optimization. SIAM J. on Optimization, 12:109–138, January 2001. ISSN 1052-

6234. doi: http://dx.doi.org/10.1137/S1052623499362111. URL http://dx.doi.org/

10.1137/S1052623499362111.

M. Newman. The structure and function of complex networks. SIAM REVIEW, 45:167–256,

2003.

M. Newman. Analysis of weighted networks. Phys. Rev. E, 70(5):056131, Nov 2004. doi:

10.1103/PhysRevE.70.056131.

M. Newman. Finding community structure in networks using the eigenvectors of matrices.

Arxiv preprint physics/0605087, 2006.

http://scholar.google.de/scholar.bib?q=info:dvYmn_qj6NQJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:dvYmn_qj6NQJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:dvYmn_qj6NQJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://dx.doi.org/10.1137/S1052623499362111
http://dx.doi.org/10.1137/S1052623499362111


BIBLIOGRAPHY 93

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In

Neural Information Processing Systems 14, 2001.

M. L. Overton and R. S. Womersley. Optimality conditions and duality theory for minimiz-

ing sums of the largest eigenvalues of symmetric matrices. Mathematical Programming,

62(1):321–357, 1993.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing

order to the web, 1999.

R. C. Prim. Shortest connection networks and some generalizations. Bell System Technology

Journal, 36:1389–1401, 1957.

R. Fisher. The use of multiple measurements in taxonomic problems. Annals Eugen., 7:

179–188, 1936.

J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative

prediction. In Proceedings of the Twenty-Second International Conference, volume 119

of ACM International Conference Proceeding Series, pages 713–719. ACM, 2005. ISBN

1-59593-180-5.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical

Statistics, 22:400–407, 1951.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.

Science, 290(5500):2323–2326, 2000.

G. Sadetsky. Aol search data mirrors, May 2006. URL http://www.gregsadetsky.com/

aol-data/.

B. Schölkopf, A. Smola, and K. Müller. Nonlinear component analysis as a kernel eigenvalue

problem. Neural Compuation, 10, 1998.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient

solver for svm. In Proceedings of the 24th International Conference on Machine Learning,

http://www.gregsadetsky.com/aol-data/
http://www.gregsadetsky.com/aol-data/


BIBLIOGRAPHY 94

ICML ’07, pages 807–814, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-793-

3. doi: http://doi.acm.org/10.1145/1273496.1273598. URL http://doi.acm.org/10.

1145/1273496.1273598.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-

gradient solver for svm. Mathematical Programming, To appear.

B. Shaw and T. Jebara. Minimum volume embedding. In Marina Meila and Xiaotong

Shen, editors, Proc. of the 11th International Conference on Artificial Intelligence and

Statistics, volume 2 of JMLR: W&CP, pages 460–467, March 2007.

B. Shaw and T. Jebara. Minimum Volume Embedding (MVE) Matlab Code.

http://www.metablake.com/mve, 2008.

B. Shaw and T. Jebara. Structure preserving embedding. In Proc. of the 26th International

Conference on Machine Learning, 2009.

B. Shaw and T. Jebara. Nonlinear dimensionality reduction and graph embedding. Journal

of Machine Learning Research (In submission), 2011a.

B. Shaw and T. Jebara. Visualizing social networks with structure preserving embedding.

Interdisciplinary Workshop on Information and Decision in Social Networks, 2011b.

Amit Singer and Mihai Cucuringu. Uniqueness of low-rank matrix completion by rigidity

theory. CoRR, abs/0902.3846, 2009.

L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization of human

faces. J. Opt. Soc. Am. A, 4(3):519–524, 1987.

L. Song, A. Smola, K. Borgwardt, and A. Gretton. Colored maximum variance unfolding. In

J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information

Processing Systems, pages 1385–1392. MIT Press, Cambridge, MA, 2008.

D. Sontag and T. Jaakkola. New outer bounds on the marginal polytope. In J.C. Platt,

D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing

Systems 20, pages 1393–1400, 2008.

http://doi.acm.org/10.1145/1273496.1273598
http://doi.acm.org/10.1145/1273496.1273598


BIBLIOGRAPHY 95

Nathan Srebro. Learning with matrix factorizations. PhD Thesis, Massachusetts Institute

of Technology, 2004.

J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear

dimensionality reduction. Science, 290(5500):2319–2323, 2000.

A. Traud, P. Mucha, and M. Porter. Social structure of facebook networks. CoRR,

abs/1102.2166, 2011.

L.J.P van der Maaten and G.E. Hinton. Visualizing high-dimensional data using t-sne.

Journal of Machine Learning Research, 9:2579–2605, 2008.

K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor

classification. Journal of Machine Learning Research, 10:207–244, 2009. ISSN 1532-4435.

K. Weinberger, F. Sha, Q. Zhu, and L. Saul. Graph laplacian methods for large-scale

semidefinite programming, with an application to sensor localization. In B. Schölkopf,

J. Platt, and Thomas Hofmann, editors, Advances in Neural Information Processing

Systems 19. MIT Press, Cambridge, MA, 2007.

K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear di-

mensionality reduction. In Proceedings of the 21st International Conference on Machine

Learning, pages 839–846, Banff, Canada, 2004.

K. Q. Weinberger, B. D. Packer, and L. K. Saul. Nonlinear dimensionality reduction by

semidefinite programming and kernel matrix factorization. In Proc. of the of the 10th

International Workshop on Artificial Intelligence and Statistics, pages 381–388, 2005.

Christpher K.I. Williams. On a connection between kernel pca and metric multidimensional

scaling. In Advances in Neural Information Processing Systems 13, pages 675–681. MIT

Press, 2001.

J. Xu and Y. Li. Discovering disease-genes by topological features in human protein-

protein interaction network. Bioinformatics, 22(22):2800–2805, 2006. doi: 10.1093/

bioinformatics/btl467. URL http://bioinformatics.oxfordjournals.org/content/

22/22/2800.abstract.

http://bioinformatics.oxfordjournals.org/content/22/22/2800.abstract
http://bioinformatics.oxfordjournals.org/content/22/22/2800.abstract


BIBLIOGRAPHY 96

T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community detection: a

discriminative approach. In Proceedings of the 15th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, KDD ’09, pages 927–936, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-495-9. doi: http://doi.acm.org/10.1145/1557019.

1557120. URL http://doi.acm.org/10.1145/1557019.1557120.

J. Zhuang, I. W. Tsang, and S. C. H. Hoi. Simplenpkl: simple non-parametric kernel learn-

ing. In Proceedings of the 26th Annual International Conference on Machine Learning,

ICML ’09, New York, NY, USA, 2009. ACM.

http://doi.acm.org/10.1145/1557019.1557120

	1 Introduction
	1.1 Related Work
	1.1.1 Dimensionality Reduction
	1.1.2 Graph Embedding
	1.1.3 Optimization Techniques and Complexity
	1.1.4 Metric Learning

	1.2 Notation and Background

	2 Minimum Volume Embedding
	2.1 Fidelity and Objective Functions for Dimensionality Reduction
	2.1.1 PCA and MVU
	2.1.2 Fidelity
	2.1.3 Optimizing Spectral Functions
	2.1.4 Minimum Volume Embedding Algorithm
	2.1.5 Kernel Functions and Graphs

	2.2 Preserving Structure
	2.3 MVE Experiments
	2.3.1 An Application to Spatiotemporal Data


	3 Structure Preserving Embedding
	3.1 Preserving Graph Topology with Linear Constraints
	3.1.1 Nearest Neighbor Graphs
	3.1.2 Maximum Weight Subgraphs

	3.2 A Low-Rank Objective Function
	3.3 Structure Preserving Embedding Algorithm
	3.4 SPE Experiments

	4 Dimensionality Reduction with Structure Preserving Constraints
	4.1 MVE+SP Experiments

	5 Fast Solvers for Large-Scale Graph Embedding
	5.1 Algorithm
	5.2 Experiments

	6 Learning a Metric from a Network
	6.1 Introduction
	6.1.1 Background

	6.2 Structure preserving metric learning
	6.2.1 Preserving graph topology with linear constraints
	6.2.2 Algorithm derivation
	6.2.3 Analysis
	6.2.4 Variations

	6.3 Experiments
	6.3.1 Synthetic example
	6.3.2 Link prediction

	6.4 Degree Distributional Metric Learning
	6.4.1 Experiments

	6.5 Low-rank structure preserving metric learning
	6.6 Discussion

	7 Conclusion
	8 Appendix
	8.1 Proofs
	8.1.1 Maximizing over Arbitrary Orthonormal Vectors
	8.1.2 Objective Function of MVE Monotonically Increases
	8.1.3 Low-rank Objective Function for SPE


	Bibliography

