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ABSTRACT

Selected machine learning reductions

Anna Choromanska

Machine learning is a field of science aiming to extract knowledge from the data.

Optimization lies in the core of machine learning as many learning problems are

formulated as optimization problems, where the goal is to minimize/maximize an

objective function. More complex machine learning problems are then often solved

by reducing them to simpler sub-problems solvable by known optimization tech-

niques. This dissertation addresses two elements of the machine learning system

’pipeline’, designing efficient basic optimization tools tailored to solve specific learn-

ing problems, or in other words optimize a specific objective function, and creating

more elaborate learning tools with sub-blocks being essentially optimization solvers

equipped with such basic optimization tools. In the first part of this thesis we focus

on a very specific learning problem where the objective function, either convex or

non-convex, involves the minimization of the partition function, the normalizer of

a distribution, as is the case in conditional random fields (CRFs) or log-linear mod-



els. Our work proposes a tight quadratic bound on the partition function which

parameters are easily recovered by a simple algorithm that we propose. The bound

gives rise to the family of new optimization learning algorithms, based on bound

majorization (we developed batch, both full-rank and low-rank, and semi-stochastic

variants), with linear convergence rate that successfully compete with state-of-the-

art techniques (among them gradient descent methods, Newton and quasi-Newton

methods like L-BFGS, etc.). The only constraint we introduce is on the number

of classes which is assumed to be finite and enumerable. The bound majorization

method we develop is simultaneously the first reduction scheme discussed in this

thesis, where throughout this thesis by ’reduction’ we understand the learning ap-

proach or algorithmic technique converting a complex machine learning problem

into a set of simpler problems (that can be as small as a single problem).

Secondly, we focus on developing two more sophisticated machine learning tools,

for solving harder learning problems. The tools that we develop are built from basic

optimization sub-blocks tailored to solve simpler optimization sub-problems. We

first focus on the multi class classification problem where the number of classes is

very large. We reduce this problem to a set of simpler sub-problems that we solve

using basic optimization methods performing additive update on the parameter

vector. Secondly we address the problem of learning data representation when the

data is unlabeled for any classification task. We reduce this problem to a set of



simpler sub-problems that we solve using basic optimization methods, however this

time the parameter vector is updated multiplicatively. In both problems we assume

that the data come in a stream that can even be infinite. We will now provide more

specific description of each of these problems and describe our approach for solving

them.

In the multi class classification problem it is desirable to achieve train and test run-

ning times which are logarithmic in the label complexity. The existing approaches

to this problem are either intractable or do not adapt well to the data. We propose

a reduction of this problem to a set of binary regression problems organized in a

tree structure and introduce a new splitting criterion (objective function) allowing

gradient descent style optimization (bound optimization methods can also be used).

A decision tree algorithm that we obtain differs from traditional decision trees in

the objective optimized, and in how that optimization is done. The different ob-

jective has useful properties, such us it guarantees balanced and small-error splits,

while the optimization uses an online learning algorithm that is queried and trained

simultaneously as we pass over the data. Furthermore, we prove an upper-bound on

the number of splits required to reduce the entropy of the tree leafs below threshold

ε. We empirically show that the trees we obtain have logarithmic depth, which im-

plies logarithmic training and testing running times, and significantly smaller error

than random trees.



Finally, we consider the problem of unsupervised (clustering) learning of data repre-

sentation, where the quality of obtained clustering is measured using a very simple,

intuitive and widely cited clustering objective, k-means clustering objective. We in-

troduce a family of online clustering algorithms by extending algorithms for online

supervised learning, with access to expert predictors (which are basic sub-blocks of

our learning system), to the unsupervised learning setting. The parameter vector

corresponds to the probability distribution over the experts. Different update rules

for the parameter vector depend on an approximation to the current value of the

k-means clustering objective obtained by each expert, and model different levels of

non-stationarity in the data. We show that when the experts are batch clustering

algorithms with approximation guarantees with respect to the k-means clustering

objective, applied to a sliding window of the data stream, our algorithms obtain

approximation guarantees with respect to the k-means clustering objective. Thus

simultaneously we address an open problem posed by Dasgupta for approximating

k-means clustering objective on data streams. We experimentally show that our

algorithms’ empirical performance tracks that of the best clustering algorithm in

its experts set and that our algorithms outperform widely used online algorithms.

Codes for all machine learning tools we developed are publicly released.
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Chapter 1. Introduction 1

11
Introduction

Machine Learning is the field of computer science originated from artificial intel-

ligence (AI) which in recent years became one of the most popular academic and

industrial tools for processing and analyzing data. The recent widespread devel-

opment of web search engines, sensors as well as data-storage and data-acquisition

devices has helped make datasets common place. This, however, poses several se-

rious computational challenges for the traditional algorithms which often do not

scale well to these datasets and as a result well motivates the study of new ma-

chine learning optimization techniques which can better handle underlying learning

problems. This thesis provides several fundamental theoretical and algorithmic re-

sults that address three such computational challenges. In the supervised setting,
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when all data instances are labeled (a label indicates the class to which an example

belongs to), we address two important problems. One is the need to design new op-

timization tools, both batch (updating parameter vector after passing through the

entire datasets) and stochastic (updating parameter vector after passing through

single data example or mini-batch of examples), which better adapt to the learning

problem and thus can accelerate the learning process and, in particular for certain

non-convex problems, potentially recover better quality solution to the learning

problem. The only constraint we introduce is on the number of classes which is

assumed to be finite and enumerable (in practice we assume it is not too large).

Having an access to such efficient optimization tools, a common way to handle the

multi class classification problem, where the number of classes is large, is to re-

duce this more complex problem to a set of smaller sub-problems with much fewer

classes, or even binary problems, on which those tools can be applied. The multi

class classification problem is the second learning problem that this thesis consid-

ers. We introduce very stringent constraints where train and test running times

of the algorithm has to be logarithmic in the label complexity and the algorithm

works in the online learning setting (the data come in a stream). This, however,

is a realistic scenario in many applications, such as classifying online news stories,

weather forecasting or real-time decision making.

Another important problem that the online algorithm analyzing streams of data has
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to face is that most data sources produce raw data (e.g. speech signal, or images

on the web), that is not yet labeled for any classification task, which motivates the

study of unsupervised learning and clustering. Clustering typically refers to a broad

class of unsupervised learning tasks aimed at partitioning the data into clusters that

are appropriate to the specific application and is widely used in practice, in order to

summarize the data (e.g. aggregating similar online news stories). And in particular

online clustering of data streams minimizing the sum of squared distances of the

data points to their closest cluster centers is the third major learning problem that

this thesis addresses. We again approach this problem by reducing it to a set of

simpler sub-problems that can be solved using existing optimization tools.

Next in this chapter, we will introduce the various frameworks studied that were

motivated above, and we will conclude it with the outline of our contributions which

also explains the organization of the thesis.

1.1 Selected machine learning optimization methods for

log-linear models

The problem of optimizing a cost function expressed as the sum of a loss term

over each sample in an input dataset is pervasive in machine learning and will

be of central focus of this thesis. One example of a cost function of this type is

the partition function. Partition function is a central quantity in many different
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learning tasks such as the estimation of probability density functions over sets of

random variables. Estimation often requires minimizing the partition function as

is the case in conditional random fields (CRFs) and log-linear models [3, 4]. We

will focus entirely on this optimization problem in Chapter 2 and 3 of this thesis.

1.1.1 Partition function

For simplicity consider a log-linear density model over discrete y ∈ Ω

pj(y|θ) =
1

Zj(θ)
hj(y) exp(θ>fj(y)), where Zj(θ) =

∑
y

hj(y) exp(θ>fj(y))

which is parametrized by a vector θ ∈ Rd of dimensionality d ∈ N. Here, j

indexes each sample in an input dataset, fj : Ω 7→ Rd is any vector-valued function

mapping an input y to some arbitrary vector. The prior hj : Ω 7→ R+ is a fixed

non-negative measure. The partition function Zj(θ) is a scalar that ensures that

pj(y|θ) normalizes. Assume that the number of configurations of y is |Ω| = n and

is finite and enumerable (y can be thought of as a class indicator and therefore

n is the total number of classes). The partition function is log-convex in θ and

has a lower-bound given via Jensen’s inequality. A plethora of machine learning

and statistical frameworks involve linear combinations of soft maximum functions

of the form
∑t

j=1 log pj(y|θ) (e.g. multi-class logistic regression, CRFs [3], hidden

variable problems [5], maximum entropy problems [6], and many others).
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1.1.2 Bound majorization methods

Many decomposition methods for CRFs and structured prediction have sought for

more manageable ways to render the learning and prediction problems. An im-

portant family of such techniques are iterative scaling [6] and bound majorization

methods [7, 8, 9, 10]. They achieve monotonic convergence and, traditionally, were

used in learning log-linear models, logistic regression, maximum entropy models and

CRFs [11, 7, 6, 3]. Bound majorization techniques decompose an optimization

of complicated functions with no closed-form solution, i.e. minθ f(θ), through the

iterative solution of simpler sub-problems [12, 13]. They use a surrogate function

ρ with closed form to monotonically improve from the initial value of the parameter

vector by interleaving the following two steps until convergence (Figure 1.1 depicts

them graphically):

(a) Find bound ρ(θ,θi) ≥ f(θ), where ρ(θi,θi) = f(θi) and θi is the current value

of the parameter vector

(b) Update θi+1 = arg minθ ρ(θ,θi)

Figure 1.1: Bound majorization scheme.
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Similar iterative learning schemes can be found in number of machine learning

techniques like Expectation-Maximization (EM) [13], variational methods or vari-

ational Bayes [14], the Convex-Concave Procedure (CCCP) [15], and many others.

1.1.3 First- and second-order generic optimization methods

Iterative scaling and bound majorization approaches, typically used to train CRFs

and log-linear models, were later surpassed by faster first-order methods [16, 2,

17], second-order methods like Newton, and quasi-Newton methods like Broyden-

Fletcher-Goldfarb-Shanno method (BFGS) or L-BFGS [18, 19] (quasi-Newton

methods are first-order methods, thus they access the objective function through the

first-order oracle, but they also approximate second-order term (Hessian)). These

generic first- and second-order optimization techniques perform additive update on

the parameter vector of a general form ([20])

θk+1 = θk − ηkG−1
k ∇θf(θk),

where ηk is the current value of the step size (there are different step size strategies

that the methods are using [20]), Gk is the second-order term which in case of first-

order methods becomes just the identity matrix I, and ∇θf(θk) is the gradient of

the objective function. Many of these techniques have batch, stochastic and semi-

stochastic variants. Standard learning systems based on batch methods such as
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Newton [21], quasi-Newton [22], e.g. BFGS (full-rank [23] and memory-limited

(L-BFGS [24])), steepest descent (see e.g. [20]) or conjugate gradient [25] need to

make a full pass through an entire dataset before updating the parameter vector.

Even though these methods can converge quickly (e.g. gradient method has linear

convergence rate, Newton method has quadratic convergence rate and quasi-Newton

methods have superlinear convergence rate), as datasets grow in size, this learning

strategy becomes increasingly inefficient. To facilitate learning on massive datasets,

the community increasingly turns to stochastic methods.

Stochastic optimization methods interleave the update of parameters after only pro-

cessing a small mini-batch of examples (potentially as small as a single data-point).

They typically have low computational complexity per iteration ([26, 27, 28]).

Standard stochastic gradient methods [29, 30] (they are first-order methods) typi-

cally have sublinear convergence rate [31, 32]), but in practice they often converge

in significantly less iterations than their batch counterparts ([33, 34]) which re-

sults in additional significant computational savings. Due to its simplicity and low

computational cost, the most popular contemporary stochastic learning technique

is stochastic gradient descent (SGD) [29, 26, 30]. SGD updates the parameter

vector using the gradient of the objective function as evaluated on a single example

(or, alternatively, a small mini-batch of examples). This algorithm admits multiple

extensions, including (i) stochastic average gradient method (SAG) that averages
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the most recently computed gradients for each training example [31], (ii) methods

that compute the (weighted) average of all previous gradients [35, 36], (iii) aver-

aged stochastic gradient descent method (ASGD) that computes a running average

of parameters obtained by SGD [37], (iv) stochastic dual coordinate ascent, that

optimizes the dual objective with respect to a single dual vector or a mini-batch

of dual vectors chosen uniformly at random [38, 39], (v) variance reduction tech-

niques [40, 41, 31, 42] (some do not require storage of gradients, c.f. [40]), (vi)

majorization-minimization techniques that minimize a majoring surrogate of an

objective function [43, 44] and (vii) gain adaptation techniques [45, 46]. Among

those techniques, incremental schemes [40, 38, 31, 43] became particularly pop-

ular recently due to their linear convergence rate and superior performance over

many state-of-the-art methods, like steepest descent of L-BFGS. Furthermore, in-

corporating second-order information (i.e. Hessian) into the optimization problem

([45, 33, 47, 48, 49, 50]) was shown to often improve the performance of tra-

ditional SGD methods which typically provide fast improvement initially, but are

slow to converge near the optimum (see e.g. [51]), require step-size tuning and are

difficult to parallelize [52].

Semi-stochastic methods can be viewed as an interpolation between the expensive

reliable updates used by full batch methods, and inexpensive noisy updates used

by stochastic methods. They inherit the best of both worlds by approaching the
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solution more quickly when close to the optimum (like a full batch method) while

simultaneously reducing the computational complexity per iteration (though less

aggressively than stochastic methods). The semi-stochastic methods begin with

iterations that resemble stochastic approach and use relatively few measurements to

approximate the gradient (and the second-order term if used), and as the iterations

proceed, they gradually increase the number of measurements [51]. Several semi-

stochastic extensions have been explored in previous works [51, 53, 54].

Majorization techniques, though slower than generic first- and second-order opti-

mization methods due to often using loose and complicated bounds, exhibit a strong

advantage over the latter of adapting not only locally but also globally to the op-

timization problem. In Chapter 2 and 3 of this thesis we will revisit majorization

and show the way to repair its slow convergence. Chapter 2 addresses batch setting

and Chapter 3 addresses semi-stochastic setting.

The optimization methods that we have discussed so far are commonly used in

machine learning to optimize cost functions of a given model. They often require

the computation of the value of the objective, its gradient (first-order term) and

sometimes the second-order term (e.g. Hessian or its approximation). The com-

plexity of these computations heavily depends on the number of data examples,

data dimensionality and, in the supervised learning setting, the number of classes.

Stochastic and semi-stochastic approaches solve the problem of the dependence of



Chapter 1. Introduction 10

the computations on the number of data examples, when it is large, by using a

randomly chosen subset of the dataset to perform a single update of parameters

(for stochastic methods the size of this subset is small, for semi-stochastic methods

it is initially small and gradually increases). Computational slow-down due to large

dimensionality can be solved in various ways, e.g. using low-rank approximations

(this solution is also discussed in Chapter 2 of this thesis). The dependence of com-

putational complexity of previously described optimization methods popularly used

in numerous machine learning algorithms on the number of classes, when it is large,

is a serious drawback of these algorithms. We next provide a gentle introduction

to this problem and further discuss it in Chapter 4 of this thesis.

1.2 Online multi class classification problem

The central problem of Chapter 4 of this thesis is the computational complexity

in a setting where the number of classes n is very large. In particular we focus

on the multi class classification problem. Almost all machine learning algorithms,

except for decision trees, have running times for multi class classification which

are O(n) with a canonical example being one-against-all classifiers ([55]). For

large n this approach becomes intractable in practice which motivates the study of

algorithms that has a running time of O(log n) (or possibly better, though under

uniform distribution assumption one cannot do any better [56]) for both training
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and testing, and use online learning algorithms to minimize passes over the data.

1.2.1 From multi class to binary classification setting

A number of prior works have addressed the multi class classification problem. A

common approach is to reduce it to a set of binary classification problems [57, 58,

59, 60, 61]. Trees are naturally structured to allow logarithmic time prediction and

thus often resulting binary classification problems are organized in tree structures.

One example of such approach is Filter Tree ([61]). Filter Tree addresses consistent

(and robust) multi class classification, showing that it is possible in the statistical

limit. A critical problem not addressed there is the choice of partition (each node

in the tree contains a partition that splits the labels assigned to it into two subsets)

and thus can only succeed when the chosen partition are easy.

The problem of learning the tree structure by finding good partitions, which result

in small multi class classification error, is an important challenge for tree-based

approaches. The partition finding problem is addressed in the conditional prob-

ability tree ([62]), but that paper addresses conditional probability estimation.

Conditional probability estimation can be converted into multi class prediction,

but doing so is not a logarithmic time operation. Further work by [63] addresses

the partitioning problem by recursively applying spectral clustering on a confusion

graph. This approach is at least O(n) at training time and thus is intractable in
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practice. Empirically, this approach has been found to sometimes lead to badly im-

balanced splits ([64]). Another work by [65] make use of the k-means hierarchical

clustering (or other distortion-minimizing clustering) to recover the label sets for a

given partition though this work primarily addresses the problem of ranking a very

large set of labels rather than the multi class classification problem.

Decision trees are naturally structured to allow logarithmic time prediction. Tra-

ditional decision trees often have difficulties with a large number of classes because

their splitting criteria are not well-suited to the large class setting (some newer ap-

proaches ([66]) have addressed this effectively) and in particular it is unclear how

to optimize them online. There exist two important factors that need to be taken

into consideration while designing good splitting criterion enabling logarithmic time

prediction, and resulting in small classification error. They will be discussed next.

1.2.2 Optimization with statistical and computational constraints

The computational constraint of logarithmic training and testing time requires that

the splitting criterion (the objective function) that is optimized in every node of

the tree has to induce balanced split of labels. Satisfying this constraint does

not guarantee small classification error as illustrated on an example in Figure 1.2.

Therefore, additionally to this constraint one most also consider a statistical con-

straint requiring the splits to induce small classification error.
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Figure 1.2: Two balanced linear splits: red and green. Red split induces larger classification
error than the green one.

Some examples of the objective functions satisfying both criteria are entropy or

Gini criterion ([67]), though it is unclear how to optimize them in an online setting.

In the setting where the data come in a stream, it is often desirable to be able to

online optimize the tree node objective function and in particular use any stochastic

optimization method discussed before to perform this optimization (e.g. conditional

probability tree uses stochastic gradient descent [62] to train node regressors). We

will focus entirely on the problem of designing an objective function permitting

such easy optimization in Chapter 4 of this thesis.

1.3 Online k-means clustering problem

Chapter 4 of this thesis considers the reduction of the multi class classification

problem to a set of binary sub-problems organized in a tree structure, where the
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emerging sub-problems can be solved using standard optimization techniques, like

in example those discussed before which explore additive update rule for the param-

eter vector. In Chapter 5 we consider another setting where, instead of having large

number of classes, we have no information about the identity of the class for any

given data point at all. We therefore focus on the online unsupervised (clustering)

learning setting (as opposed to the supervised learning settings we focused on so

far), where we aim to learn the representation of the unlabeled data minimizing the

sum of squared distances of the data points to their closest cluster centers (a sum

of this form is called the k-means clustering objective). To be more specific, we

explore the family of algorithms learning with expert advice, which in the literature

are traditionally used in the context of supervised learning, in unsupervised (cluster-

ing) setting, where the experts solve simple clustering sub-problems (and therefore

our approach can also be thought of as a reduction scheme) and, as opposed to

the previously described optimization techniques, the parameter vector is updated

multiplicatively. Some examples of the members of this family of algorithms include

variants of Winnow algorithm [27], the weighted majority algorithm [68], Static-

Expert, Fixed-Share(α) and Learn-α algorithms [69, 70] tracking the best expert

or a set of experts, and many others [71]. We next explain learning with expert

advice setting, where we focus on Static-Expert, Fixed-Share(α) and Learn-α algo-

rithms, then we review existing techniques approximating the k-means clustering

objective, and finally in Chapter 5 we focus entirely on the problem of approximat-
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ing this objective in the online setting by extending the algorithms learning with

expert advice from the supervised to the unsupervised learning setting.

1.3.1 Learning with expert advice

In realistic online settings it is often the case that the observations dynamically

change in time, like in case of media streams or weather measurements. Thus the

ability to online respond to those changes is an important adaptivity mechanism

that the learning algorithm should have. The algorithms that track the best ex-

pert or a set of experts ([69, 70]) is a very important group of such adaptive

techniques that we focus on. They form their predictions on the basis of a set of

n ”expert” predictors, i, subject to a probability distribution over experts, pt(i),

which is updated dynamically with time, t (This distribution therefore correspond

to a parameter vector that is being updated as was the case for optimization tech-

niques we discussed before. The only difference is that now the update will be

Figure 1.3: The learner maintains the distribution over n experts.
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done in multiplicative, not additive way.). Experts can be anything. They can be

thought of as black-box procedures that can vary with time and depend on one

another; they can be sub-predictors that need not be good or simply the features.

Learner maintains the distribution over the experts as shown in Figure 1.3 ([70])

and updates it to reflect how well the experts performed recently.

Figure 1.4: A generalized Hidden Markov Model (HMM) of probability of the next observation,
given past observations, and the current best expert.

The tracking algorithms we discuss can be derived as Bayesian updates of an appro-

priately defined generalized Hidden Markov Model (HMM) ([70]) as illustrated in

Figure 1.4 ([70]). The identity of the best performing expert at a given time is the

hidden variable. Different update rules for pt(i) correspond to different transition

dynamics, modeling different levels of non-stationarity in the data. The multiplica-

tive update on the parameter vector is of a general form ([69, 70])

pt+1(i) =
n∑
h=1

pt(h)e−
1
2
L(h,t)P (i|h;α),
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where L(h, t) is the loss of hth expert at time t, P (i|h;α) is the transition dynamics,

parametrized by a scalar α (0 ≤ α ≤ 1), modeling how the identity of the best

expert may change with time, and P (i|h;α) =


1− α if i = h;

α
n−1

o.w.

The algorithm using the above multiplicative update rule is commonly known as

Fixed-Share(α) and is well-suited to model non-stationary sequences. Its special

case is the Static-Expert algorithm, for which α = 0 and thus the identity of the

best expert cannot change with time, that is used to model stationary sequences.

The hybrid of those two is called Learn-α setting, shown in Figure 1.5 ([70]), and

is used to learn the parameter α online. It uses Static-Expert’s updates over a set

of Fixed-Share(α) algorithms, each with a different value of the α parameter.

Static-Expert, Fixed-Share(α) and Learn-α algorithms were not explored in the

unsupervised learning setting (like clustering) in the literature before. In Chapter

5 of this thesis we will discuss how to use these algorithms in the clustering setting

Figure 1.5: Learn-α setting.
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to optimize the k-means clustering objective. The definition of this objective and

a brief review of the existing techniques optimizing it is provided next.

1.3.2 k-means clustering objective

Notice that every chapter of this thesis is dedicated to a different objective func-

tion of major significance in machine learning and selected methods well-suited to

efficiently optimize it. Chapter 2 and 3 focus on optimizing the partition func-

tion and Chapter 4 considers optimizing the tree node splitting criterion inducing

both balanced and small-error splits. Both objective functions are considered in

the context of supervised learning setting. In Chapter 5 of this thesis we consider

the third objective function frequently used in unsupervised learning setting, the

k-means clustering objective. It is one of the most widely-cited clustering objectives

for data in Euclidean space and is also very simple and intuitively more robust to

outliers that many others, like in example k-center clustering objective, but is very

hard to optimize. The k-means clustering objective is defined as

ΦX(C) =
∑
x∈S

min
c∈C
‖x− c‖2,

where S is a finite set of n points in Rd, k is a fixed positive integer denoting the

number of clusters (we assume it is given) and C ∈ Rd is a set of cluster centers.

We often refer to this objective as the ”k-means cost” of C on X. This objective
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formalizes an intuitive measure of goodness for a clustering of points in Euclidean

space. Optimizing the k-means objective is known to be NP-hard, even for k = 2

[72] and there only exist few algorithms provably approximating it (Definitions 1

and 2 explain the notion of approximation), even in the batch setting.

Definition 1. A b-approximate k-means clustering algorithm, for a fixed constant

b, on any input data set X, returns a clustering C such that: ΦX(C) ≤ b · OPTX ,

where OPTX is the optimum of the k-means objective on data set X.

Definition 2. An (a, b)-approximate k-means clustering algorithm, is an algo-

rithm that is b-approximate and returns at most a · k centers.

1.3.3 Optimization methods for k-means clustering objective

We will now briefly review existing approaches attempting to approximate the k-

means clustering objective. The widely used ”k-means algorithm,” also known as

Lloyd’s algorithm [73], is a batch clustering algorithm that can be viewed as a hard-

assignment variant of Expectation-Maximization (EM). While it typically converges

quickly, its solution has not been shown to approximate the k-means objective.

There exist some batch clustering algorithms with approximation guarantees with

respect to the k-means objective. Some examples include k-means++, an algorithm

that approximates the k-means objective, by a factor of O(log k) [74]. Constant

approximations have been shown for a local search technique [75], the k-means#
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algorithm [76], which outputs O(k log k) centers, and the work of [77], which

outputs O(k) centers. There has also been some work on ensemble methods for

clustering, in a batch setting, e.g. [78, 79]. Several works have studied clustering

finite data streams [80, 76, 81]. Work by [76] does so with respect to the k-means

objective, and extends a streaming clustering algorithm ([80]) for the k-medoid

objective (also known as k-median), which is to minimize the sum of distances, in

a general metric space, of the points to their closest centers, using a subset of the

input points.

A number of techniques for online clustering have enjoyed success in practice, such

as [82], and variants of EM (e.g. [83]), and some have been analyzed under stochas-

tic assumptions on the data, e.g. [84]. Several online clustering algorithms have

approximation guarantees with respect to clustering objectives other than k-means.

A doubling algorithm due to [85], and the cover tree algorithm of [86], both pro-

vide a constant approximation to the k-center objective, minimizing the maximum

distance from an input point to its closest cluster center, in a general metric space.

We are not aware of any existing before online approach provably approximating

the k-means clustering objective, other than the randomized PCA method [87],

which could be viewed as clustering for the case k = 1. It is an open problem

posed by Dasgupta who suggested to use an evaluation framework analogous to

regret [88] to evaluate the performance of the online algorithm approximating k-
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means clustering objective. The regret framework, for the analysis of supervised

online learning algorithms like previously discussed Static-Expert, Fixed-Share(α)

or Learn-α algorithms, evaluates algorithms with respect to their additional pre-

diction loss relative to a hindsight-optimal comparator method. With the goal of

analyzing online clustering algorithms, Dasgupta proposed bounding the difference

between the cumulative clustering loss of the algorithm since the first observation:

LT (alg) =
∑
t≤T

min
c∈Ct
‖xt − c‖2

where the algorithm outputs a clustering, Ct, before observing the current point,

xt, and the optimal k-means cost on the points seen so far. We will focus entirely

on the optimization technique of learning with expert advice and the evaluation

framework proposed by Dasgupta to provably approximate the k-means clustering

objective online in Chapter 5 of this thesis.

1.4 Outline of contributions

The organization of our contributions is as follows.

• Chapter 2 and 3

Chapter 2 and 3 of this thesis focus on the optimization techniques perform-

ing the additive update on the parameter vector. Both chapters consider
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supervised learning setting. The objective function of central interest in this

chapter is the partition function. In Chapter 2 of this thesis we revisit ma-

jorization and repair its slow convergence by proposing a tighter quadratic

upper-bound on the log-partition function. We first consider the batch set-

ting and prove the linear convergence rate of our bound optimization method.

We show various applications of the bound to `2-regularized logistic regres-

sion, maximum entropy problems, training CRFs and graphical models (with

small tree-width) and maximum latent likelihood settings. We provide low-

rank versions of the bound for large-scale problems. In Chapter 3 we consider

semi-stochastic variant of the quadratic bound method, which we call SQB.

We prove both global convergence (to a stationary point) of SQB under very

weak assumptions, and linear convergence rate under stronger assumptions

on the objective. The experiments we present in both chapters show ad-

vantages of the new bound majorization technique over state-of-the-art first-

and second-order generic optimization methods on convex and non-convex

learning problems.

• Chapter 4

In Chapter 4 we address the multi class classification problem where the num-

ber of classes is large which is the setting that we deliberately omit in Chapter

2 and 3 (thus in this chapter we still consider supervised learning setting).
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We show a reduction of this problem to a set of binary regression problems

organized in a tree structure and we introduce a simple top-down criterion

for purification of labels. This splitting criterion is the objective function

of central interest in this chapter. Depending on the regression model used

in tree nodes, this new splitting criterion allows efficient online optimization

using any standard optimization technique, like gradient descent style opti-

mization or bound optimization. We prove that maximizing the proposed

objective function (splitting criterion) leads simultaneously to pure and bal-

anced splits. The latter guarantees train and test running times that are

logarithmic in the label complexity. We show an upper-bound on the number

of splits required to reduce the entropy of the tree leafs, a standard measure

of the quality of decision trees, below threshold ε. We present the experimen-

tal evaluation showing that our algorithm leads to significantly smaller error

than random trees.

• Chapter 5

Chapter 5 focuses on the optimization techniques performing the multiplica-

tive update on the parameter vector. This chapter considers unsupervised

learning setting (clustering). The objective function of central interest in

this chapter is the k-means clustering objective. We present new generic

clustering algorithms, as opposed to application-specific ones, optimizing the
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k-means clustering objective online. Our new clustering algorithms, which

we refer to as OCE, extend algorithms for online supervised learning, with

access to expert predictors, to the unsupervised learning setting. When the

experts are batch clustering algorithms with b-approximation guarantees with

respect to the k-means objective (for example, the k-means++ or k-means#

algorithms), applied to a sliding window of the data stream, our algorithms

obtain approximation guarantees with respect to the k-means objective on the

entire data stream seen so far. The form of these online clustering approxima-

tion guarantees is novel, and extends an evaluation framework proposed by

Dasgupta as an analog to regret. We empirically show that OCE exploits the

performance advantages of the clustering algorithms used as experts, and has

comparable or better performance over state-of-the-art clustering methods.

• Chapter 6

In Chapter 6 we summarize various contributions of the thesis and provide

future extensions.

• Chapter 7

In the Appendix we present additional proofs.
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22
Quadratic bound majorization for

partition function optimization

This chapter is based on joint work with Tony Jebara that originally appeared in [1].

All codes are released and are publicly available at www.columbia.edu/∼aec2163/

NonFlash/Papers/Papers.html.

In this chapter we study the maximum likelihood inference based on partition

function optimization. The existing first- and second-order optimization techniques

were shown to significantly outperform iterative scaling and bound majorization

techniques in this setting. Slow performance of traditional majorization methods
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is due to loose and complicated bounds that they are using. Intuitively, developing

tighter and simpler bounds should accelerate bound majorization methods and

further enhance their advantage over generic first- and second-order optimization

techniques of adapting simultaneously locally and globally to the objective function.

The objective of this chapter is to revisit majorization and repair its slow conver-

gence by deriving a tighter bound on the log-partition function. In this chapter we

focus on the batch framework where the learner makes a full pass through the entire

dataset before updating the parameter vector. We consider the supervised learning

setting where the number of classes is assumed to be finite and enumerable (in prac-

tice we assume it is not too large). We want to emphasize, however, that the bound

technique could in general be as well used in the unsupervised learning framework.

This chapter is organized as follows. Section 2.1 presents the partition function

bound, Section 2.2 shows how to apply this new bound to different convex and

non-convex learning problems: Section 2.2.1 shows that the bound can naturally

be applied in maximum entropy estimation or minimum relative entropy estima-

tion, Section 2.2.2 uses it for majorization in CRFs, Section 2.2.3 shows extensions

to latent likelihood, and Section 2.2.4 shows extensions to graphical models. Ex-

tending the bound to high dimensional problems is done in Section 2.3. Section 2.4

provides experiments and Section 2.5 concludes with a brief discussion.
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2.1 Partition Function Bound

Consider a log-linear density model over discrete y ∈ Ω

p(y|θ) =
1

Z(θ)
h(y) exp

(
θ>f(y)

)

which is parameterized by a vector θ ∈ Rd of dimensionality d ∈ N. Here, f : Ω 7→

Rd is any vector-valued function mapping an input y to some arbitrary vector. The

prior h : Ω 7→ R+ is a fixed non-negative measure. The partition function Z(θ)

is a scalar that ensures that p(y|θ) normalizes, i.e. Z(θ) =
∑

y h(y) exp(θ>f(y)).

Assume that the number of configurations of y is |Ω| = n and is finite and enumer-

able. The partition function, as was already discussed before, is log-convex in θ

and has lower-bound given via Jensen’s inequality. We will now show an analogous

quadratic upper-bound on the log-partition function that is parameterized by three

parameters: additive scalar z, first-order term µ which is just the gradient of the

log-partition function and second-order term Σ. The bound is given in Theorem 1

and Algorithm 1 computes1 the bound’s parameters.

Theorem 1. Algorithm 12 finds z,µ,Σ such that z exp(1
2
(θ − θ̃)>Σ(θ − θ̃) +

(θ − θ̃)>µ) upper-bounds Z(θ) =
∑

y h(y) exp(θ>f(y)) for any θ, θ̃, f(y) ∈ Rd and

h(y) ∈ R+ for all y ∈ Ω.

1By continuity, take tanh( 1
2 log(1))/(2 log(1)) = 1

4 and
limz→0+ tanh( 1

2 log(α/z))/(2 log(α/z)) = 0.
2The figure inside Algorithm 1 depicts the bound on logZ(θ) for various choices of θ̃.



Chapter 2. Quadratic bound majorization for partition function optimization 28

Algorithm 1 ComputeBound

Input Parameters θ̃, f(y), h(y) ∀y ∈ Ω
Init z → 0+,µ = 0,Σ = zI
For each y ∈ Ω {

α = h(y) exp(θ̃>f(y))
l = f(y)− µ
Σ+=

tanh( 1
2

log(α/z))

2 log(α/z)
ll>

µ+= α
z+α

l

z += α }
Output z,µ,Σ −5 0 5
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Notice that the second-order term Σ is different than the Hessian of the log-partition

function. In particular, changing the update on Σ in Algorithm 1 and choosing

Σ =
∑

y h(y) exp(θ̃>f(y))(f(y) − µ)(f(y) − µ)> (with the update on µ and z un-

changed) would yield the second-order Taylor approximation (the Hessian) of the

log-partition function.

Proof of the bound. Without loss of generality assume y in Algorithm 1 loops from

1 to n and for the ease of notation h(y) and f(y) will be hy and fy respectively.

Next, write Z(θ) =
∑n

j=1 αj exp(λ>fj) by introducing λ = θ − θ̃ and αj =

hj exp(θ̃>fj). Define the partition function over only the first i components as

Zi(θ) =
∑i

j=1 αj exp(λ>fj). When i = 0, a trivial quadratic upper-bound holds

Z0(θ) ≤ z0 exp
(

1
2
λ>Σ0λ+ λ>µ0

)

with the parameters z0 → 0+,µ0 = 0, and Σ0 = z0I. Next, add one term to the
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current partition function Z1(θ) = Z0(θ) +α1 exp(λ>f1). Apply the current bound

Z0(θ) to obtain

Z1(θ) ≤ z0 exp(1
2
λ>Σ0λ+ λ>µ0) + α1 exp(λ>f1).

Consider the following change of variables

u = Σ
1/2
0 λ−Σ

−1/2
0 (f1 − µ0))

γ = α1

z0
exp(1

2
(f1 − µ0)>Σ−1

0 (f1 − µ0))

The logarithm of the bound becomes

logZ1(θ) ≤ log z0 − 1
2
(f1 − µ0)>Σ−1

0 (f1 − µ0) + λ>f1 + log
(
exp(1

2
‖u‖2) + γ

)
.

Apply Lemma 12 (see Appendix A) to the last term to get

logZ1(θ)≤ log z0 − 1
2
(f1 − µ0)>Σ−1

0 (f1 − µ0) + λ>f1 + log
(
exp
(

1
2
‖v‖2

)
+γ
)

+
v>(u− v)

1+γ exp(−1
2
‖v‖2)

+
1

2
(u− v)>

(
I + Γvv>

)
(u− v)

where Γ =
tanh(

1
2

log(γ exp(−1
2
‖v‖2)))

2 log(γ exp(−1
2
‖v‖2))

. The bound in [89] is tight when u = v and

thus to achieve tightness when θ = θ̃ or, equivalently, λ = 0, we choose v =
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Σ
−1/2
0 (µ0 − f1) yielding

Z1(θ) ≤ z1 exp
(

1
2
λ>Σ1λ+ λ>µ1

)

where we have

z1 = z0 + α1

µ1 =
z0

z0 + α1

µ0 +
α1

z0 + α1

f1

Σ1 = Σ0 +
tanh(1

2
log(α1/z0))

2 log(α1/z0)
(µ0 − f1)(µ0 − f1)>.

The process is iterated n times (replacing 1 with i and 0 with i− 1) to produce an

overall bound on all terms.

The bound recovered by Algorithm 1 improves the inequalities previously existing

in the literature, e.g. it tightens [7, 8] by eliminating curvature tests and bound-

ing the objective function rather than its Hessian, it generalizes [9] which only

holds for n = 2 and h(y) constant, and it generalizes [10] which only handles one-

dimensional case. Also, unlike a general bounding scheme such as CCCP ([90])

which breaks down a function into convex and concave components, the proposed

bound is easy and efficient to manipulate/optimize due to its quadratic form. The

bound is computed using Algorithm 1 by iterating over the y variables (“for each

y ∈ Ω”) according to an arbitrary ordering. The order in which we enumerate over
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Ω varies the Σ in the bound (but not the µ and z) when |Ω| > 2. However, we

empirically investigated the influence of various orderings on bound performance

(in all the experiments presented in Section 2.4) and noticed no significant effect

across ordering schemes.

If there are no constraints on the parameters (i.e. any θ ∈ Rd is admissible),

the bound technique give rise to a simple closed-form iterative update rule for the

parameter vector: θ̃ ← θ̃ − Σ−1µ. Alternatively, if θ must satisfy linear (con-

vex) constraints it is straightforward to compute an update by solving a quadratic

(convex) program. This update rule is interleaved with the bound computation.

2.2 Bound in convex and non-convex learning problems

Majorization based on the new bound can be applied to many different convex and

non-convex learning problems involving the minimization of the partition function.

In this section we show selected partition function-based optimization problems and

discuss how to apply the bound to them.

2.2.1 Maximum entropy problem

We show here that partition functions arise naturally in maximum entropy estima-

tion or minimum relative entropy RE(p‖h) =
∑

y p(y) log p(y)
h(y)

estimation and thus

in these problems quadratic bound majorization method can be applied. Consider
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the following problem:

min
p
RE(p‖h) s.t.

∑
y

p(y)f(y) = 0,
∑
y

p(y)g(y) ≥ 0.

Here, assume that f : Ω 7→ Rd and g : Ω 7→ Rd′ are arbitrary (non-constant)

vector-valued functions over the sample space. The solution distribution p(y) =

h(y) exp
(
θ>f(y) + ϑ>g(y)

)
/Z(θ,ϑ) is recovered by the dual optimization

θ,ϑ =
arg

max
ϑ≥0,θ

− log
∑
y

h(y) exp
(
θ>f(y) + ϑ>g(y)

)

where θ ∈ Rd and ϑ ∈ Rd′ . These are obtained by minimizing Z(θ,ϑ) or equiv-

alently by maximizing its negative logarithm. Algorithm 1 permits variational

maximization of the dual via the quadratic program

min
ϑ≥0,θ

1
2
(β − β̃)>Σ(β − β̃) + β>µ

where β> = [θ>ϑ>].

2.2.2 Conditional Random Fields and Log-Linear Models

The partition function arises naturally in maximum entropy estimation or mini-

mum relative entropy estimation as well as in conditional extensions of the maxi-

mum entropy paradigm, like conditional random fields (CRFs), where the model is
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conditioned on the observations. CRFs are often used in structured prediction prob-

lems [3, 91]. Let {(x1, y1), . . . , (xt, yt)} be the dataset of independent identically-

distributed (iid) input-output pairs where yj is the observed sample in a (discrete)

space Ωj conditioned on the observed input xj. A CRF defines a distribution over

all y ∈ Ωj (of which yj is a single element) as the log-linear model

p(y|xj,θ) =
1

Zxj(θ)
hxj(y) exp(θ>fxj(y))

where Zxj(θ) =
∑

y∈Ωj
hxj(y) exp(θ>fxj(y)). For the j’th training pair, we are

given a non-negative function hxj(y) ∈ R+ and a vector-valued function fxj(y) ∈ Rd

defined over the domain y ∈ Ωj (for simplicity, assume n = maxtj=1 |Ωyj |). Each

partition function Zxj(θ) is a function of θ. The parameter θ for CRFs is estimated

by maximizing the regularized conditional log-likelihood3 or log-posterior:

J(θ) =
t∑

j=1

log p(yj|xj,θ)− tλ
2
‖θ‖2 =

t∑
j=1

log
hxj(yj)

Zxj(θ)
+ θ>fxj(yj)− tλ

2
‖θ‖2, (2.1)

where λ ∈ R+ is a regularizer. Algorithm 2 proposes a method for maximizing the

regularized conditional likelihood J(θ) or, equivalently minimizing the partition

function Z(θ). It solves the problem in Equation 2.1 subject to convex constraints

3Alternatively, variational Bayesian approaches can be used instead of maximum likelihood
via expectation propagation (EP) or power EP [92]. These, however, assume Gaussian posterior
distributions over parameters, require approximations, are computationally expensive and are not
necessarily more efficient than BFGS.
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by interleaving the quadratic bound with a quadratic programming procedure. The-

orem 2 establishes the convergence of the algorithm.

Algorithm 2 ConstrainedMaximization
0: Input xj, yj and functions hxj , fxj for j=1, . . . , t, regularizer λ ∈ R+ and convex

hull Λ ⊆ Rd

1: Initialize θ0 anywhere inside Λ and set θ̃ = θ0

While not converged
2: For j = 1, . . . , t

Get µj,Σj from hxj , fxj , θ̃ via Algorithm 1

3: Set θ̃=arg minθ∈Λ

∑
j

1
2
(θ − θ̃)>(Σj+λI)(θ − θ̃) +

∑
j θ
>(µj − fxj(yj) + λθ̃)

4: Output θ̂ = θ̃

Theorem 2. For any θ0 ∈ Λ, all ‖fxj(y)‖ ≤ r and all |Ωj| ≤ n, Algorithm 2

outputs a θ̂ such that J(θ̂)−J(θ0) ≥ (1− ε) maxθ∈Λ(J(θ)−J(θ0)) in no more than⌈
log
(

1
ε

)
/ log

(
1 + λ

2r2
(
∑n−1

i=1
tanh(log(i)/2)

log(i)
)−1
)⌉

iterations.

Proof. First, we will upper-bound (in the Loewner ordering sense) the matrices Σj

in Algorithm 2. Since ‖fxj(y)‖2 ≤ r for all y ∈ Ωj and since µj in Algorithm 1 is a

convex combination of fxj(y), the outer-product terms in the update for Σj satisfy

(fxj(y)− µ)(fxj(y)− µ)> � 4r2I.

Thus

Σj � 4r2

n∑
i=2

tanh(1
2

log( αi∑i−1
k=1 αk

))

2 log( αi∑i−1
k=1 αk

)
I
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using the definition of α1, . . . , αn in the proof of Theorem 1. Furthermore one can

show that

Σj �

(
2r2

n−1∑
i=1

tanh(log(i)/2)

log(i)

)
I = ωI.

After apply this bound to each Σj, we obtain the lower-bound on J(θ). There also

exists an upper-bound coming from Jensen’s inequality. Both are provided below.

J(θ) ≥ J(θ̃)−tω+tλ
2
‖θ − θ̃‖2−

∑
j

(θ − θ̃)>(µj−fxj(yj))

J(θ) ≤ J(θ̃)−tλ
2
‖θ − θ̃‖2−

∑
j

(θ − θ̃)>(µj−fxj(yj))

which follows from Jensen’s inequality. Define the current θ̃ at time τ as θτ and

denote by Lτ (θ) the above lower-bound and by Uτ (θ) the above upper-bound at

time τ . Clearly, Lτ (θ) ≤ J(θ) ≤ Uτ (θ) with equality when θ = θτ . Algorithm 2

maximizes J(θ) after initializing at θ0 and performing an update by maximiz-

ing a lower-bound based on Σj. Since Lτ (θ) replaces the definition of Σj with

ωI � Σj, Lτ (θ) is a looser bound than the one used by Algorithm 2. Thus,

performing θτ+1 = arg maxθ∈Λ Lτ (θ) makes less progress than a step of Algo-

rithm 1. Consider computing the slower update at each iteration τ and returning

θτ+1 = arg maxθ∈Λ Lτ (θ). Setting Φ = (tω + tλ)I, Ψ = tλI and κ = ω+λ
λ

allows us
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to apply Lemma 13 (see Appendix A) as follows

sup
θ∈Λ

Lτ (θ)− Lτ (θτ ) ≥
1

κ
sup
θ∈Λ

Uτ (θ)− Uτ (θτ ).

Since Lτ (θτ ) = J(θτ ) = Uτ (θτ ), J(θτ+1) ≥ supθ∈Λ Lτ (θ) and supθ∈Λ Uτ (θ) ≥

J(θ∗), we obtain

J(θτ+1)− J(θ∗) ≥
(

1− 1

κ

)
(J(θτ )− J(θ∗)) .

Iterate the above inequality starting at t = 0 to obtain

J(θτ )− J(θ∗) ≥
(

1− 1

κ

)τ
(J(θ0)− J(θ∗)) .

A solution within a multiplicative factor of ε implies that ε =
(
1− 1

κ

)τ
or log(1/ε) =

τ log κ
κ−1

. Inserting the definition for κ shows that the number of iterations τ is at

most
⌈

log(1/ε)
log κ

κ−1

⌉
or
⌈

log(1/ε)
log(1+λ/ω)

⌉
. Inserting the definition for ω gives the bound.

The series
∑n−1

i=1
tanh(log(i)/2)

log(i)
=
∑n−1

i=1
i−1

(i+1) log(i)
is the logarithmic integral which

is O
(

n
logn

)
asymptotically [93]. Note that the convergence rate we obtained for

Algorithm 2 is linear. Also, as an additional remark, we would like to note that one

may consider more aggressive update rules than the one in Algorithm 2. Instead

of computing an update to θ̃ via step 3 of Algorithm 2, one can update it by
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scaling (Σj + λI) by 1/ζ in step 3, where ζ ≥ 1. Setting ζ to any value from the

interval (0, 2) still ensures monotonic improvement [94]. However, in practice in

this chapter we always use ζ set to ζ = 1. The next sections show how to handle

hidden variables in the learning problem, exploit graphical modeling, and further

accelerate the underlying algorithms.

2.2.3 Latent Conditional Likelihood

Section 2.2.2 showed how the partition function is useful for maximum conditional

likelihood problems involving CRFs. In this section, maximum conditional like-

lihood is extended to the setting where some variables are latent. Latent models

may provide more flexibility than fully observable models [5, 95, 96]. For instance,

hidden conditional random fields were shown to outperform generative hidden-state

and discriminative fully-observable models [5].

Let D = {(x1, y1), . . . , (xt, yt)} be the dataset, where x1, . . . , xt are sampled from

some unknown distribution p̄(x) and t corresponding samples y1, . . . , yt drawn from

identical conditional distributions p̄(y|x1), . . . , p̄(y|xt) respectively. Assume that

the true generating distributions p̄(x) and p̄(y|x) are unknown. We aim to esti-

mate a conditional distribution p(y|x) from some set of hypotheses that achieves

high conditional likelihood given the dataset. We will consider the latent setting,

where we select this conditional distribution by assuming it emerges from a con-
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ditioned joint distribution over x and y as well as a hidden variable m which is

being marginalized as p(y|x,Θ) =
∑
m p(x,y,m|Θ)∑
y,m p(x,y,m|Θ)

. Here m ∈ Ωm represents a dis-

crete hidden variable, x ∈ Ωx is an input and y ∈ Ωy is a discrete output variable.

The parameter Θ contains all parameters that explore the function class of such

conditional distributions. The latent likelihood of the data L(Θ) = p(D|Θ) is the

objective function that needs to be maximized and is expressed as

L(Θ) =
t∏

j=1

p(yj|xj,Θ) =
t∏

j=1

∑
m p(xj, yj,m|Θ)∑
y,m p(xj, y,m|Θ)

. (2.2)

We will assume that each p(x|y,m,Θ) is an exponential family distribution

p(x|y,m,Θ) = h(x) exp
(
θ>y,mφ(x)− a(θy,m)

)

where each conditional is specified by a function h : Ωx 7→ R+ and a feature

mapping φ : Ωx 7→ Rd which are then used to derive the normalizer a : Rd 7→

R+. A parameter θy,m ∈ Rd selects a specific distribution. Multiply each expo-

nential family term by an unknown marginal distribution called the mixing pro-

portions p(y,m|π) = πy,m∑
y,m πy,m

. This is parameterized by an unknown parameter

π = {πy,m} ∀y,m where πy,m ∈ [0,∞). Finally, the collection of all parameters

is Θ = {θy,m, πy,m} ∀y,m. Thus, we have the complete likelihood p(x, y,m|Θ) =

πy,mh(x)∑
y,m πy,m

exp
(
θ>y,mφ(x)− a(θy,m)

)
. Insert this expression into Equation 2.2 and re-
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move constant factors that appear in both denominator and numerator. Apply the

change of variables exp(νy,m) = πy,m exp(−a(θy,m)) and rewrite the objective as a

function4 of a vector θ:

L(Θ) =
t∏

j=1

∑
m exp

(
θ>yj ,mφ(xj) + νyj ,m

)
∑

y,m exp
(
θ>y,mφ(xj) + νy,m

) =
t∏

j=1

∑
m exp

(
θ>fj,yj ,m

)∑
y,m exp (θ>fj,y,m)

.

The last equality emerges by rearranging all Θ parameters as a vector θ equal to

[θ>1,1 ν1,1 θ
>
1,2 ν1,2 · · · θ>|Ωy |,|Ωm| ν|Ωy |,|Ωm|]

> (note that θ ∈ R|Ωy ||Ωm|(d+1)) and introduc-

ing fj,ŷ,m̂ ∈ R|Ωy ||Ωm|(d+1) defined as [[φ(xj)
>1]δ[(ŷ,m̂)=(1,1)] ··· [φ(xj)

>1]δ[(ŷ,m̂)=(|Ωy |,|Ωm|)]]
>

(thus the feature vector [φ(xj)
>1]> is positioned appropriately in the longer fj,ŷ,m̂

vector which is elsewhere zero). We will now show a variational lower-bound on

L(θ) ≥ Q(θ, θ̃) which is tight when θ = θ̃ such that L(θ̃) = Q(θ̃, θ̃). The lower-

bound can be obtained by bounding each numerator and each denominator in the

product over j = 1, . . . , t. Each numerator term can be bounded using Jensen’s

inequality as follows

∑
m

exp
(
θ>fj,yj ,m

)
≥ eθ

>∑
m ηj,mfj,yj ,m−

∑
m ηj,m log ηj,m

where ηj,m = (eθ̃
>fj,yj ,m)/(

∑
m′ e

θ̃>fj,yj ,m′ ). Algorithm 1 then bounds the denomina-

4It is now easy to regularize L(θ) by adding − tλ2 ‖θ‖
2.
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tor

∑
y,m

exp
(
θ>fj,y,m

)
≤ zje

1
2

(θ−θ̃)>Σj(θ−θ̃)+(θ−θ̃)>µj .

The overall lower-bound on the likelihood is then

Q(θ, θ̃) = L(θ̃)e−
1
2

(θ−θ̃)>Σ̃(θ−θ̃)−(θ−θ̃)>µ̃

where Σ̃ =
∑t

j=1 Σj and µ̃ =
∑t

j=1(µj −
∑

m ηj,mfj,yj ,m). The right hand side is

simply an exponentiated quadratic function in θ which is easy to maximize. This

yields an iterative scheme similar to Algorithm 2 for monotonically maximizing

latent conditional likelihood.

2.2.4 Graphical Models for Large n

The bounds in the previous sections are straightforward to compute when Ω is

small. However, for graphical models, enumerating over Ω can be computation-

ally too expensive. This section provides faster algorithms that recover the bound

efficiently for graphical models of bounded tree-width. A graphical model repre-

sents the factorization of a probability density function. A factor graph, which

represents a graphical model, is a bipartite graph G = (V,W,E) with variable

vertices V = {1, . . . , k}, factor vertices W = {1, . . . ,m} and a set of edges E be-
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tween V and W . In addition, define a set of random variables Y = {y1, . . . , yk}

each associated with the elements of V and a set of non-negative scalar func-

tions Ψ = {ψ1, . . . , ψm} each associated with the elements of W . p(Y ) factor-

izes as p(y1, . . . , yk) = 1
Z

∏
c∈W ψc(Yc) where Z is a normalizing partition function

(the dependence on parameters is suppressed here) and Yc is a subset of the ran-

dom variables that are associated with the neighbors of node c. In other words,

Yc = {yi|i ∈ Ne(c)} where Ne(c) is the set of vertices that are neighbors of c. Infer-

ence in graphical models requires the evaluation and the optimization of Z. These

computations can be NP-hard in general yet are efficient when G satisfies certain

properties (low tree-width). Consider a log-linear model (a function class) indexed

by a parameter θ ∈ Λ in a convex hull Λ ⊆ Rd as follows

p(Y |θ) =
1

Z(θ)

∏
c∈W

hc(Yc) exp
(
θ>fc(Yc)

)

where Z(θ) =
∑

Y

∏
c∈W hc(Yc) exp

(
θ>fc(Yc)

)
. The model is defined by a set of

vector-valued functions fc(Yc) ∈ Rd and scalar-valued functions hc(Yc) ∈ R+. Algo-

rithm 1 may be inapplicable in this setting due to the large number of configurations

in Y . Instead, consider a more efficient surrogate algorithm which computes the

same bound parameters by efficiently exploiting the factorization of the graphical

model. Begin by assuming that the graphical model in question is a junction tree

and satisfies the running intersection property [97]. It is known that any graphical
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model can be converted into such a form at the expense of growing the cardinality

of the factors c ∈ W . Starting with a general graph G, convert it into a junction

tree T as follows. First, triangulate it by adding as few edges as possible (this

does not change p(Y |θ)). Once triangulated, form a junction tree T by connecting

overlapping cliques to maximize the sum of the cardinalities of clique intersections.

Then, using the junction tree T , compute the bound parameters via Algorithm 3.

Algorithm 3 JunctionTreeBound

Input Reverse-topological tree T with c = 1, . . . ,m factors hc(Yc) exp(θ̃>fc(Yc))

and θ̃ ∈ Rd

For c = 1, . . . ,m
If (c < m) {Yboth=Yc ∩ Ypa(c), Ysolo=Yc \ Ypa(c)}
Else {Yboth={}, Ysolo=Yc}
For each u ∈ Yboth
{

Initialize zc|x ← 0+, µc|x = 0, Σc|x = zc|xI
For each v ∈ Ysolo
{

w = u⊗ v
αw = hc(w)eθ̃

>fc(w)
∏

b∈ch(c)zb|w
lw = fc(w)− µc|u +

∑
b∈ch(c)µb|w

Σc|u =
∑

b∈ch(c)Σb|w+
tanh( 1

2
log(

αw
zc|u

))

2 log(
αw
zc|u

)
lwl>w

µc|u = αw
zc|u+αw

lw

zc|u = αw
}

}
Output Bound as z = zm, µ = µm, Σ = Σm

This algorithm only requires enumerating over all configurations of each clique in

the junction tree which is clearly more efficient than enumerating over all config-

urations of Y ’s. This shows that the computation involved is O(
∑

c |Yc|) rather
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than O(|Ω|) as in Algorithm 1. In Algorithm 3 (Appendix A provides a proof of

its correctness), take ch(c) to be the set of children-cliques of clique c and pa(c) to

be the parent of c. Note that the algorithm enumerates over u ∈ Ypa(c) ∩ Yc and

v ∈ Yc \ Ypa(c). The algorithm stores a quadratic bound for each configuration of u

(where u is the set of variables in common across both clique c and its parent). It

then forms the bound by summing over v ∈ Yc \ Ypa(c), each configuration of each

variable a clique c has that is not shared with its parent clique. The algorithm also

collects precomputed bounds from children of c. Also define w = u⊗ v ∈ Yc as the

conjunction of both indexing variables u and v. Thus, the two inner for loops enu-

merate over all configurations w ∈ Yc of each clique. Note that w is used to query

the children b ∈ ch(c) of a clique c to report their bound parameters zb|w,µb|w,Σb|w.

This is done for each configuration w of the clique c. Note, however, that not every

variable in clique c is present in each child b so only the variables in w that inter-

sect Yb are relevant in indexing the parameters zb|w,µb|w,Σb|w and the remaining

variables do not change the values of zb|w,µb|w,Σb|w.

Additionally, notice that Algorithm 3 is a simple extension of the known recursions

that are used to compute the partition function and its gradient vector. Thus, in

addition to the Σ matrix which represents the curvature of the bound, Algorithm 3

is recovering the partition function value z and the gradient since µ = ∂ logZ(θ)
∂θ

∣∣∣
θ=θ̃

.
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2.3 Low-Rank Bounds for Large d

In many realistic situations, the dimensionality d is large and this prevents the

storage and inversion of the matrix Σ. We next present a low-rank extension that

can be applied to any of the algorithms presented so far. As an example, we will

consider a low-rank incarnation of Algorithm 2. Each iteration of Algorithm 2

requires O(tnd2 + d3) time since step 2 computes several Σj ∈ Rd×d matrices and

3 performs inversion. Instead, the new algorithm provides a low-rank version of

the bound which still majorizes the log-partition function but requires only Õ(tnd)

complexity (putting it on par with L-BFGS).

First, note that step 3 in Algorithm 2 can be written as θ̃ = θ̃ − Σ−1u where

u = tλθ̃+
∑t

j=1µj− fxj(yj). Clearly, Algorithm 1 can recover u by only computing

µj for j = 1, . . . , t and skipping all steps involving matrices. This merely requires

O(tnd) work. Second, we store Σ using a low-rank representation V>SV + D

where V ∈ Rk×d is orthonormal, S ∈ Rk×k is positive semi-definite, and D ∈ Rd×d

is non-negative diagonal. Rather than increment the matrix by a rank one up-

date of the form Σi = Σi−1 + rir
>
i where ri =

√
tanh( 1

2
log(α/z))

2 log(α/z)
(fi − µi), simply

project ri onto each eigenvector in V and update matrix S and V via a singular

value decomposition (O(k3) work). After removing k such projections, the remain-

ing residual from ri forms a new eigenvector ek+1 and its magnitude forms a new

singular value. The resulting rank (k + 1) system is orthonormal with (k + 1) sin-



Chapter 2. Quadratic bound majorization for partition function optimization 45

Algorithm 4 LowRankBound

Input Parameter θ̃, regularizer λ ∈ R+, model ft(y) ∈ Rd and ht(y) ∈ R+

and rank k ∈ N
Initialize S = 0 ∈ Rk×k,V = orthonormal ∈ Rk×d,D = tλI ∈ diag(Rd×d)
For each t {

Set z → 0+;µ = 0;
For each y {

α = ht(y)eθ̃
>ft(y)

r =

√
tanh( 1

2
log(

α
z

))√
2 log(

α
z

)
(ft(y)− µ)

For i = 1, . . . , k : p(i) = r>V(i, ·); r = r− p(i)V(i, ·);
For i = 1, . . . , k : For j = 1, . . . , k : S(i, j) = S(i, j) + p(i)p(j);
Q>AQ = svd(S); S← A; V← QV;
s = [S(1, 1), . . . ,S(k, k), ‖r‖2]>

k̃ = arg mini=1,...,k+1 s(i)

if (k̃ ≤ k)

{ D = D + S(k̃, k̃)1>|V(j, ·)| diag(|V(k, ·)|)
S(k̃, k̃) = ‖r‖2

r = ‖r‖−1r
V(k, ·) = r }

else
{

D = D + 1>|r|diag(|r|) }
µ+= α

z+α
(ft(y)− µ)

z += α; } }
Output S ∈ diag(Rk×k),V ∈ Rk×d,D ∈ diag(Rd×d)

gular values. We discard its smallest singular value and corresponding eigenvector

to revert back to an order k eigensystem. However, instead of merely discarding

we can absorb the smallest singular value and eigenvector into the D component

by bounding the remaining outer-product with a diagonal term. This provides a

guaranteed overall upper-bound in Õ(tnd) (k is assumed to be logarithmic with

dimension d). Algorithm 4 provides a low-rank incarnation of Algorithm 2.
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Finally, to invert Σ, we apply the Woodbury formula: Σ−1 = D−1 +D−1V>(S−1 +

VD−1V>)−1VD−1 which only requires O(k3) work. A proof of correctness of Al-

gorithm 4 can be found in the Appendix A.

2.4 Batch bound method versus generic optimization meth-

ods: empirical evaluation

In this section we provide the empirical evaluation of the performance of the bound-

majorization method based on the new quadratic bound on the log-partition func-

tion, and compare it with the performance of first- and second-order generic op-

timization methods. We consider three learning tasks: `2-regularized logistic re-

gression, training CRFs with linear Markov chain structure and Maximum latent

conditional likelihood problems.

2.4.1 `2-regularized logistic regression

We first focus on the `2-regularized logistic regression task for small-scale experi-

ments. Small-scale problems may be interesting in real-time learning settings, for

example, when a website has to learn from a user’s uploaded labeled data in a split

second to perform real-time retrieval. We compared Algorithm 2 with steepest

descent (SD), conjugate gradient (CG), BFGS and Newton-Raphson on five UCI

datasets, downloaded from http://archive.ics.uci.edu/ml/, where missing values were
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handled via mean-imputation. A range of regularization settings λ ∈ {100, 102, 104}

was explored. Results are averaged over 10 random initializations (all algorithms

were initialized from the same start-point). Table 2.1 shows the average number of

seconds each algorithm needed to achieve the same solution that BFGS converged

to (all algorithms achieve the same solution due to the concavity of the problem).

data|λ a|100 a|102 a|104 b|100 b|102 b|104 c|100 c|102 c|104 d|100 d|102 d|104 e|100 e|102 e|104

BFGS 1.90 0.89 2.45 3.14 2.00 1.60 4.09 1.03 1.90 5.62 2.88 3.28 2.63 2.01 1.49
SD 1.74 0.92 1.60 2.18 6.17 5.83 1.92 0.64 0.56 12.04 1.27 1.94 2.68 2.49 1.54
CG 0.78 0.83 0.85 0.70 0.67 0.83 0.65 0.64 0.72 1.36 1.21 1.23 0.48 0.55 0.43

Newton 0.31 0.25 0.22 0.43 0.37 0.35 0.39 0.34 0.32 0.92 0.63 0.60 0.35 0.26 0.20
Bound 0.01 0.01 0.01 0.07 0.04 0.04 0.07 0.02 0.02 0.16 0.09 0.07 0.03 0.03 0.03

Table 2.1: Convergence time in seconds under various regularization levels for a) Bupa b) Wine
c) Heart d) Ion and e) Hepatitis datasets.

We next focus on large-scale experiments. We compare the performance of the

bound (using the low-rank Algorithm 2) with first-order and second order methods

such as L-BFGS, conjugate gradient (CG) and steepest descent (SD). We use 4

benchmark datasets: the SRBCT and Tumors datasets from [98] as well as the

Text and SecStr datasets from http://olivier.chapelle.cc/ssl-book/benchmarks.html.

For all experiments here and till the end of this section, the setup is as follows.

Each dataset is split into training (90%) and testing (10%) parts. The termination

criterion for all algorithms is a change in estimated parameter or function values

smaller than 10−6 (with a ceiling on the number of passes through the data of 106).

Results are averaged over 10 random initializations close to 0. The regularization

parameter λ, when used, was chosen through crossvalidation (and set to 101 for all
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the experiments except the experiment with Text dataset where it was set to 102).

In Table 2.2 we report times in seconds and the number of effective passes through

the data5 for each algorithm to achieve the L-BFGS termination solution modulo

a small constant ε (set to 10−4; in practice all algorithms achieve the same quality

solution due to the concavity of the problem).

Dataset SRBCT Tumors Text SecStr
Algorithm time pass time pass time pass time pass

L-BFGS 6.10 42 3246.83 8 15.54 7 881.31 47
SD 7.27 43 18749.15 53 153.10 69 1490.51 79
CG 40.61 100 14840.66 42 57.30 23 667.67 36

Bound 3.67 8 1639.93 4 6.18 3 27.97 9

Table 2.2: Time in seconds and number of effective passes through the data required to obtain
within ε of the L-BFGS solution (where ε = 10−4) for logistic regression problems on
SRBCT, Tumors, Text and SecStr datasets.

On both small- and large-scale experiments experiments, the bound remained the

fastest as indicated in bold.

2.4.2 Markov CRFs

Structured prediction problems are explored using two popular datasets. The first

one contains Spanish news wire articles from the session of the CoNLL 2002 con-

ference. This corpus involves a named entity recognition problem and consists of

sentences where each word is annotated with one of m = 9 possible labels. The

second task is from the PennTree Bank. This corpus involves a tagging problem

5By effective passes we mean the number of outer loop passes of the methods plus the number
of line search passes of those methods that perform line search.
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Dataset CoNLL PennTree
Algorithm time pass time pass

L-BFGS 25661.54 17 62848.08 7
CG 88973.93 23 76332.39 18

Bound 16445.93 4 27073.42 2

Table 2.3: Time in seconds and number of effective passes through the data required to obtain
within ε of the L-BFGS solution (where ε = 10−4) for Markov CRF problems on
CoNLL and PennTree datasets. λ was set to λ = 101.

and consists of sentences where each word is labeled with one of m = 45 possi-

ble parts-of-speech. A conditional random field is estimated with a Markov chain

structure to give word labels a sequential dependence. The features describing the

words are constructed as in [99]. Table 2.3 provides results for this experiment (in

practice all algorithms achieve the same quality solution due to the concavity of

the problem). We used the low-rank version of Algorithm 3. In both experiments,

the bound always remained fastest as indicated in bold.

Additionally, in Table 2.4 we provide the comparison of the results we obtained

on CoNLL dataset with the results of a similar experiment on the same dataset

obtained from [2], where generic methods where shown to significantly outperform

majorization methods, such as iterative scaling.

our results ([1]) results from [2]
Algorithm time pass Algorithm time pass

L-BFGS t 17 L-BFGS t
′

22

CG 3.47t 23 CG 5.94t
′

27

Bound 0.64t 4 IIS ≥ 6.35t
′ ≥ 150

Table 2.4: Comparison of the results obtained by us ([1]) with the results from [2] for Markov
CRF problem on CoNLL dataset.
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2.4.3 Maximum latent conditional likelihood problems

We next performed experiments with maximum latent conditional likelihood prob-

lems. We denote by m the number of hidden variables. Due to the non-concavity

of this objective, we are most interested in finding good local maxima. We com-

pared the algorithms (the bound, Newton-Raphson, BFGS, CG and SD) on five

benchmark datasets. The datasets included four UCI datasets (ion, bupa, hepatitis

and wine) and the previously used SRBCT dataset. The feature mapping used

was φ(x) = x ∈ Rd. We used a value of λ = 0 throughout the latent experi-

ments. We explored setting m ∈ {1, 2, 3, 4}. Table 2.5 shows the testing latent

log-likelihood at convergence. In bold, we show the algorithm that obtained the

highest log-likelihood. Furthermore, Figure 2.1 depicts the convergence of testing

latent log-likelihood. The bound is the best performer overall and finds better

Dataset ion bupa hepatitis
Algorithm m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

BFGS -4.96 -5.55 -5.88 -5.79 -22.07 -21.78 -21.92 -21.87 -4.42 -5.28 -4.95 -4.93
SD -11.80 -9.92 -5.56 -8.59 -21.76 -21.74 -21.73 -21.83 -4.93 -5.14 -5.01 -5.20
CG -5.47 -5.81 -5.57 -5.22 -21.81 -21.81 -21.81 -21.81 -4.84 -4.84 -4.84 -4.84

Newton -5.95 -5.95 -5.95 -5.95 -21.85 -21.85 -21.85 -21.85 -5.50 -5.50 -5.50 -4.50
Bound -6.08 -4.84 -4.18 -5.17 -21.85 -19.95 -20.01 -19.97 -5.47 -4.40 -4.75 -4.92

Dataset wine SRBCT

Algorithm m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4
BFGS -0.90 -0.91 -1.79 -1.35 -5.99 -6.17 -6.09 -6.06

SD -1.61 -1.60 -1.37 -1.63 -5.61 -5.62 -5.62 -5.61
CG -0.51 -0.78 -0.95 -0.51 -5.62 -5.49 -5.36 -5.76

Newton -0.71 -0.71 -0.71 -0.71 -5.54 -5.54 -5.54 -5.54
Bound -0.51 -0.51 -0.48 -0.51 -5.31 -5.31 -4.90 -0.11

Table 2.5: Test latent log-likelihood at convergence for different values of m ∈ {1, 2, 3, 4} on ion,
bupa, hepatitis, wine and SRBCT data-sets.
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solutions in less time.

−5 0 5 10
−25

−20

−15

−10

−5

0
ion

log(Time) [sec]

−l
og

(J
(θ

))

 

 

Bound
Newton
BFGS
Conjugate gradient
Steepest descent

−6 −4 −2 0 2 4
−11

−10

−9

−8

−7

−6

−5

−4
hepatitis

log(Time) [sec]
−l

og
(J

(θ
))

−4 −2 0 2 4
−12

−10

−8

−6

−4

−2

0
SRBCT

log(Time) [sec]

−l
og

(J
(θ

))

−4 −2 0 2 4 6 8
−20

−15

−10

−5

0
wine

log(Time) [sec]

−l
og

(J
(θ

))

 

 

Bound
Newton
BFGS
Conjugate gradient
Steepest descent

−5 0 5 10
−24

−23

−22

−21

−20

−19
bupa

log(Time) [sec]

−l
og

(J
(θ

))

Figure 2.1: Convergence of test latent log-likelihood on ion, hepatitis, SRBCT, wine and bupa
datasets.

2.5 Conclusion

We showed a simple quadratic upper-bound for the partition function of log-linear

models. The bound is efficiently recoverable for graphical models and admits low-

rank variants for high-dimensional data. It allows fast and monotonically conver-

gent majorization in CRF learning and maximum latent conditional likelihood prob-

lems (where it also finds better local maxima). The bound majorization method

based on a new bound makes majorization approaches competitive with state-of-

the-art first- and second-order optimization methods. So far we focused on the

batch setting where the algorithm makes a full pass through the entire dataset be-
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fore updating the parameter vector. As datasets grow in size, this learning strategy

becomes increasingly inefficient. In the next chapter we will focus on applying the

bound in the semi-stochastic settings.
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33
Semi-stochastic partition function bound

majorization

This chapter is based on joint work with Aleksandr Aravkin, Tony Jebara and Dim-

itri Kanevsky that originally appeared in [100]. All codes are released and are

publicly available at www.columbia.edu/∼aec2163/NonFlash/Papers/Papers.html.

Standard learning systems based on batch methods, including the partition function

bound majorization method described in the previous chapter, need to make a full

pass through an entire dataset before updating the parameter vector. For massive

datasets, this update strategy becomes expensive and computing it hurt system’s ef-
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ficiency. In this setting, using semi-stochastic or fully stochastic update rule, where

the parameter is updated after seeing mini-batch of data points (stochastic meth-

ods can potentially use as small mini-batch as a single data-point; semi-stochastic

methods typically start from small mini-batch, like stochastic methods, but then

gradually increase it), becomes computationally much cheaper and furthermore was

empirically shown to lead to convergence in significantly less iterations than in a

batch case. In particular, semi-stochastic methods exhibit an important advantage

of exploring simultaneously the benefits of both settings, batch and stochastic, by

approaching the solution more quickly when close to the optimum (like a full batch

method and unlike stochastic methods, which typically provide fast improvement

initially, but are slow to converge near the optimum) while simultaneously reducing

the computational complexity per iteration (though less aggressively than stochas-

tic methods).

The objective of this chapter is to propose a semi-stochastic variant of the par-

tition function bound majorization method discussed in the previous chapter. In

this chapter we furthermore show that the fast convergence property of the batch

method is also preserved in the semi-stochastic setting. This chapter is organized

as follows. Section 3.1 discusses stochastic and semi-stochastic extensions of the

bound. Section 3.2 presents convergence theory for the proposed methods. In

particular, we discuss very general stationary convergence theory under very weak
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assumptions, and also present a much stronger theory, including convergence rate

analysis, for logistic regression. Section 3.3 discusses implementation details and

shows numerical experiments illustrating the use of the proposed methods for l2-

regularized logistic regression problems. Conclusions end the chapter.

3.1 Quadratic bound methods

In this chapter, we will consider the log-linear density model of the following form

p(y|xj,θ) =
1

Zxj(θ)
hxj(y) exp

(
θ>fxj(y)

)
,

where Zxj(θ) is the partition function (the notation remains the same as in the

previous chapter). In Chapter 2 we proposed a fast method to find a tight quadratic

bound for Zxj(θ), shown in the subroutine Bound Computation in Algorithm 5,

which finds z, r,S so that

Zxj(θ) ≤ z exp(1
2
(θ − θ̃)>S(θ − θ̃) + (θ − θ̃)>r) (3.1)

for any θ, θ̃, fxj(y) ∈ Rd and hxj(y) ∈ R+ for all y ∈ Ω.
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Algorithm 5 Semi-stochastic Quadratic Bound (SQB)

Input Parameters θ̃, fxj(y) ∈ Rd and hxj(y) ∈ R+ for y ∈ Ω, j ∈ T
Initialize µT = 0,ΣT = 0(d, d)
For each j ∈ T

Subroutine Bound Computation:
z → 0+, r = 0,S = zI
For each y ∈ Ω

α = hxj(y) exp(θ̃>fxj(y))

S+=
tanh( 1

2
log(α/z))

2 log(α/z)
(fxj(y)− r)(fxj(y)− r)>

r = z
z+α

r + α
z+α

fxj(y)

z+= α
Subroutine output z, r,S

µT+= r− fxj(y)
ΣT+= S

µT /= |T |
ΣT /= |T |
Output µT ,ΣT

The (regularized) maximum likelihood inference problem is equivalent to

min
θ

{
Lη(θ) := − 1

T

T∑
j=1

log(p(yj|xj,θ)) +
η

2
‖θ‖2

≈ 1

T

T∑
j=1

(
log(Zxj(θ))− θ>fxj(yj)

)
+
η

2
‖θ‖2

}
,

(3.2)

where ≈ means up to an additive constant. The bound (3.1) suggests the iterative

minimization scheme

θk+1 = θk − αk(Σk
T + ηI)−1(µkT + ηθk), (3.3)
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where k is the iteration index, Σk
T and µkT are computed using Algorithm 5, η is

the regularization term and αk is the step size at iteration k. T is the mini-batch

of data points and thus in the batch setting it is simply the the entire dataset

denoted as T . When T is large, this strategy can be expensive. In fact, computing

the bound has complexity O(Tnd2), since Tn outer products must be summed to

obtain Σ, and each other product has complexity O(d2). When the dimension d

is large, considerable speedups can be gained by using low-rank version of Σ as

was discussed in Chapter 2, or obtaining a factored form of Σ, as described in

Section 3.3.1 of this chapter. Nonetheless, in either strategy, the size of T is a

serious issue.

A natural approach is to subsample a smaller selection T from dataset Ω, so that

at each iteration, we run Algorithm 5 over T rather than over the full data to get

µT ,ΣT . When |T | is fixed (and smaller than T ), we refer to the resulting method

as a stochastic extension. If instead |T | is allowed to grow as iterations proceed, we

call this method semi-stochastic; these methods are analyzed in [51]. One can also

decouple the computation of gradient and curvature approximations, using different

data selections (which we call T and S). We will show in the next sections that

this development is theoretically justifiable and practically very useful.

The appeal of the stochastic approach is that when |T |, |S| << T , the complexity

of Algorithm 5 to compute µT ,ΣS is much lower than in the batch framework;
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and then we can still implement a (modified) iteration (3.3). Also semi-stochastic

approach results in computational savings as it interpolates between stochastic and

batch settings. For the stochastic and semi-stochastic methods discussed in this

section, the quadratic bound property (3.1) does not hold for Z(θ), so the conver-

gence analysis from the previous chapter does not immediately apply. Nonetheless,

it is possible to analyze the algorithm in terms of sampling strategies for T . We

will now present the theoretical analysis of Algorithm 5. Till the end of this chapter

we will focus on the semi-stochastic approach alone, however the first theoretical

result that we show provide the guarantee of global convergence to a stationary

point that also holds in the fully stochastic setting.

3.2 Theoretical analysis of the semi-stochastic quadratic

bound majorization method

We first prove that under very weak assumption, in particular using only the Lips-

chitz property, but not requiring convexity of the problem, the proposed algorithm

converges to a stationary point. The proof technique easily carries over to other

objectives, such as the ones discussed in the previous chapter (e.g. the objective

used in maximum latent conditional likelihood problems), since it relies mainly only

on the sampling method used to obtain T . Then we focus on problem (3.2), which

is convex, and strictly convex under appropriate assumptions on the data. We use
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the structure of (3.2) to prove much stronger results, and in particular analyze the

rate of convergence of Algorithm 5.

3.2.1 General Convergence Theory

We present a general global convergence theory that relies on the Lipschitz property

of the objective and on the sampling strategy in the context of Algorithm 5. The

end result we show here is that any limit point of the iterates is stationary. We

begin with two simple preliminary results.

Lemma 1. If every i ∈ [1, . . . , T ] is equally likely to appear in T , then E[µT ] = µ.

Proof. Algorithm 5 returns µT = 1
|T |
∑

j∈T ψj(θ), where ψj(θ) = −∇θ log(p(yj|xj,θ)).

If each j has an equal chance to appear in T , then

E

[
1

|T |
∑
j∈T

ψj(θ)

]
=

1

|T |
∑
j∈T

E[ψj(θ)] =
1

|T |
∑
j∈T

µ = µ .

Note that the hypothesis here is very weak: there is no stipulation that the batch

size be of a certain size, grow with iterations, etc. This lemma therefore applies to

a wide class of randomized bound methods.

Lemma 2. Denote by λmin the infimum over all possible eigenvalues of ΣS over
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all choices of batches (λmin may be 0). Then E[(ΣS + ηI)−1] satisfies

1

η + λmax

I ≤ E[(ΣS + ηI)−1] ≤ 1

η + λmin

I .

Proof. For any vector x and any realization of ΣS , we have

1

η + λmax

‖x‖2 ≤ xT (ΣS + ηI)−1x ≤ 1

η + λmin

‖x‖2 ,

where λmax depends on the data. Taking the expectation over T of be above

inequality gives the result.

Theorem 3. For any problem of form (3.2), apply iteration (3.3), where at each

iteration µT ,ΣS are obtained by Algorithm 5 for two independently drawn batches

subsets T ,S ⊂ [1, . . . , T ] selected to satisfy the assumptions of Lemma 1. Finally,

suppose also that the step sizes αk are square summable but not summable. Then

Lη(θk) converges to a finite value, and ∇Lη(θk) → 0. Furthermore, every limit

point of θk is a stationary point of Lη.

Theorem 3 states the conclusions of Proposition 3 from [101], and so to prove it

we need only check that the hypotheses of this proposition are satisfied.
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Proof. [101] consider algorithms of the form

θk+1 = θk − αk(sk +wk) .

In the context of iteration (3.3), at each iteration we have

sk +wk = (Σk
S + λI)−1gkT ,

where gkT = µkT + ηθk, and gk is the full gradient of the regularized problem (3.2).

We choose

sk = E[(Σk
S + ηI)−1]gk, wk = (Σk

S + ηI)−1gkT − sk.

We now have the following results:

1. Unbiased error:

E[wk] = E[(Σk
S + ηI)−1gkT − sk] = E[(Σk

S + ηI)−1]E[gkT ]− sk = 0 ,

(3.4)

where the second equality is obtained by independence of the batches T and

S, and the last equality uses Lemma 1.
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2. Gradient related condition:

(gk)Tsk = (gk)TE[(Σk
S + ηI)−1]gk ≥ ‖gk‖2

η + λmax

. (3.5)

3. Bounded direction:

‖sk‖ ≤ ‖gk‖
η + λmin

. (3.6)

4. Bounded second moment: By part 1, we have

E[‖wk‖2] ≤ E[‖(Σk
S + ηI)−1gkT ‖2

≤ E[‖gkT ‖2]

(η + λmin)2
=

tr(cov[gkT ]) + ‖gk‖2

(η + λmin)2
.

(3.7)

The covariance matrix of gkT is proportional to the covariance matrix of the set of

individual (data-point based) gradient contributions, and for problems of form (3.2)

these contributions lie in the convex hull of the data, so in particular the trace of

the covariance must be finite. Taken together, these results show all hypotheses of

Proposition 3 from [101] are satisfied, and the result follows.

Theorem 3 applies to any stochastic and semi-stochastic variant of the method.

Note that two independent data samples T and S are required to prove (3.4).

Computational complexity motivates different strategies for selecting choose T and

S. In particular, it is natural to use larger mini-batches to estimate the gradient
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and smaller mini-batch sizes for the estimation of the second-order curvature term.

Algorithms of this kind have been explored in the context of stochastic Hessian

methods [50]. We describe our implementation details in Section 3.3.

3.2.2 Rates of Convergence for Logistic Regression

The structure of objective (3.2) allows for a much stronger convergence theory.

We first present a lemma characterizing strong convexity and Lipschitz constant

for (3.2). Both of these properties are crucial to the convergence theory.

Lemma 3. The objective Lη in (3.2) has a gradient that is uniformly norm bounded,

and Lipschitz continuous.

Proof. The function Lη has a Lipschitz continuous gradient if there exists an L

such that

‖∇Lη(θ1)−∇Lη(θ0)‖ ≤ L‖θ1 − θ0‖

holds for all (θ1,θ0). Any uniform bound for trace(∇2Lη) is a Lipschitz bound for

∇Lη. Define

ay,j := hxj(y) exp(θ>fxj(y)) ,

and note ay,j ≥ 0. Let pj be the empirical density where the probability of observing
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y is given by
ay,j∑
y ay,j

. The gradient of (3.2) is given by

1

T

T∑
j=1

((∑
y

ay,jfxj(y)∑
y ay,j

)
− fxj(yj)

)
+ ηθ =

1

T

T∑
j=1

(
Epj [fxj(·)]− fxj(yj)

)
+ ηθ

It is straightforward to check that the Hessian is given by

∇2Lη =
1

T

T∑
j=1

covpj [fxj(·)] + ηI

where covpj [·] denotes the covariance matrix with respect to the empirical density

function pj. Therefore a global bound for the Lipschitz constant L is given by

maxy,j ‖fxj(y)‖2 + ηI, which completes the proof.

Corollary 1. The function L0 is strongly convex exactly when
∑

j,y fxj(y)fxj(y)T

is positive definite, and Lη is strongly convex for any positive η.

We now present a convergence rate result, using results of Theorem 2.2 from [51].

Theorem 4. Suppose that the selection strategy of S satisfies Lemma 2. Then

there exist µ, L > 0 such that

‖∇Lη(θ1)−∇Lη(θ2)‖∗∗ ≤ L‖θ2 − θ1‖∗

Lη(θ2) ≥ Lη(θ1) + (θ2 − θ1)T∇Lη(θ1) +
1

2
ρ‖θ2 − θ1‖∗

(3.8)

where ‖θ‖∗ =
√
θT (Σk

S + ηI)θ and ‖θ‖∗∗ is the corresponding dual norm
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√
θT (Σk

S + ηI)−1θ. Furthermore, take αk = 1
L

in (3.3), and define Bk = ‖∇Lkη −

gkT ‖2, the square error incurred in the gradient at iteration k. Provided a batch

growth schedule with limk→∞
Bk+1

Bk
≤ 1, for each iteration (3.3) we have (for any

ε > 0)

Lη(θk)− Lη(θ∗) ≤
(

1− ρ

L

)k
[Lη(θ0)− Lη(θ∗)] +O(Ck) , (3.9)

with Ck = max{Bk, (1− ρ
L

+ ε)k}.

Proof. Let L̃ denote the bound on the Lipschitz constant of g is provided in (3.2.2).

By the conclusions of Lemma 2, we can take L = 1√
η+λmin

L̃. Let ρ̃ denote the

minimum eigenvalue of (3.2.2) (note that ρ̃ ≥ η). Then take ρ = 1√
η+λmax

ρ̃. The

convergence rate result follows immediately by Theorem 2.2 from [51].

3.3 Semi-stochastic bound method versus generic optimiza-

tion methods: empirical evaluation

In this section, we provide the empirical evaluation of the performance of the semi-

stochastic bound majorization method and compare it with the performance of

generic optimization methods. We first briefly discuss important implementation

details as well as describe the comparator methods we use for our algorithm.
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3.3.1 Efficient inexact solvers

The linear system we have to invert in iteration (3.3) has very special structure.

The matrix Σ returned by Algorithm 5 may be written as Σ = SST , where each

column of S is proportional to one of the vectors (fxj(y) − r) computed by the

bound. When the dimensions of θ are large, it is not practical to compute the Σ

explicitly. Instead, to compute the update in iteration (3.3), we take advantage of

the fact that

Σx = S(STx),

and use S (computed with a simple modification to the bound method) to imple-

ment the action of Σ. When S ∈ Rd×k (k is a mini-batch size), the action of the

transpose on a vector can be computed in O(dk), which is very efficient for small

k. The action of the regularized curvature approximation Σ + ηI follows immedi-

ately. Therefore, it is efficient to use iterative minimization schemes, such as lsqr,

conjugate gradient, or others to compute the updates. Moreover, using only a few

iterations of these methods further regularizes the sub-problems [102].

It is interesting to note that even when η = 0, and ΣT is not invertible, it makes

sense to consider inexact updates. To justify this approach, we first present a range

lemma.
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Lemma 4. For any T , we have µT ∈ R(ΣT ).

Proof. The matrix ΣT is formed by a sum of weighted outer products (fxj(y) −

r)(fxj(y)− r)>. We can therefore write

ΣT = LDLT

where L = [l1, . . . , l|Ω|·|T |], lk = fxj(yk)− rk (k is the current iteration of the bound

computation), and D is a diagonal matrix with weights Dkk = 1
|T |

tanh( 1
2

log(αk/zk))

2 log(αk/zk)
,

where the quantities αk, zk correspond to iterations in Algorithm (5). Since µ is in

the range of L by construction, it must also be the range of ΣT .

Lemma 4 tells us that there is always a solution to the linear system ΣT∆θ = µT ,

even if ΣT is singular. In particular, a minimum norm solution can be found using

the Moore-Penrose pseudoinverse, or by simply applying lsqr or cg, which is useful

in practice when the dimension d is large. For many problems, using a small number

of cg iterations both speeds up the algorithm and serves as additional regularization

at the earlier iterations, since the (highly variable) initially small problems are not

fully solved.
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3.3.2 Mini-batches selection scheme

In our experiments, we use a simple linear interpolation scheme to grow the batch

sizes for both the gradient and curvature term approximations. In particular, each

batch size (as a function of iteration k) is given by

bk = min(bcap, b1 + round((k − 1)γ)),

where bcap represents the cap on the maximum allowed size, b1 is the initial batch

size, and γ gives the rate of increase. In order to specify the selections chosen, we

will simply give values for each of (b1
µ, b

1
Σ, γµ, γΣ). For all experiments, the cap bcap

µ

on the gradient computation was the full training set, the cap bcap
Σ for the curvature

term was taken to be 200, initial b1
µ and b1

Σ were both set to 5. At each iteration

of SQB, the parameter vector is updated as follows:

θk+1 = θk − ξk,

where ξk = α(Σk
S + ηI)−1(µkT + ηθk) (α is the step size; we use constant step size

for SQB in our experiments). Notice that ξk is the solution to the linear system

(Σk
S + ηI)ξk = µkT + ηθk and can be efficiently computed using the lsqr solver

(or any other iterative solver). For all experiments, we ran a small number (l)

iterations of lsqr, where l was chosen from the set {5, 10, 20}, before updating the
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parameter vector (this technique may be viewed as performing conjugate gradient

on the bound), and chose l with the best performance (the fastest and most stable

convergence).

3.3.3 Step size

One of the most significant disadvantages of standard stochastic gradient meth-

ods [29, 30] is the choice of the step size. Stochastic gradient algorithms can

achieve dramatic convergence rate if the step size is badly tuned [103, 31]. An

advantage of computing updates using approximated curvature terms is that the

inversion also establishes a scale for the problem, and requires minimal tuning. This

is well known (phenomenologically) in inverse problems. In all experiments below,

we used a constant step size; for well-conditioned examples we used step size of 1,

and otherwise 0.1.

3.3.4 Comparator methods

We compared SQB method with the variety of competitive state-of-the-art methods

which we list below:

• L-BFGS: limited-memory BFGS method (quasi-Newton method) tuned for

log-linear models which uses both first- and second-order information about

the objective function (for L-BFGS this is gradient and approximation to the
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Hessian); we use the competitive implementation obtained from http://www.di.

ens.fr/∼mschmidt/Software/minFunc.html

• SGD: stochastic gradient descent method with constant step size; we use the

competitive implementation obtained from http://www.di.ens.fr/∼mschmidt/

Software/SAG.html which is analogous to L. Bottou implementation but with

pre-specified step size

• ASGD: averaged stochastic gradient descent method with constant step size;

we use the competitive implementation obtained from http://www.di.ens.fr/

∼mschmidt/Software/SAG.html which is analogous to L. Bottou implementa-

tion but with pre-specified step size

• SAG: stochastic average gradient method using the estimate of Lipschitz

constant Lk at iteration k set constant to the global Lipschitz constant; we

use the competitive implementation of [31] obtained from http://www.di.ens.fr/

∼mschmidt/Software/SAG.html

• SAGls: stochastic average gradient method with line search, we use the com-

petitive implementation of [31] obtained from http://www.di.ens.fr/∼mschmidt/

Software/SAG.html; the algorithm adaptively estimates Lipschitz constant L

with respect to the logistic loss function using line-search

Since our method uses the constant step size we chose to use the same scheme
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for the competitor methods like SGD, ASGD and SAG. For those methods

we tuned the step size to achieve the best performance (the fastest and most

stable convergence). Remaining comparators (L-BFGS and SAGls) use line-

search.

3.3.5 Experiments

We performed experiments with l2-regularized logistic regression on binary clas-

sification task with regularization parameter η = 1
T

. We report the results for

six datasets: protein and quantum downloaded from the KDD Cup 2004 website

http://osmot.cs.cornell.edu/kddcup, sido downloaded from the Causality Workbench

website http://www.causality.inf.ethz.ch/home.php, rcv1 and covtype downloaded

from the LIBSVM Data website http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/data-

sets and adult, a UCI dataset downloaded from http://archive.ics.uci.edu/ml/. Three

datasets are sparse: rcv1 (T = 20242, d = 47236; SQB parameters: l = 5,

γµ = 0.005, γΣ = 0.0003), adult (T = 32561, d = 123; SQB parameters: l = 5,

γµ = 0.05, γΣ = 0.001) and sido (T = 12678, d = 4932; SQB parameters:

l = 5, γµ = 0.01, γΣ = 0.0008). The remaining datasets are dense: covtype

(T = 581012, d = 54; SQB parameters: l = 10, γµ = 0.0005, γΣ = 0.0003), protein

(T = 145751, d = 74; SQB parameters: l = 20, γµ = 0.005, γΣ = 0.001) and

quantum (T = 50000, d = 78; SQB parameters: l = 5, γµ = 0.001, γΣ = 0.0008).

Each dataset was split to training and testing datasets such that 90% of the original
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Figure 3.1: Comparison of optimization strategies for l2-regularized logistic regression. From left
to right: training excess cost, testing cost and testing error. From top to bottom:
rcv1 (αSGD = 10−1, αASGD = 1, αSQB = 10−1), adult (αSGD = 10−3, αASGD = 10−2,
αSQB = 1), sido (αSGD = 10−3, αASGD = 10−2, αSQB = 1), covtype (αSGD = 10−4,
αASGD = 10−3, αSQB = 10−1), protein (αSGD = 10−3, αASGD = 10−2, αSQB = 1)
and quantum (αSGD = 10−4, αASGD = 10−2, αSQB = 10−1) datasets. This figure is
best viewed in color.

datasets was used for training and the remaining part for testing. Only sido and

protein were split in half to training and testing datasets due to large disproportion
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of the number of data points belonging to each class. The experimental results we

obtained are shown in Figure 3.1. We report the training excess cost and the test-

ing cost as well as the testing error as a function of the number of effective passes

through the data and thus the results do not rely on the implementation details.

We would like to emphasize however that under current implementation the average

running time for the bound method across the datasets is comparable to that of the

competitor methods. The experimental evaluation shows that the semi-stochastic

quadratic bound method is competitive with state-of-the-art generic methods.

3.4 Conclusion

We showed a semi-stochastic quadratic bound method, which is a semi-stochastic

variant of the partition function bound majorization technique proposed in the pre-

vious chapter of this thesis. The convergence theory we presented is divided into

two parts. First, we proved the global convergence to a stationary point under

weak hypotheses (in particular, convexity is not required). Second, for the logistic

regression problem, we provided a stronger convergence theory, including a rate of

convergence analysis. We therefore developed and analyzed a flexible framework

that allows sample-based approximations of the bound derived in the previous chap-

ter of this thesis which are appropriate in the large-scale setting, computationally

efficient, and competitive with state-of-the-art methods.
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In Chapter 2 and 3 of this thesis we did not address the problem of computational

complexity in a setting where the number of classes for multi class prediction is very

large. We will address this problem in the next chapter where we will be reducing

the multi class classification problem to a set of simpler (binary) sub-problems

which can further be optimized using any optimization technique discussed before

(e.g. gradient descent style optimization, bound optimization etc.).
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44
Online multi class partition trees for

logarithmic time predictions

This chapter is based on joint work with Alekh Agarwal and John Langford and

is currently in preparation for submission [104]. All codes are released and are

publicly available at https://github.com/AnnaChoromanska/vowpal wabbit.

In this chapter we study the multi class classification problem in the setting where

the data comes in a stream and the number of classes is large. The existing ap-

proaches to this problem, including the bound majorization method discussed be-

fore, are either intractable (their running time is often O(k), where k is the number
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of classes, whereas for large k it is desirable to achieve train and test running times

which are O(log k) or possibly better), or do not adapt well to the data. In this

chapter we consider a common approach to this problem which reduces it to a set

of binary regression problems organized in a tree structure that naturally allows

logarithmic time prediction.

The objective of this chapter is to introduce a new splitting criterion (objective func-

tion) which could be easily optimized online using standard optimization tools like

gradient descent style optimization or bound majorization method, and simultane-

ously gives balanced (logarithmic depth) trees and small multi class classification

error. This chapter is organized as follows. Section 4.1 proposes a splitting criterion

and shows its basic properties, Section 4.2 introduces a probabilistic interpretation

of the proposed splitting criterion and continues analyzing its properties, and Sec-

tion 4.3 presents a boosting statement addressing the quality of the obtained multi

class partition trees. Finally, Section 4.4 shows the resulting algorithm for online,

logarithmic time multi class classification with partition trees and Section 4.5 pro-

vides the empirical evaluation of the quality of splits obtained by optimizing the

proposed splitting criterion. We conclude this chapter with a brief discussion.
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4.1 Splitting criterion

In this section we will introduce the splitting criterion that we use in every node

of the tree to decide whether the data point coming to this node should be sent to

the left or right child node, and next we will show several desirable properties of

this splitting criterion (objective function). In particular, we will show that maxi-

mizing this objective function induces simultaneously balanced and pure splits and

furthermore this objective function can be online optimized using easy gradient

descent-style optimization. The first property can potentially be satisfied by other

existing objective functions, such as entropy-based objectives (the in-depth discus-

sion of these objectives and the conditions where they can lead to balanced and

pure splits is done for example in [67]). However, to the best of our knowledge,

the objective function we developed is the only existing one up-till-now used in the

context of decision trees which can be easily optimized online (as opposed to other

objectives, like the previously mentioned entropy-based objectives).

4.1.1 Formulation of the objective function

For notation simplicity consider the split done in the root. Let X denotes the input

dataset. The objective function that we aim to maximize is given as follows

J(nr, kr) =
∑
x∈X

[
nl

kt(x)

∣∣∣∣kt(x)

nt
− kl(x)

nl

∣∣∣∣+
nr
kt(x)

∣∣∣∣kt(x)

nt
− kr(x)

nr

∣∣∣∣]
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where nt is the total number of examples, nr (resp. nl) is the number of examples

going to the right (resp. left) child. Notice that nt = nr + nl. kt(x) is the total

number of examples labeled in the same way as x, kr(x) (resp. kl(x)) is the number

of examples labeled in the same way as x that are going to the right (resp. left)

child. Notice that ∀x∈Xkt(x) = kr(x) + kl(x). Thus the objective function can be

rewritten as

J(nr, kr) = 2
∑
x∈X

nr
kt(x)

∣∣∣∣kt(x)

nt
− kr(x)

nr

∣∣∣∣

By the maximally balanced split we will understand the one for which nr = nt−nr

and thus the same number of examples were directed to the left and right child

nodes. By the maximally pure split we will understand the one for which kr(x) = 0

or kr(x) = kt(x) and thus there exists no two distinct data points with the same

label that are in different child nodes. The proposed objective function has certain

desirable properties which are captured in Lemma 5 and Lemma 6 and in the entire

Section 4.2.

Lemma 5. If a maximally pure and balanced split exists, this split maximizes the

objective.

Proof. Let XR be the set of data points in the right child node such that no data

point in the left child node has the same label as any data point in XR (XL is
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defined in analogy). Let XB be the set of data points such that their labels appear

in both child nodes.

J(nr, kr) = 2
∑
x∈X

nr
kt(x)

∣∣∣∣kt(x)

nt
− kr(x)

nr

∣∣∣∣ = 2
∑
x∈XR

nr
kt(x)

∣∣∣∣kt(x)

nt
− kr(x)

nr

∣∣∣∣

+2
∑
x∈XL

nr
kt(x)

∣∣∣∣kt(x)

nt
− kr(x)

nr

∣∣∣∣+ 2
∑
x∈XB

nr
kt(x)

∣∣∣∣kt(x)

nt
− kr(x)

nr

∣∣∣∣

= 2
∑
x∈XR

nt − nr
nt

+ 2
∑
x∈XL

nr
nt

The last step comes from the fact that we consider maximally pure split thus

∀x∈XRkr(x) = kt(x), ∀x∈XLkr(x) = 0 and thus furthermore XB must be an empty

set (that eliminates the third term). We can further simplify as follows

2
nr(nt − nr)

nt
+ 2

nr(nt − nr)
nt

= 4
nr(nt − nr)

nt

Since we are maximizing the objective, we set nr to nr = nl = 1
2
nt. That shows the

split is also maximally balanced.

Lemma 6. For any class the optimal value of kr(x) in isolation (fix other classes)

is either 0 or 1 (thus in isolation, maximizing the objective prevents from splitting

the class between two children (leading to a higher purity split)).



Chapter 4. Online multi class partition trees for logarithmic time predictions 80

Proof. Objective function is

J(nr, kr) = 2
∑
x∈X

nr
kt(x)

∣∣∣∣kt(x)

nt
− kr(x)

nr

∣∣∣∣ = 2
∑
x∈X

1

kt(x)

∣∣∣∣nrkt(x)− ntkr(x)

nt

∣∣∣∣

= 2
∑
x∈X

1

kt(x)

∣∣∣∣nrkt(x)

nt
− kr(x)

∣∣∣∣ = 2
∑
x∈X

1

kt(x)

∣∣∣∣(kr(x) + C)kt(x)

nt
− kr(x)

∣∣∣∣
where C is a fixed constant. In order to optimize this expression for kr(x) (notice

∀x∈Xkr(x) ∈< 0, kt(x) >) one has to set kr(x) to either kr(x) = 0 or kr(x) =

kt(x).

The properties of the proposed objective function that we showed so far are promis-

ing thought still insufficient to be convinced that it is a reasonable objective to

optimize in order to obtain highly balanced and pure splits (or ideally maximally

balanced and pure splits). We will now show two more very important properties

which indicate that increasing the value of the objective functions leads to more

balanced splits and simultaneously more pure splits.

4.2 Purity and balancing factors

In order to show some more interesting properties of the objective function we need

to introduce more formal notation. Let k be the number of labels. Let H be the
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hypothesis class. Let πi be the probability that randomly chosen data point from

the dataset has label i. Consider hypothesis h ∈ H and denote Pr(h(x) > 0|i) to

be the probability that h(x) > 0 given that x has label i. We can then define pure

and balanced splits as follows

Definition 3. The hypothesis h ∈ H induces a pure split if

k∑
i=1

πi min(Pr(h(x) > 0|i), P r(h(x) < 0|i)) ≤ δ.

Definition 4. The hypothesis h ∈ H induces a balanced split if

∃c1∈(0,1)c ≤ Pr(h(x) > 0) ≤ 1− c.

We will refer to ε =
∑k

i=1 πi min(Pr(h(x) > 0|i), P r(h(x) < 0|i)) as the purity

factor as it determines how pure the split is and we will refer to p = Pr(h(x) > 0)

as the balancing factor as it determines how balanced the split is. One can express

the objective function in the equivalent form given below (notice that nr and kr

depend on h)

J(h) = 2
k∑
i=1

πi [|P (h(x) > 0)− P (h(x) > 0|i)|]

We will now show that increasing the value of objective function leads to recovering
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the hypothesis that induces more balanced splits and also more pure splits.

4.2.1 Balancing factor

We want to show the relation between the balancing factor and the value of the

objective function. In order to do that we will start from deriving an upper-bound

on J(h), where h ∈ H is some hypothesis in the hypothesis class. For the ease of

notation let Pi = Pr(h(x) > 0|i). Thus

J(h) = 2
k∑
i=1

πi |P (h(x) > 0|i)− P (h(x) > 0)| = 2
k∑
i=1

πi

∣∣∣∣∣Pi −
k∑
j=1

πjPj

∣∣∣∣∣ ,
where ∀i={1,2,...,k}0 ≤ Pi ≤ 1. The objective J(h) is definitely maximized on the

extremes of the [0, 1] interval. The upper-bound on J(h) can be thus obtained by

setting some of the Pi’s to 1’s and remaining ones to 0’s. To be more precise, let

L1 = {i : i ∈ {1, 2, . . . , k}, Pi = 1} and L2 = {i : i ∈ {1, 2, . . . , k}, Pi = 0}. We can

then write that

J(h) ≤ 2

[∑
i∈L1

πi(1−
∑
j∈L1

πj) +
∑
i∈L2

πi
∑
j∈L1

πj

]

= 2

[∑
i∈L1

πi − (
∑
i∈L1

πi)
2 + (1−

∑
i∈L1

πi)
∑
i∈L1

πi

]
= 4

[∑
i∈L1

πi − (
∑
i∈L1

πi)
2

]
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Recall the balancing factor p = Pr(h(x) > 0). Notice that p =
∑

i∈L1
πi thus

J(h) ≤ 4p(1− p)⇔ 4p2 − 4p+ J(h) ≤ 0

Thus

p ∈

[
1−

√
1− J(h)

2
,
1 +

√
1− J(h)

2

]
.

Thus the balancing factor p belongs to the interval [c, 1− c], where c =
1−
√

1−J(h)

2
,

and this interval is symmetric around 1
2
. Maximizing J(h) leads to narrowing
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2

Figure 4.1: Blue: upper-bound on the balancing factor, red: lower-bound on the balancing
factor, green: interval where the balancing factor lies for different values of the
objective function J(h).
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the [c, 1 − c] interval around value 1
2

which is the value that corresponds to the

maximally balanced split. In particular for the objective-maximizing hypothesis h∗

(then J(h∗) = 1) we obtain that c = 1
2

and the split is maximally balanced then.

Figure 4.1 illustrates the dependence of the balancing factor on the value of the

objective function.

4.2.2 Purity factor

In analogy to what was shown before now we want to find the relation between the

purity factor and the value of the objective function. As before in order to do that

we will start from deriving an upper-bound on J(h), where h ∈ H. Again for the

ease of notation let Pi = Pr(h(x) > 0|i). Thus

J(h) = 2
k∑
i=1

πi |P (h(x) > 0|i)− P (h(x) > 0)| = 2
k∑
i=1

πi

∣∣∣∣∣Pi −
k∑
j=1

πjPj

∣∣∣∣∣ ,
where ∀i={1,2,...,k}0 ≤ Pi ≤ 1. Let εi = min(Pi, 1 − Pi) and recall the purity factor

ε =
∑k

i=1 πiεi and the balancing factor p = P (h(x) > 0). Without loss of generality,

let p ≤ 1
2
. Let L1 = {i : i ∈ {1, 2, . . . , k}, Pi ≥ 1

2
}, L2 = {i : i ∈ {1, 2, . . . , k}, Pi ∈

[p, 1
2
)} and L3 = {i : i ∈ {1, 2, . . . , k}, Pi < p}. First notice that:

p =
k∑
i=1

πiPi =
∑
i∈L1

πi(1− εi) +
∑

i∈L2∪L3

πiεi =
∑
i∈L1

πi − 2
∑
i∈L1

πiεi + ε
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We can then write that

J(h)

2
=

k∑
i=1

πi |Pi − p| =
∑
i∈L1

πi(1− εi − p) +
∑
i∈L2

πi(εi − p) +
∑
i∈L3

πi(p− εi)

=
∑
i∈L1

πi(1− p)−
∑
i∈L1

πiεi +
∑
i∈L2

πiεi −
∑
i∈L2

πip+
∑
i∈L3

πip−
∑
i∈L3

πiεi

=
∑
i∈L1

πi(1− p)−
∑
i∈L1

πiεi +
∑
i∈L2

πiεi −
∑
i∈L2

πip+ p(1−
∑
i∈L1

πi −
∑
i∈L2

πi)−
∑
i∈L3

πiεi

=
∑
i∈L1

πi(1− 2p)−
∑
i∈L1

πiεi +
∑
i∈L2

πiεi + p(1− 2
∑
i∈L2

πi)−
∑
i∈L3

πiεi

=
∑
i∈L1

πi(1− 2p) + p(1− 2
∑
i∈L2

πi)− ε+ 2
∑
i∈L2

πiεi

= (1− 2p)(p+ 2
∑
i∈L1

πiεi − ε) + p(1− 2
∑
i∈L2

πi)− ε+ 2
∑
i∈L2

πiεi

= 2(1− p)(p− ε) + 2(1− 2p)
∑
i∈L1

πiεi − 2p
∑
i∈L2

πi + 2
∑
i∈L2

πiεi
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= 2(1− p)(p− ε) + 2(1− 2p)
∑
i∈L1

πiεi + 2
∑
i∈L2

πi(εi − p)

≤ 2(1− p)(p− ε) + 2(1− 2p)
∑
i∈L1

πiεi + 2
∑
i∈L2

πi(
1

2
− p)

≤ 2(1− p)(p− ε) + 2(1− 2p)ε+ 1− 2p

= 2p(1− p)− 2ε(1− p) + 2ε(1− 2p) + 1− 2p

= 1− 2p2 − 2pε

Thus:

ε ≤ 2− J(h)

4p
− p

Thus the upper-bound on the purity factor is δ , where δ = 2−J(h)
4p
− p. We already

know that maximizing J(h) leads to narrowing the [c, 1− c] interval around value

1
2

which is the value that corresponds to the maximally balanced split. Thus nar-

rowing this interval results in pushing p closer to value 1
2

and that will result in
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Figure 4.2: Red: the upper-bound on the purity factor as a function of J(h) when the balancing
factor is fixed to 1

2 .

the decrease of δ. In particular for the objective-maximizing hypothesis h∗ (then

J(h∗) = 1) we obtain the maximally balanced split (p = 1
2
) and simultaneously

we obtain that δ = 0 and thus this split is also maximally pure then. Figure 4.2

illustrates the dependence of the balancing factor on the value of the objective

function.

4.3 Boosting statement

We will now use the entropy of the tree leafs, a standard measure used in decision

trees, to measure the quality of obtained tree and show the upper-bound on the

number of splits required to reduce this measure below threshold ε. We borrow from
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the theoretical analysis of decision tree algorithms in [67] originally developed to

show the boosting properties of the decision trees for binary classification problems.

Our analysis generalizes the analysis there to the multi class classification setting.

Consider the tree T , where every node except for leafs (we will refer to the set of

the tree leafs as L) is ’characterized’ by the splitting hypothesis h ∈ H recovered by

maximizing the objective function introduced before. We will consider the entropy

function G as the measure of the quality of tree T :

G(T ) =
∑
n∈L

w(n)
k∑
i=1

−πni ln(πni)

where πni’s are the probabilities that randomly chosen x drawn from the underlying

target distribution P has label i given that x reaches node n and w(n) is the weight

of leaf n defined as the probability of randomly chosen x drawn from P to reach

leaf n (note that
∑

n∈Lw(n) = 1).

Fix a leaf node n. For the ease of notation let w = wn. We will consider splitting

the leaf to two children n0 and n1. For the ease of notation let w0 = wn0 and

w1 = wn1 . Also for the ease of notation let p = P (hn(x) > 0) and Pi = P (hn(x) >

0|i). Let πi be the probability that randomly chosen x drawn from P has label i

given that x reaches node n. Recall that p =
∑k

i=1 πiPi and
∑k

i=1 πi = 1. Also

notice that w0 = w(1 − p) and w1 = wp. Let π be the k-element vector with

ith entrance equal to πi. Furthermore let G(π) =
∑k

i=1−πi ln(πi). Before the
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split the contribution of node n to the total loss of the tree T , that we will refer

to as Gt (t is the index of the current iteration), was wG(π1, π2, . . . , πk). Let

πi(n0) = πi(1−Pi)
1−p and πi(n1) = πiPi

p
be the probabilities that randomly chosen

x drawn from P has label i given that x reaches node respectively n0 and n1.

Furthermore let π(n0) be the k-element vector with ith entrance equal to πi(n0)

and let π(n1) be the k-element vector with ith entrance equal to πi(n1). Notice

that π = (1− p)π(n0) + pπ(n1). After the split the contribution of the same, now

internal, node n changes to w((1 − p)G(π(n0)) + pG(π(n1)). We will denote the

difference between them as ∆t and thus

∆t = w [G(π1)− (1− p)G(π(n0))− pG(π(n1)]

We aim to lower-bound ∆t. First, without loss of generality assume that P1 ≤ P2 ≤

· · · ≤ Pk. For the ease of notation let J = J(hn). Recall that

J

2
=

k∑
i=1

πi|Pi − p|

From strong concavity we know that

∆t ≥ wp(1− p)‖π(n0)− π(n1)‖2
1 = wp(1− p)

(
k∑
i=1

|πi(n0)− πi(n1)|

)2
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= wp(1− p)

(
k∑
i=1

πi

∣∣∣∣Pip − 1− Pi
1− p

∣∣∣∣
)2

= wp(1− p)

(
k∑
i=1

πi

∣∣∣∣ Pi − pp(1− p)

∣∣∣∣
)2

=
w

p(1− p)

(
k∑
i=1

|πi(Pi − p)|

)2

=
wJ2

4p(1− p)

Furthermore notice that at round t there must be a leaf n such that w(n) ≥ Gt
2t ln k

(we assume we selected this leaf to the currently considered split), where Gt =∑
n∈Lw(n)

∑k
i=1−πni ln(πni). That is because

Gt =
∑

n∈Lw(n)
∑k

i=1−πni ln(πni) ≤
∑

n∈Lw(n) ln k ≤ 2twmax ln k where wmax =

maxnw(n). Thus wmax ≥ Gt
2t ln k

. Thus

∆t ≥
J2Gt

8p(1− p)t ln k

Definition 5 (Weak Hypothesis Assumption). Let γ ∈ (0,min(pn, 1 − pn)]. Let

for any distribution P over X at each non-leaf node n of the tree T there exists a

hypothesis h ∈ H such that ∀i∈{1,2,...,k}|Pni − pn| ≥ γ.

Note that the Weak Hypothesis Assumption in fact requires that each non-leaf node

of the tree T have a hypothesis h in its hypothesis class H which guarantees certain

’weak’ purity of the split on any distribution P over X . Also note that the condition

γ ∈ (0,min(pn, 1−pn)] implies that γ ≤ 1
2
. From the Weak Hypothesis Assumption
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it follows that for any n, pn cannot be too near 0 or 1 since 1 − γ ≥ pn ≥ γ. We

will now proceed to further lower-bounding ∆t. Note that

J

2
=

k∑
i=1

πi(|p− Pi|) ≥
k∑
i=1

π1γ = γ

Thus J ≥ 2γ and finally

∆t ≥
γ2Gt

2(1− γ)2t ln k
.

Let η =
√

8
(1−γ)2 ln k

γ. Then

∆t >
η2Gt

16t

Thus we obtain the recurrence inequality

Gt+1 ≤ Gt −∆t < Gt −
η2Gt

16t
= Gt

[
1− η2

16t

]

We can now compute the minimum number of splits required to reduce Gt below

ε, where ε ∈ [0, 1]. We use the result from [67] (see the proof of Theorem 10) and

obtain the following theorem.

Theorem 5. Under the Weak Hypothesis Assumption, for any ε ∈ [0, 1], to obtain
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Gt ≤ ε it suffices to make

t ≥
(

1

ε

) 4(1−γ)2 ln k

γ2

splits.

The tree depth is the logarithm of the number of splits and thus under favorable

conditions Theorem 5 guarantees logarithmic depth tree which implies logarithmic

train and test running times (note that the Weak Hypothesis Assumption may be

violated for some datasets, like in example xor-type dataset for which simultane-

ously balanced and pure split does not exist).

Alongside the theoretical results we have already shown, we also obtained one more

interesting theoretical result for the special case when having k = 2 classes. We

can show that the worst case value of the balancing factor p w.r.t. the change in

the potential is a balanced p, in particular we can prove the lemma which states

that in the worst case setting when ∆t is minimized, the value of p has to lie in the

interval [0.4, 0.6]. We defer this result to the Appendix B.

4.4 Algorithm

The objective function that we showed in Section 4.2 and consider throughout the

paper has one more convenient equivalent form which will yield a simple online
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algorithm for tree construction and training. Notice that

J(h) = 2Ex,i[|P (h(x) > 0)− P (h(x) > 0|i)|] = 2Ex,i[|P (h(x) > 0)− P (h(x) > 0|i)|]

= 2Ex,i

[∣∣∣∣∣
∑n

j=1 1(h(xj) > 0)

nt
−
∑ni

j=1 1(h(xj) > 0)

ni

∣∣∣∣∣
]
,

where ni is the number of data points in class i. This is a discrete optimization

problem that we relax to the following form

J(h) = 2Ex,i
[∣∣Ex[h(x) > 0]− Ex|i[h(x) > 0]

∣∣] ,
where Ex|i[h(x) > 0] denotes expected margin of class i (h(x) is always clipped

to the interval [−1, 1]). We can store the empirical estimate of the expectations

and very easily update them online. The sign of the difference decides whether the

currently seen example should be send to the left or right child node.

Algorithm 6 shows how the tree is simultaneously constructed and trained as we

pass over the data. In this chapter we assume the simplest possible model and

thus we consider linear regressors in the tree nodes. For the binary regression

problems at the tree nodes, we used Vowpal Wabbit [105], which is a simple linear

regressor trained by stochastic gradient descent. However, we would like to strongly
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Algorithm 6 Online tree training (regression algorithm R)

Subroutine Initialize node (v)
mv

c = zeros(k, 1), mv
t = 0 (sum of the margins per class and in total)

nvc = zeros(k, 1), nvt = 0 (number of data points per class and in total)
Y v
R = ∅, Y v

L = ∅ (label sets in the right and left child nodes of
node v)

———————————————————————————————————–
create the root node r: run Subroutine Initialize node (r)
foreach example s(x, y) do

Set j = r
while j is not a leaf do

update
mj

c(y)+= hj(s(x, y)); njc(y)++; ejc(y)= mj
c(y)/njc(y)

mj
t += hj(s(x, y)); njt++; ejt = mj

t/n
j
t

if (ejc(y) > ejt)

Y j
R = Y j

R ∪ y, c = 1
else

Y j
L = Y j

L ∪ y, c = 0
Train hj with example (s(x, y), c) (use absolute value loss and

take step in the subgradient
direction)

Set j to the child of j corresponding to c (if the child does not exist,
but has to be created:1

run subroutine
Initialize node (j))

emphasize that, depending on the model used at the tree nodes, for the binary

problems one could also use other generic optimization techniques discussed before

as well as the bound majorization method.

During training, the algorithm assigns a unique label to each node of the tree which

is currently a leaf. This label is the most frequent label that occurred in that leaf

1Each node of the tree creates simultaneously two children. The child of node j is created only
if the regressor at this node wants to send the current data point s(x, y) to the opposite direction
to where the previous points reaching j were sent to by this regressor.
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(the number of data points reaching this leaf that had this label was larger than

the number of data points reaching this leaf with any other label).2 When the tree

is already constructed and trained, the testing is done by pushing a test example

down the tree along the path starting from the root and ending at the leaf, where

in each node of the path a corresponding regressor is directing this example either

to the left or right child node. The label assigned to the test example is then the

label assigned to the leaf that the example descended to.

4.5 Empirical evaluation of the splitting criterion

In this section we show the empirical evaluation of the proposed splitting criterion.

Each dataset in our experiments was split into training and testing set. We report

the test error obtained by our online multi class partition tree and the test error

obtained by random tree, where both trees have the same number of nodes. Both

methods were implemented in the open source system Vowpal Wabbit ([105]).

We first use artificial datasets. We generated mixtures of well-separated spherical

Gaussians with the means placed on the vertices of k-hypercube (on these type of

datasets one-against-all algorithm achieves zero error but is intractable for large

k). In Table 4.1 we compare the test error obtained by online multi class partition

2Note that the order of coming examples, while training the tree, can potentially affect the
algorithm’s performance though we haven’t observed any strong sensitivity to data ordering while
performing experiments where the data was subject to random permutations.
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trees with the test error obtained by random trees.

k Algorithm depth Testing error [%]

64 Partition tree 7 1.6
Random tree 6 43.8

128 Partition tree 9 0.8
Random tree 7 40.3

1024 Partition tree 13 1.2
Random tree 10 65.2

8192 Partition tree 16 1.4
Random tree 13 58.7

Table 4.1: Testing error for online multi class partition trees and random trees on artificial
datasets.

Secondly, we performed similar experiments on some real datasets, MNIST and

RCV1. The results are provided in Table 4.2. Clearly, in both cases (experiments

with artificial and real datasets) our algorithm recovers balanced trees with signif-

icantly smaller error than random trees.

Dataset k Algorithm depth Testing error [%]

MNIST 10 Partition tree 5 9.1
Random tree 4 34.8

RCV1 99 Partition tree 14 37.5
Random tree 7 46.0

Table 4.2: Testing error for online multi class partition trees and random trees on MNIST and
RCV1 datasets.

Finally, we performed preliminary experiments3 on challenging ImageNet dataset

with 22000 classes. The depth of the partition tree recovered by our algorithm was

29. The depth of the random tree was 15. The test error obtained with partition

tree was 91.6%, while the random tree obtained 98.6%. We then examined top 5

3Experiments were run on a single machine.



Chapter 4. Online multi class partition trees for logarithmic time predictions 97

test error (we count an error if the data point is not among top 5 classes predicted

by the tree) and top log(k) test error. In the first case the test error obtained

with partition tree was 81.9%, while the test error obtained with random tree

improved only slightly to 96.5%. In the second case the test error for partition tree

and random tree was respectively 74.8% and 94.5%. Clearly, also this experiment

shows that partition trees significantly outperform random trees and better adapt

to the data structure.

4.6 Conclusion

We showed an algorithm for online multi class classification allowing logarithmic

train and test running times. It is a decision tree algorithm which differs from

the traditional decision tree approaches in the objective optimized, and in how

that optimization is done. The different objective guarantees simultaneously pure

and balanced splits and moreover can be easily optimized online using efficient

standard optimization tools, where the latter property significantly distinguishes

this objective from other existing objectives used in the context of decision trees.

The boosting statement that we proved provides an upper-bound on the number of

splits required to reduce the entropy of the leafs (a standard measure of the quality

of decision trees) of the multi class partition trees obtained by our algorithm below

threshold ε and, to the best of our knowledge, is the first existing boosting statement
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with logarithmic dependence on the label complexity.

In this chapter we considered a reduction of the multi class classification problem to

a set of simpler sub-problems (binary classification problems) that we solve using

standard optimization techniques, where the parameter vector is updated addi-

tively. In the real-life online settings however, it is also often the case that the data

is not yet labeled to any classification task but we still want to find its meaningful

representation. The next chapter will focus on this case and address the online

k-means clustering problem by reducing it to a set of simpler sub-problems that

we solve using standard optimization techniques (that we call experts, where each

expert is a clustering subroutine run on a data mini-batch), where the parameter

vector is updated multiplicatively.
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55
Online k-means clustering with expert

advice

This chapter is based on joint work with Claire Monteleoni that originally appeared

in [106, 107]. All codes are released and are publicly available at www.columbia.edu/

∼aec2163/NonFlash/Papers/Papers.html.

In the previous chapter we focused on the supervised learning setting and the multi

class classification problem, where the number of data classes is large. However,

labeling the data for any classification task is often very expensive in the first place

which motivates the study of unsupervised learning setting and clustering. In this
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chapter we study how to extend selected algorithms for online supervised learning

to the unsupervised learning setting. We focus on the family of online supervised

learning algorithms with access to expert predictors. It is an important family of

learning algorithms which differs from the optimization tools we have considered

so far. One important difference lies in the update rule which is multiplicative, not

additive as was the case before.

The objective of this chapter is to introduce a family of online clustering algo-

rithms obtaining approximation guarantees with respect to the k-means clustering

objective, a common measure of the quality of clustering, while using an evaluation

framework proposed by Dasgupta as an analog to regret. We show that there exists

an extension of the supervised learning algorithms, with access to expert predic-

tors, to the unsupervised learning setting which allows obtaining such approxima-

tion guarantees and that the obtained algorithms track the performance of the best

expert in its expert set. This chapter is organized as follows. Section 5.1 shows

the extension of supervised learning algorithms, with access to expert predictors,

to the unsupervised learning setting and presents the family of online clustering

algorithms we obtained, Section 5.2 provides the performance guarantees and Sec-

tion 5.3 shows the empirical evaluation of our algorithms. Conclusions end this

chapter.
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5.1 From supervised to unsupervised learning setting

Here we extend algorithms from [69] and [70] to the unsupervised learning set-

ting. These supervised online learning algorithms form their predictions on the

basis of a set of n ”expert” predictors, i, subject to a probability distribution over

experts, pt(i), which is updated dynamically with time, t. Different update rules

for pt(i) correspond to different transition dynamics, modeling different levels of

non-stationarity in the data.

In our setting, the experts output clusterings, and instead of computing prediction

errors in order to re-weight the experts, we compute an approximation to the current

value of the k-means objective obtained by each expert. We define ”loss” and

”clustering” functions, unsupervised analogs to ”prediction loss,” and ”prediction”.

In the clustering setting, the algorithm is not ”predicting” the current observation

xt; xt is in fact used in the clusterings of each of the experts, that inform the current

clustering. This is a real-time analog to the standard clustering task, in which the

action of the algorithm is not to predict, but to assign xt to a (dynamic) cluster

center. We show in Theorem 6 that our choice of loss and clustering functions

satisfies (c, η)-realizability, a condition that allows us to extend regret analyses

from [69, 70], for a family of algorithms.
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5.1.1 Preliminaries

Here we define notation. Let k be the desired number of clusters. We index

time by t, and let xt be the most recent observation in the stream. There are

n experts, which we index by i. Let Ci
t denote the set of centers output by the

ith expert at time t. We denote the center in Ci
t closest to the data point xt as

cit = arg minc∈Cit ‖xt − c‖2. We use the notation D(·‖·) for the Kullback-Leibler

divergence, and H(·) for the entropy.

Definition 6. The loss of a center, ct, output by a clustering algorithm, at time t,

is L(xt, ct) =
∥∥xt−ct

2R

∥∥2
. The normalization factor takes some R ≥ ‖xt‖ for all t.

The bound, ‖xt‖ ≤ R, is justified by the fact that any algorithm that can store

points, xt, in memory, has a physical constraint on the size of a word in memory. We

assume that R also upper-bounds ‖cit‖ for i and all t. Given the bound on ‖x‖, this

would certainly hold for any reasonable centers. Lt with a single argument computes

loss of any clustering algorithm or set of centers, and evaluates to our loss function

computed on the closest center to xt. We refer to cumulative loss over time (from

the first observation) of any clustering algorithm as: LT =
∑T

t=1 Lt. For the loss

on a sequence indexed from time s to t, we use the notation: L<s,t> =
∑t

t′=s Lt′ ,

and for the loss on a sequence indexed from time s+ 1 to t, we use L(s,t>.

The family of algorithms that we introduce differ in their update rules for the
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distribution over experts, pt(i). With respect to that distribution, we define the

output of our algorithms as follows.

Definition 7. The clustering of our algorithm at time t, with respect to its current

distribution over experts, pt(i), is the weighted sum of the closest centers to xt, per

expert: clust(t) =
∑n

i=1 pt(i)c
i
t.

In our setting, the experts output a set of cluster centers at each iteration, and filter

them to just return the center closest to xt to the master algorithm. Note that,

according to Definition 7, the master algorithm takes a convex combination of these

centers and output a single center. For any usage in which k (or ak) centers must be

output at every time-step, it is equivalent, with respect to all our analyses, for the

algorithm to output the center above, in addition to the k − 1 (or ak − 1) centers,

Ci∗
t − {ci

∗
t }, where i∗ = arg maxi∈{1,...,n} pt(i), i.e. the remaining centers output by

the clustering algorithm with the current highest weight. In the experiments, we

use this version to evaluate the k-means cost of the algorithm on the entire stream

seen so far, however since this does not affect our analysis, we will simply refer to

the clustering as defined above.

5.1.2 Algorithms

Algorithm 7 summarizes our Online Clustering with Experts (OCE) algorithms. We

present 3 variants of OCE in Algorithm 7: the Static-Expert algorithm (from [69],
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Algorithm 7 OCE: Online Clustering with Experts (3 variants)

Inputs: Clustering algorithms {a1, a2, . . . , an}, R: large constant,
Fixed-Share only: α ∈ [0, 1], Learn-α only: {α1, α2, . . . , αm} ∈ [0, 1]m

Initialization: t = 1, p1(i) = 1/n, ∀i ∈ {1, . . . , n},
Learn-α only: p1(j) = 1/m, p1,j(i) = 1/n, ∀j ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , n}
At t-th iteration:
Receive vectors {c1, c2, . . . , cn}, where ci is the output of algorithm ai at time t.
clust(t) =

∑n
i=1 pt(i)c

i // Learn-α: clust(t) =
∑m

j=1 pt(j)
∑n

i=1 pt,j(i)c
i

Output: clust(t) // Optional: additionally output Ci∗ − {ci∗},
where i∗ = arg maxi∈{1,...,n} pt(i)

View xt in the stream.
For each i ∈ {1, . . . , n}:

L(i, t) = ‖xt−ci
2R
‖2

————————————————————————————————————

pt+1(i) = pt(i)e
− 1

2
L(i,t) 1. Static-Expert

————————————————————————————————————
For each i ∈ {1, . . . , n}: 2. Fixed-Share

pt+1(i) =
∑n

h=1 pt(h)e−
1
2
L(h,t)P (i | h;α) // P (i|h;α) =

{
1− α if i = h;
α
n−1

o.w.

————————————————————————————————————
For each j ∈ {1, . . . ,m}: 3. Learn-α

lossPerAlpha[j] = − log
∑n

i=1 pt,j(i)e
− 1

2
L(i,t)

pt+1(j) = pt(j)e
−lossPerAlpha[j]

For each i ∈ {1, . . . , n}:
pt+1,j(i) =

∑n
h=1 pt,j(h)e−

1
2
L(h,t)P (i | h;αj)

Normalize pt+1,j.
————————————————————————————————————
Normalize pt+1.
t=t+1

with a prior history in the literature), and Fixed-share, introduced by Herbster and

Warmuth [69] as a simple way to model time-varying data in the experts setting.

We also provide an OCE version of Learn-α, an algorithm introduced by Monteleoni

and Jaakkola [70], in the supervised setting, to address the question of how to run
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Fixed-Share algorithms without the knowledge of the hindsight optimal value of

the parameter α. Learn-α learns the parameter online using Static-Expert updates

over a set of Fixed-share algorithms, each with a different value of the α parameter;

we use the discretization procedure from [70].1

We state the algorithms in their most general form, in which the experts are arbi-

trary black boxes that output a set of cluster centers at each iteration, and filter

them to just return the center closest to xt, the current observation. The OCE algo-

rithm views only this set of n centers, {c1, c2, . . . , cn}, before producing its output.

Then, to compute loss and perform the weight updates, it views xt, the current ob-

servation in the stream. Our regret analyses hold in this setting. When the experts

are instantiated as batch clustering algorithms, we denote by Wt a sliding window,

of size W , of the stream through and including xt, on which the experts compute

the current clustering. This aligns with approximation guarantees for clustering

algorithms in the literature, i.e. algorithms cluster an input dataset and are then

evaluated with respect to the optimum of some objective function, computed on

the same dataset. Our approximation guarantees hold in this setting, and we show

that no b-approximate clustering algorithm can trivially optimize our loss func-

tion by outputting xt. The algorithm also permits the use of (a, b)-approximation

algorithms as experts.

1We also have analyses for a generalization of Fixed-Share, with arbitrary transition dynamics,
studied in [70].
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5.2 Performance guarantees

We will give two types of performance guarantees for our family of online clustering

algorithms. First we will provide similar bounds to those in [69, 70] for the setting

of supervised online learning with experts. Then we will instantiate the experts as

batch clustering algorithms, with approximation guarantees, to yield online variants

of approximation guarantees with respect to the k-means objective. Omitted proofs

appear in the Appendix C.

5.2.1 Regret bounds

In order to make use of analysis tools from the literature, we first need to show that

for our clustering and loss functions, a certain property holds. Here we reformulate

the definition of (c, η)-realizability presented in [69], and due to [108, 109], and

demonstrate that it holds in our setting.

Theorem 6. The loss function L defined in Definition 6 and the clustering function

defined in Definition 7 are (2,1
2
)-realizable, i.e.:

L(xt, clust(t)) ≤ −2 log
n∑
i=1

p(i)e−
1
2
L(xt,cit)

for all n ∈ N and all xt and cit such that ‖xt‖ ≤ R, ‖cit‖ ≤ R, and all stochastic

vectors p ∈ [0 1]n.
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Using this, we can now provide regret bounds for a family of online clustering

algorithms. For our OCE algorithm’s Static-Expert variant, shown in Algorithm 7,

we have the following bound.

Theorem 7. Given any sequence of length T , let ai∗ be the best expert in hindsight

(with respect to cumulative loss on the sequence). Then the cumulative loss of the

algorithm obeys the following bound, with respect to that of the best expert:

LT (alg) ≤ LT (ai∗) + 2 log n

The proof follows by an almost direct application of an analysis technique of [70].

We now provide regret bounds for our OCE Fixed-Share variant. First, we follow

the analysis framework of [69] to bound the regret of the Fixed-Share algorithm

(parameterized by α) with respect to the best s-partition of the sequence.2

Theorem 8. For any sequence of length T , and for any s < T , consider the best

partition, computed in hindsight, of the sequence into s segments, mapping each

segment to its best expert. Then, letting α′ = s/(T − 1): LT (alg) ≤

LT (best s-partition) + 2[log n+ s log(n− 1) + (T − 1)(H(α′) +D(α′‖α))].

We also provide bounds on the regret with respect to the Fixed-Share algorithm

running with the hindsight optimal value of α. We extend analyses in [70, 110]

2To evaluate this bound, one must specify s.
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to the clustering setting, which includes providing a more general bound in which

the weight update over experts is parameterized by an arbitrary transition dy-

namics; Fixed-Share follows as a special case. Following [110, 70], we will ex-

press regret bounds for these algorithms in terms of the following log-loss: Llogt =

− log
∑n

i=1 pt(i)e
− 1

2
L(xt,cit). This log-loss relates our clustering loss (Definition 6) as

follows.

Lemma 7. Lt ≤ 2Llogt

Proof. By Theorem 6: Lt = L(xt, clust(t)) ≤ −2 log
∑n

i=1 e
− 1

2
L(xt,cit) = 2Llogt

Theorem 9. The cumulative log-loss of a generalized OCE algorithm that performs

Bayesian updates with arbitrary transition dynamics, Θ, a matrix where rows, Θi,

are stochastic vectors specifying an expert’s distribution over transitioning to the

other experts at the next time step, obeys3:

Llog
T (Θ) ≤ Llog

T (Θ∗) + (T − 1)
n∑
i=1

ρ∗iD(Θ∗i ‖Θi)

where Θ∗ is the hindsight optimal (minimizing log-loss) setting of the transition

matrix, for the observed sequence, and ρ∗i is the marginal probability of being in

state i, of the hindsight optimal algorithm.

3As in [110, 70], we express cumulative loss with respect to the algorithms’ transition dynamics
parameters.
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Corollary 2. For our OCE algorithm’s Fixed-share(α) variant:

Llog
T (α) ≤ Llog

T (α∗) + (T − 1)D(α∗‖α)

where α∗ is the hindsight optimal setting of the parameter α for the observed se-

quence.

In the supervised setting, the analogous regret for Fixed-share has a sequence-

dependent lower bound which can be linear in T [70]. Now we address the setting

in which α∗ is not known beforehand, and provide a regret bound for our OCE

algorithm’s Learn-α variant.

Theorem 10. For our OCE algorithm’s Learn-α variant, using a discretization of

the α parameter, {αj} of size m, where α∗ is the hindsight optimal α:

Llog
T (alg) ≤ Llog

T (α∗) + (T − 1) min
{αj}

D(α∗‖αj) + logm

The proof uses Corollary 2 and a variant of regret bound for Static-Expert, which

is used by Learn-α to update the weights over Fixed-share algorithms. By choice

of discretization, {αj}, we can control the third term. For example, allowing the

discretization to depend on T , [70] optimized their analogous regret bound. It is

future work to discretize α optimally with respect to our new bounds.
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5.2.2 Approximation guarantees

When the experts are k-means approximation algorithms, we can extend our regret

bounds to provide online variants of approximation guarantees for OCE.

Lemma 8. If an algorithm is b-approximate with respect to the k-means objective,

there exist sequences ending in xt for which it cannot output xt as a center.

We continue by providing the following lemmas, which may also be of general

interest.

Lemma 9. Let OPTW1 be the optimum value of the k-means objective for the

dataset seen in window W1, OPTW2 be the optimum value of the k-means objective

for the dataset seen in window W2, and OPTW1∪W2 be the optimum value of the k-

means objective for the dataset seen in window W1∪W2. Then: OPTW1 +OPTW2 ≤

OPTW1∪W2.

Proof. Let C1 be the clustering minimizing the k-means objective on the window

W1 and C2 be the clustering minimizing the k-means objective on the window W2

and let the C3 be the clustering minimizing the k-means objective on the window

W1 ∪W2. Then: OPTW1∪W2 =
∑

x∈W1∪W2
minz∈C3 ‖x− z‖2 =

∑
x∈W1

minz∈C3 ‖x−

z‖2+
∑

x∈W2
minz∈C3 ‖x−z‖2 ≥

∑
x∈W1

minz∈C1 ‖x−z‖2+
∑

x∈W2
minz∈C2 ‖x−z‖2 =

OPTW1 +OPTW2 .
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Lemma 10. Given any b-approximate k-means clustering algorithm, the sum over

a sequence of length T of its k-means costs when run on sliding windows Wt of size

≤ W , obeys:
∑T

t=1 ΦWt ≤ b ·W ·OPT<1,T>.

Lemma 11. Given any b-approximate k-means clustering algorithm, a, its cumu-

lative loss when run on a sliding window of size ≤ W on a stream of length T ,

obeys:
∑T

t=1 Lt(a) ≤ b·W
4R2OPT<1,T>.

In all results below, we denote by OPTT the optimum value of the k-means objective

for the entire sequence of length T . Now we state the bound for the OCE Static-

Expert algorithm.

Theorem 11. Given any sequence of length T , let ai∗ be the best expert in hindsight

(with respect to cumulative loss on the sequence). When ai∗ is a b-approximate

batch clustering algorithm run on sliding windows Wt of size ≤ W : LT (alg) ≤

b·W
4R2OPTT + 2 log n.

Proof. We will expand the result from Theorem 7, using our instantiation of the

experts as bi-approximate clustering algorithms, trained on sliding windows of the

data. For ease of notation let us denote by b, the approximation factor for a∗i , the

best expert with respect to minimizing LT (ai) on the observed sequence of length

T . LT (alg) ≤ LT (a∗i ) + 2 log n =
∑T

t=1 Lt(a
∗
i ) + 2 log n≤ b·W

4R2OPT<1,T> + 2 log n.

where the last inequality follows from Lemma 11.
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Using similar arguments, along with Lemma 7, we can extend our regret bounds

for the other algorithms to provide online variants of approximation guarantees.

We provide two such bounds for our OCE variant of Fixed-Share, corresponding to

Theorems 8 and 2; Appendix C contains our bound for the general version.

Theorem 12. For any sequence of length T , and for any s < T , consider the best

partition, computed in hindsight, of the sequence into s segments, mapping each

segment to its best expert. Let each of the n experts be b-approximate w.r.t. k-

means, and run on sliding windows Wt of size ≤ W . Then, letting α′ = s/(T − 1):

LT (alg) ≤ bW
4R2OPTT + 2[log n+ s log(n− 1) + (T − 1)(H(α′) +D(α′‖α))].

Theorem 13. For our OCE algorithm’s Fixed-share(α) variant, where α∗ is the

hindsight-optimal α:

LT (α) ≤ bW

4R2
OPTT + 2(T − 1)D(α∗‖α)

In our bound for the OCE Learn-α variant, the choice of discretization, {αj},

governs the third term.

Corollary 3. For our OCE algorithm’s Learn-α variant, using a discretization of

the α parameter, {αj} of size m, where α∗ is the hindsight optimal α:

LT (alg) ≤ bW

4R2
OPTT + 2(T − 1) min

{αj}
D(α∗‖αj) + logm
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The proof combines Theorem 10 with the bound on Llog
T (α∗) that was derived in

proving Theorem 13.

5.3 Experiments

In this section we provide the empirical evaluation of the performance of our OCE

algorithms. We ran OCE using other clustering algorithms from the literature as

experts. To demonstrate the practical advantages of our approach, the experiments

reported were run predictively in that the sliding windows did not include the cur-

rent observation, xt; we also ran experiments in the non-predictive setting that

we analyzed, and observed comparable or better empirical performance. We used

real and simulated datasets, some of which had been used in past works on batch

clustering [74], and clustering (finite) data streams [76]. The simulated data con-

sists of samples from a mixture of 25 well-separated Gaussians in R15; the ”true”

k is therefore 25. We also experimented on 5 UCI datasets, in which the “true” k

is unknown: Cloud, Spambase, Intrusion (KDD cup 99), Forest Fires, and Wall-

following robot navigation [111]. We instantiated the experts with 6 clustering

algorithms: 1. Lloyd’s algorithm.4 2. k-means++. 3. An heuristic called “Online

k-means.”5 4.-6. 3 variants of k-means# [76], in particular they were: 4. k-means#

that outputs 3 · k · log k centers. 5. k-means# that outputs 2.25 · k · log k centers.

4Centers were initialized randomly, per sliding window.
5 This algorithm has been used in practice for a while; pseudocode is stated in [88].
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6. k-means# that outputs 1.5 · k · log k centers. These are all batch clustering

algorithms, except Online k-means, which we also restricted to operate only on a

sliding window. Only the k-means++ and k-means# variants have approximation

guarantees with respect to the k-means objective. Our Theorem 7 holds regardless,

but Theorem 11 requires at least the best performing expert (in hind-sight) to be

b-approximate with respect to the k-means objective.

The window size W was set arbitrarily. While we set W = 200, we also experi-

mented over window size, and observed, as expected, decreasing loss with increasing

window size for very stationary datasets, yet no trend for non-stationary datasets,

which is consistent with our analysis (where the upper-bound on loss increases with

window size).

Table 5.1 reports mean and standard deviation, over the sequence, of the the k-

means cost on all points seen so far. The experts are denoted ei; the OCE methods

are: se=Static-Expert (equivalent to Fixed-Share with α = 0), f1−3 are Fixed-Share

algorithms using the smallest 3 values of α in the discretization, f4 uses the middle

value, and f5 uses the highest value, and la=Learn-α. In the 3-expert experiments,

we also compared with several online clustering algorithms from the literature,

run on the whole sequence: ol=Online k-means (which, run on windows, was also

used as expert 3.), and the ”Doubling algorithm” (da).6 Neither of these have

6These algorithms output k centers so running them with experts 4-6, which can output more
than k centers, would not be a fair comparison, since OCE can output as many centers as its
experts.
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25 Gaussians Cloud ×107 Spam ×108 Intrus. ×1010 For. fire ×106 Robot ×104

e1 0.6193±0.3195×108 1.3180±1.9395 0.2706±0.2793 0.1988±0.2104 0.7766±0.6413 1.8362±1.2172
e2 0.0036±0.0290×107 0.8837±1.3834 0.1042±0.1463 0.0743±0.1041 0.6616±0.4832 1.8199±1.2102
e3 2.0859±0.9204×108 4.6601±7.8013 1.6291±1.3292 0.7145±0.5376 7.1172±7.6576 2.3590±1.4070

da 0.0179±0.0723×108 0.5285±0.2959 0.1971±0.0826 0.0050±0.0529 1.4496±0.6484 2.5514±1.4239
ol 1.7714±0.6888×108 4.2322±2.4965 0.8222±0.7619 1.3518±0.3827 2.9617±1.3006 1.9806±1.0160
se 0.0014±0.0143×108 0.8855±1.3824 0.1059±0.1469 0.0778±0.1094 0.6620±0.4831 1.8139±1.2032
f1 0.0014±0.0143×108 0.8855±1.3823 0.1059±0.1469 0.0779±0.1100 0.6614±0.4819 1.8137±1.2032
f2 0.0014±0.0143×108 0.9114±1.4381 0.1059±0.1470 0.0778±0.1099 0.7008±0.5382 1.8134±1.2031
f3 0.0014±0.0143×108 1.0715±1.6511 0.1059±0.1470 0.0779±0.1099 0.6996±0.5361 1.8145±1.2031
f4 0.0124±0.0193×108 1.4806±2.6257 0.3723±0.7351 0.1803±0.2358 1.0489±1.4817 1.8334±1.2212
f5 1.3811±1.0881×108 3.0837±6.3553 0.8212±1.1583 0.4126±0.5040 4.4481±6.2816 2.2576±1.3849
la 0.0012±0.0136×108 0.8862±1.3920 0.1076±0.1483 0.0785±0.1108 0.6616±0.4805 1.8130±1.2026

e4 7.3703±4.2635×103 0.6742±1.2301 0.0687±0.1355 0.0704±0.1042 0.2316±0.2573 1.3667±1.0176
e5 8.2289±4.4386×103 0.6833±1.2278 0.0692±0.1356 0.0704±0.1042 0.2625±0.2685 1.4385±1.0495
e6 9.8080±4.7863×103 0.7079±1.2364 0.0710±0.1360 0.0705±0.1042 0.3256±0.2889 1.5713±1.1011

se 0.1360±1.4323×106 0.6743±1.2300 0.0687±0.1355 0.0705±0.1045 0.2322±0.2571 1.3642±1.0138
f1 0.1360±1.4323×106 0.6743±1.2300 0.0687±0.1355 0.0705±0.1045 0.2322±0.2571 1.3640±1.0135
f2 0.1361±1.4322×106 0.6746±1.2298 0.0687±0.1355 0.0705±0.1045 0.2322±0.2572 1.3636±1.0130
f3 0.1364±1.4322×106 0.6743±1.2300 0.0687±0.1355 0.0711±0.1055 0.2321 ±0.2570 1.3634±1.0127
f4 0.0027±0.0144×108 0.7207±1.3025 0.0707±0.1357 0.0773±0.1203 0.2776±0.4917 1.3963±1.0339
f5 1.4039±1.0790×108 3.0786±6.4109 0.7155±1.0650 0.4227±0.5179 4.6103±6.3019 2.3142±1.4127
la 0.0012±0.0134×108 0.6742±1.2300 0.0687±0.1355 0.0708±0.1046 0.2318±0.2573 1.3632±1.0128

Table 5.1: Mean and standard deviation, over the sequence, of k-means cost on points seen so
far. k = 25 for Gaussians, k = 15 otherwise. The best expert and the best 2 scores of
the algorithms, per experiment, are bold. Below the triple lines, 3 more experts are
added to the ensemble.

known approximation guarantees with respect to the k-means objective, however

the Doubling algorithm approximates the k-center objective [85]. This evaluation

is a k-means cost variant of progressive validation analysis, a standard evaluation of

online learning algorithms in the supervised setting, analyzed in [112] with respect

to k-fold cross-validation error and standard batch holdout error. In two of the

experiments, the Doubling algorithm achieves the lowest mean k-means cost over

the sequence; in the other experiments, at least one of our OCE methods does.

Both the 3-expert and the 6-expert experiments demonstrate that, without prior

knowledge of the sequence, Learn-α is the most applicable, as its performance
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Figure 5.1: Clustering analogs to learning curves: k-means cost versus t for Cloud dataset.

tracks that of the best performing Fixed-Share(α). Interestingly, we observe that

OCE (and in particular Learn-α) tracks the best expert much more effectively on

all the real datasets than on the 25 Gaussian experiment. The means reported

for the OCE algorithms were for this datasets hurt by the algorithms’ uniform

priors over experts. That is, in a few early iterations, OCE incurred costs from

clusterings giving non-trivial weights to all the experts’ predictions, so in those

iterations costs could be orders of magnitude higher than in examples those of

experts 4.-6. Moreover, as mentioned above, our regret bounds instead upper-

bound loss.

In Figure 5.1 we show an example of clustering analogs to learning curves from

our experiment on Cloud dataset, in the predictive setting, which generated the
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statistics for Table 5.1. We plot the batch k-means cost of each expert, and the

OCE algorithms, on all the data seen so far, versus t. While Fixed-Share algorithms

with high values of α suffer large oscillations in cost, Learn-α’s performance tracks,

and often surpasses that of the Fixed-Share algorithms.

Figure 5.2: Evolution of weights over experts for Fixed-Share algorithms using different values of
the α parameter; Forest Fires dataset; 6-experts.

We also demonstrate the evolution of the weights maintained by the Fixed-Share

and Learn-α OCE algorithms. In Figure 5.2 we show the exemplary evolution over

time of the weights maintained by the OCE Fixed-Share algorithm over the experts

(clustering algorithms). For smaller values of α we observe an inversion in the
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Figure 5.3: Evolution of weights maintained by Learn-α, over its α-experts, in the 6-expert
Forest Fires experiment. Lowest values of α receive highest weight.

weight ordering between experts 4 and 5 at around iteration 48 for this particular

experiment. For α values closer to 1/2 and 1 there is a higher amount of shifting of

weights among experts. In Figure 5.3 we show the exemplary evolution over time of

the weights maintained by the OCE Learn-α algorithm over α-experts (Fixed-Share

algorithms run with a different setting of the α parameter). The experiment was

performed with 45 α-experts (Fixed-Share algorithms with different values of the

α parameter). Lower α values received higher weights. One value of α (the lowest)

receives an increasing share of the weight, which is consistent with the fact that

the Static-Expert algorithm is used to update weights over α-experts.

Finally, in Figure 5.4 we vary k from 5 to 25 in multiples of 5 as in [76], and state

the final k-means cost achieved by each method in the 3-experts experiments. The
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Figure 5.4: k-means cost on the entire sequence versus k for Cloud, Spambase, Intrusion, Forest
Fires, Robot and 25 Gaussians datasets.

OCE methods often achieve lower final k-means cost than the other algorithms. In

particular, Learn-α suffers lower k-means cost than Online k-means in all experi-

ments except Cloud: k = 25. While for most values of k, the Doubling algorithm

suffers lower cost on 2 datasets, and comparable cost on 2 datasets, for Robot data,

which is non-stationary, the performance of Doubling is significantly worse than

that of Learn-α for all k tested. This is evidence that OCE has (at least) compa-

rable performance over a variety of datasets to these existing methods that have

not been analyzed with respect to the k-means objective; moreover, it exploits the

performance advantages of the clustering algorithms used as experts.
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5.4 Conclusion

We showed a family of online clustering algorithms, with regret bounds, and ap-

proximation guarantees with respect to the k-means objective, of a novel form for

the online clustering setting. Notably, our approximation bounds are with respect

to the optimal k-means cost on the entire data stream seen so far, even though

the algorithm is online. Our algorithms were obtained by extending algorithms

from the supervised learning setting, with access to access to expert predictors, to

the unsupervised learning setting. We introduced a flexible framework in which

our algorithms take a set of candidate clustering algorithms, as experts, and track

the performance of the ”best” expert, or best sequence of experts, for the data.

Instead of computing prediction errors in order to re-weight the experts, the algo-

rithms compute an approximation to the current value of the k-means objective

obtained by each expert. Our approach lends itself to settings in which the user is

unsure of which clustering algorithm to use for a given data stream, and exploits

the performance advantages of many batch clustering algorithms used as experts.

Our algorithms vary in their models of the time-varying nature of the data and

achieve encouraging performance on a variety of datasets.
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66
Conclusion

In this thesis we showed several optimization techniques for convex and non-convex

learning problems of central focus in machine learning. We focused on the learn-

ing approach based on reductions, where the original problem is ’reduced’ to a set

of simpler sub-problems that are much easier to solve. We first presented a new

optimization technique based on quadratic bound majorization (this is the first

machine learning reduction scheme addressed in this thesis) for optimizing the ob-

jective functions involving the partition function. The bound technique is explored

in the supervised learning framework however it can be extended to unsupervised

learning settings as well. We proved the linear convergence rate of the batch and

semi-stochastic variants of our method and showed it can be easily recovered in
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various learning problems where the only constraint we introduce is on the number

of classes which is assumed to be finite and enumerable (in practice we assume it is

not too large; we address the case of large number of classes separately in this the-

sis). The new technique differs from previously existing majorization approaches

in that rather than aiming for exclusively tight bounds, it also produces a more

convenient (and easier to optimize) bound. The results we obtained run counter to

the conventional wisdom: machine learning problems are best handled via generic

optimization algorithms.

There are still many open questions connected with our bound majorization tech-

nique that are worth exploring. Extending the bound technique to a general class

of loss functions (differentiable and non-differentiable), like squared loss or hinge

loss, is one example of an important future research direction. For instance, one

can construct ’the widest’ quadratic upper-bound on the hinge loss (similarly as it

is done in our original approach for partition function-based objectives) and then

use it as a surrogate function for the majorization technique. Furthermore, it turns

out that using the bound one can turn the log-linear modeling problem into an

iterative least squares majorization problem. Thus an interesting future research

direction is to parallelize the bound method such that it can run on a distributed

CPU and/or GPU-based framework by using distributed least-squares solvers. Si-

multaneously we are interested in extending the bound method to other models
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such as deep belief networks (we have some results in this direction [113]), and

furthermore applying it to sparse and group-sparse models, as well as applying it

in variational Bayesian settings (e.g. integral approximations in maximum entropy

discrimination and evidence approximation) and to intractable log-linear models,

where the partition function in general can be NP-hard to compute exactly however

fast incremental improvements on the model parameters can potentially be obtained

using our bound method. Finally, from the theoretical perspective it seems impor-

tant to view the bound method as a bridge between first- and second-order generic

optimization methods. Alike first-order methods, the bound method access the ob-

jective function through the 1st order oracle and simultaneously, alike second-order

methods, it approximates the global curvature of the objective function that is how-

ever quite different than the Hessian. It seems therefore that it should be possible

to prove better than linear convergence rate for the batch bound method (at least

superlinear like in case of quasi-Newton methods). Similarly we are interested in

further exploring the theoretical guarantees for the stochastic bound method (we

have some results in this direction [114]). We are particularly interested in devel-

oping a common framework that would enable the comparison of the convergence

rate of the bound method with the state-of-the-art existing approaches.

Second in this thesis, we addressed the online mutli class classification problem. We

developed a practical tractable logarithmic-time online multi class classification
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algorithm based on decision trees for handling problems involving learning with

large number of classes, where the original multi class classification problem is

reduced to a set of binary classification problems organized in a tree structure.

This work proposed the first simultaneously tractable and data-adaptive algorithm

for handling these types of problems, which allows easy optimization via standard

optimization tools. Our work makes decision trees applicable to the multi class

classification settings by proposing a new objective function to optimize in the tree

nodes inducing pure and balanced splits.

There are still many open questions connected with the online logarithmic depth

multi class partition trees we developed that are worth to work on. One example

is to consider a different construction of the tree than the one we proposed, i.e.

the setting where the tree construction is started from the leafs rather than the

root which guarantees consistency (optimal binary classifiers yield optimal multi

class classifier). In this sense we would like to follow the Filter Tree approach and

improve it by adding the data-adaptivity step to the tree construction where the

tree topology is learned rather than imposed. One way to do it is to push the most

difficult classification problems to the leaf level of the tree and the easier ones to

the tree root. The intuition behind this approach is that similar labels should not

be split into two different nodes high in the tree (close to the root) since it may

potentially incur large classification error. Another possible way to learn the tree
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structure is to iteratively improve the topology of the initial tree using predefined

dictionary of plausible operations on the tree (i.e. merging or splitting the nodes)

which can provably increase the tree quality. Apart from these approaches we

believe it is also interesting to consider the reduction of the multi class classification

problem to a set of simpler sub-problems organized in other than tree structures.

Finally, our work could also be extended to develop new hierarchical clustering

algorithms.

Finally, in the third part of this thesis we addressed the online k-means clustering

problem. We proposed the first online clustering algorithm with approximation

guarantees with respect to the k-means clustering objective simultaneously solving

an open problem posed in the literature by Dasgupta. Our approach explores

learning with expert advice setting where experts are clustering subroutines solving

clustering problems on a sliding window of the data stream (enclosing small data

mini-batches).

There are still many open questions connected with the online clustering with ex-

perts algorithms we developed that are worth to work on. The natural extension

of our work would be to develop an online clustering algorithm with approxima-

tion guarantees with respect to the k-means clustering objective where the experts

instead of being clustering algorithms, are more ’primitive’ entities, possibly satis-

fying no specific constraints. We are also interested in considering other clustering
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settings, i.e. online spectral clustering (we have some results in this direction [115]).

One way to develop a good online spectral clustering algorithm would be to explore

the duality phenomenon between the spectral clustering objective and the weighted

kernel k-means objective. To be more specific, the weighted kernel k-means algo-

rithm may be used to directly optimize the graph partitioning objectives, including

spectral clustering objective and conversely, spectral methods may be used to opti-

mize the weighted kernel k-means objective. Additionally to this result, it turns out

that there also exists a strong link between the (kernel) k-means and the (kernel)

PCA and in particular the principal components are the continuous solutions to

the discrete cluster membership indicators for the k-means clustering and further-

more the solution for the kernel k-means is given by the kernel PCA. It might be

that the strong link between those methods could be adapted to the online setting.

In particular the techniques developed for the online PCA algorithm and the on-

line kernel PCA algorithm might be used to develop the online k-means clustering

algorithms with approximation guarantees with respect to the k-means clustering

objective as well as the online spectral clustering algorithms with approximation

guarantees with respect to the spectral clustering objective.
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”Simplicity is the highest goal, achievable when you have overcome all difficulties.

After one has played a vast quantity of notes and more notes, it is simplicity that

emerges as the crowning reward of art.”

Fryderyk Chopin
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77
Appendix

7.1 Appendix A

Lemma 12. (See [89] p. 100)

For all u ∈ Rd, any v ∈ Rd and any γ ≥ 0, the bound log
(
exp

(
1
2
‖u‖2

)
+ γ
)
≤

log
(
exp

(
1
2
‖v‖2

)
+ γ
)

+
v>(u− v)

1 + γ exp(−1
2
‖v‖2)

+
1

2
(u− v)>

(
I + Γvv>

)
(u− v)
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holds when the scalar term Γ =
tanh( 1

2
log(γ exp(−‖v‖2/2)))

2 log(γ exp(−‖v‖2/2))
. Equality is achieved when

u = v.

Proof. The proof is provided in [89].

Lemma 13. If κΨ � Φ � 0 for Φ,Ψ ∈ Rd×d, then

L(θ) =−1
2
(θ − θ̃)>Φ(θ − θ̃)− (θ − θ̃)>µ

U(θ) =−1
2
(θ − θ̃)>Ψ(θ − θ̃)− (θ − θ̃)>µ

satisfy supθ∈Λ L(θ) ≥ 1
κ

supθ∈Λ U(θ) for any convex Λ ⊆ Rd, θ̃ ∈ Λ, µ ∈ Rd and

κ ∈ R+.

Proof of Lemma 13 Define the primal problems of interest as PL = supθ∈Λ L(θ)

and PU = supθ∈Λ U(θ). The constraints θ ∈ Λ can be summarized by a set of

linear inequalities Aθ ≤ b where A ∈ Rk×d and b ∈ Rk for some (possibly infinite)

k ∈ Z. Apply the change of variables z = θ − θ̃. The constraint A(z + θ̃) ≤ b

simplifies into Az ≤ b̃ where b̃ = b − Aθ̃. Since θ̃ ∈ Λ, it is easy to show that

b̃ ≥ 0. We obtain the equivalent primal problems PL = supAz≤b̃−1
2
z>Φz − z>µ

and PU = supAz≤b̃−1
2
z>Ψz− z>µ. The corresponding dual problems are

DL= inf
y≥0

y>AΦ−1A>y

2
+y>AΦ−1µ+y>b̃+

µ>Φ−1µ

2

DU = inf
y≥0

y>AΨ−1A>y

2
+y>AΨ−1µ+y>b̃+

µ>Ψ−1µ

2
.
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Due to strong duality, PL = DL and PU = DU . Apply the inequalities Φ � κΨ

and y>b̃ > 0 as

PL≥ sup
Az≤b̃

−κ
2

z>Ψz− z>µ = inf
y≥0

y>AΨ−1A>y

2κ
+

y>AΨ−1µ

κ
+ y>b̃ +

µ>Ψ−1µ

2κ

=
1

κ
DU =

1

κ
PU .

This proves that PL ≥ 1
κ
PU .

Proof of correctness of Algorithm 3

a) Y 2,0
1

Y 1,1
1 Y 1,1

2 Y 1,1
3 · · · Y 1,1

m1,1

b) Y 3,0
1

Y 2,1
1

Y 1,1
1 Y 1,1

2
· · · Y 1,1

m1,1

Y 2,1
2 · · ·

Y 1,2
1 Y 1,2

2
· · · Y 1,2

m1,2

Y 2,1
m2,1

Y
1,m2,1

1 Y
1,m2,1

2
· · · Y

1,m2,1
m1,m2,1

Figure 7.1: Junction tree of depth a) 2 and b) 3.

Consider a simple junction tree of depth 2 shown on Figure 7.1a. The notation Y a,b
c

refers to the cth tree node located at tree level a (first level is considered as the one

with tree leaves) whose parent is the bth from the higher tree level (the root has no

parent so b = 0). Let
∑

Y
a1,b1
c1

refer to the sum over all configurations of variables in
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Y a1,b1
c1

and
∑

Y
a1,b1
c1

\Y a2,b2c2

refers to the sum over all configurations of variables that

are in Y a1,b1
c1

but not in Y a2,b2
c2

. Let ma,b denote the number of children of the bth

node located at tree level a + 1. For short-hand, use ψ(Y ) = h(Y ) exp(θ>f(Y )).

The partition function can be expressed as:

Z(θ) =
∑
u∈Y 2,0

1

ψ(u)

m1,1∏
i=1

 ∑
v∈Y 1,1

i \Y 2,0
1

ψ(v)


≤
∑
u∈Y 2,0

1

[
ψ(u)

m1,1∏
i=1

zi exp(
1

2

(
θ − θ̃)>Σi(θ − θ̃) + (θ − θ̃)>µi

)]

=
∑
u∈Y 2,0

1

[
h(u) exp(θ>f(u))

m1,1∏
i=1

zi exp

(
1

2
(θ − θ̃)>Σi(θ − θ̃) + (θ − θ̃)>µi

)]
,

where the upper-bound is obtained by applying Theorem 1 to each of the terms∑
v∈Y 1,1

i \Y 2,0
1
ψ(v). By simply rearranging terms we get:

Z(θ) ≤
∑
u∈Y 2,0

1

[
h(u)

(
m1,1∏
i=1

zi exp(−θ̃>µi)

)
exp

(
θ>

(
f(u) +

m1,1∑
i=1

µi

))

· exp

(
1

2
(θ − θ̃)>

(
m1,1∑
i=1

Σi

)
(θ − θ̃)

)]
.

One can prove that this expression can be upper-bounded by an expression of the

form z exp
(

1
2
(θ − θ̂)>Σ(θ − θ̂) + (θ − θ̂)>µ

)
where z, Σ and µ can be computed

using Algorithm 8 (a simplification of Algorithm 3). We will call this result Lemma

L3. The proof is similar to the proof of Theorem 1 so is not repeated here.
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Algorithm 8 SmallJunctionTree

Input Parameters θ̃ and h(u), f(u) ∀u ∈ Y 2,0
1 and zi,Σi,µi ∀i = 1, . . . ,m1,1

Initialize z → 0+,µ = 0,Σ = zI

For each configuration u ∈ Y 2,0
1 {

α = h(u)(
∏m1,1

i=1 zi exp(−θ̃>µi)) exp(θ̃>(f(u) +
∑m1,1

i=1 µi))

= h(u) exp(θ̃>f(u))
∏m1,1

i=1 zi
l = f(u) +

∑m1,1

i=1 µi − µ
Σ+=

∑m1,1

i=1 Σi +
tanh( 1

2
log(α/z))

2 log(α/z)
ll>

µ+= α
z+α

l

z += α }
Output z,µ,Σ

Consider enlarging the tree to a depth 3 as shown on Figure 7.1b. The partition

function is now

Z(θ) =
∑
u∈Y 3,0

1

ψ(u)

m2,1∏
i=1

 ∑
v∈Y 2,1

i \Y 3,0
1

ψ(v)

m1,i∏
j=1

 ∑
w∈Y 1,i

j \Y
2,1
i

ψ(w)




 .

We can upper-bound each
∑

v∈Y 2,1
i \Y 3,0

1

(
ψ(v)

∏m1,i

j=1

(∑
w∈Y 1,i

j \Y
2,1
i
ψ(w)

))
term by

the expression zi exp
(

1
2
(θ − θ̂)>Σi(θ − θ̂) + (θ − θ̂)>µi

)
using Lemma L3. This

yields

Z(θ) ≤
∑
u∈Y 3,0

1

[
ψ(u)

m2,1∏
i=1

zi exp

(
1

2
(θ − θ̃)>Σi(θ − θ̃) + (θ − θ̃)>µi

)]
.

This process can be viewed as collapsing the sub-trees S2,1
1 , S2,1

2 , . . ., S2,1
m2,1

to super-

nodes that are represented by bound parameters, zi, Σi and µi, i = {1, 2, · · · ,m2,1},
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where the sub-trees are defined as:

S2,1
1 = {Y 2,1

1 , Y 1,1
1 , Y 1,1

2 , Y 1,1
3 , . . . , Y 1,1

m1,1
}

S2,1
2 = {Y 2,1

2 , Y 1,2
1 , Y 1,2

2 , Y 1,2
3 , . . . , Y 1,2

m1,2
}

...

S2,1
m2,1

= {Y 2,1
m2,1

, Y
1,m2,1

1 , Y
1,m2,1

2 , Y
1,m2,1

3 , . . . , Y 1,m2,1
m1,m2,1

}.

Notice that the obtained expression can be further upper-bounded using again

Lemma L3 by an expression of the form: z exp
(

1
2
(θ − θ̂)>Σ(θ − θ̂) + (θ − θ̂)>µ

)
.

Finally, for a general tree, follow the same steps described above, starting from

leaves and collapsing nodes to super-nodes, each represented by bound parameters.

This procedure effectively yields Algorithm 3.

Proof of correctness of Algorithm 4

We begin by proving a lemma that will be useful later.

Lemma 14. For all x ∈ Rd and for all l ∈ Rd,

d∑
i=1

x(i)2l(i)2 ≥

 d∑
i=1

x(i)
l(i)2√∑d
j=1 l(j)2

2

.
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Proof of Lemma 14 By Jensen’s inequality,

d∑
i=1

x(i)2 l(i)2∑d
j=1 l(j)2

≥

(
d∑
i=1

x(i)l(i)2∑d
j=1 l(j)2

)2

⇐⇒
d∑
i=1

x(i)2l(i)2≥

 d∑
i=1

x(i)l(i)2√∑d
j=1 l(j)2

2

.

Now we prove the correctness of Algorithm 4. At the ith iteration, the algorithm

stores Σi using a low-rank representation V>i SiVi + Di where Vi ∈ Rk×d is or-

thonormal, Si ∈ Rk×k positive semi-definite and Di ∈ Rd×d is non-negative diago-

nal. The diagonal terms D are initialized to tλI where λ is the regularization term.

To mimic Algorithm 1 we must increment the Σ matrix by a rank one update of

the form Σi = Σi−1 + rir
>
i . By projecting ri onto each eigenvector in V, we can

decompose it as ri =
∑k

j=1 Vi−1(j, ·)riVi−1(j, ·)> + g = V>i−1Vi−1ri + g where g is

the remaining residue. Thus the update rule can be rewritten as:

Σi = Σi−1 + rir
>
i = V>i−1Si−1Vi−1 + Di−1 + (V>i−1Vi−1ri + g)(V>i−1Vi−1ri + g)>

= V>i−1(Si−1 + Vi−1rir
>
i V>i−1)Vi−1 + Di−1 + gg> = V

′>
i−1S

′

i−1V
′

i−1 + gg> + Di−1

where we define V
′
i−1 = Qi−1Vi−1 and defined Qi−1 in terms of the singular value

decomposition, Q>i−1S
′
i−1Qi−1 = svd(Si−1 + Vi−1rir

>
i V>i−1). Note that S

′
i−1 is di-

agonal and nonnegative by construction. The current formula for Σi shows that

we have a rank (k + 1) system (plus diagonal term) which needs to be converted

back to a rank k system (plus diagonal term) which we denote by Σ
′
i. We have two
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options as follows.

Case 1) Remove g from Σi to obtain

Σ
′

i = V
′>
i−1S

′

i−1V
′

i−1 + Di−1 = Σi − gg> = Σi − cvv>

where c = ‖g‖2 and v = 1
‖g‖g.

Case 2) Remove the mth (smallest) eigenvalue in S′i−1 and its corresponding eigen-

vector:

Σ
′

i = V
′>
i−1S

′

i−1V
′

i−1 + Di−1 + gg> − S
′
(m,m)V

′
(m, ·)>V

′
(m, ·) = Σi − cvv>

where c = S
′
(m,m) and v = V(m, ·)′ .

Clearly, both cases can be written as an update of the form Σ
′
i = Σi + cvv>

where c ≥ 0 and v>v = 1. We choose the case with smaller c value to minimize

the change as we drop from a system of order (k + 1) to order k. Discarding the

smallest singular value and its corresponding eigenvector would violate the bound.

Instead, consider absorbing this term into the diagonal component to preserve the

bound. Formally, we look for a diagonal matrix F such that Σ
′′
i = Σ

′
i + F which

also maintains x>Σ
′′
i x ≥ x>Σix for all x ∈ Rd. Thus, we want to satisfy:

x>Σ
′′

i x ≥ x>Σix ⇐⇒ x>cvv>x ≤ x>Fx ⇐⇒ c

(
d∑
i=1

x(i)v(i)

)2

≤
d∑
i=1

x(i)2F(i)
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where, for ease of notation, we take F(i) = F(i, i).

Define v
′

= 1
w

v where w = v>1. Consider the case where v ≥ 0 though we

will soon get rid of this assumption. We need an F such that
∑d

i=1 x(i)2F(i) ≥

c
(∑d

i=1 x(i)v(i)
)2

. Equivalently, we need
∑d

i=1 x(i)2 F(i)
cw2 ≥

(∑d
i=1 x(i)v(i)

′
)2

. De-

fine F(i)
′
= F(i)

cw2 for all i = 1, . . . , d. So, we need an F
′

such that
∑d

i=1 x(i)2F(i)
′ ≥(∑d

i=1 x(i)v(i)
′
)2

. Using Lemma 14 it is easy to show that we may choose F
′
(i) =

v(i)
′
. Thus, we obtain F(i) = cw2F(i)

′
= cwv(i). Therefore, for all x ∈ Rd, all

v ≥ 0, and for F(i) = cv(i)
∑d

j=1 v(j) we have

d∑
i=1

x(i)2F(i) ≥ c

(
d∑
i=1

x(i)v(i)

)2

. (7.1)

To generalize the inequality to hold for all vectors v ∈ Rd with potentially negative

entries, it is sufficient to set F(i) = c|v(i)|
∑d

j=1 |v(j)|. To verify this, consider

flipping the sign of any v(i). The left side of the Inequality 7.1 does not change.

For the right side of this inequality, flipping the sign of v(i) is equivalent to flipping

the sign of x(i) and not changing the sign of v(i). However, in this case the

inequality holds as shown before (it holds for any x ∈ Rd). Thus for all x,v ∈ Rd

and for F(i) = c|v(i)|
∑d

j=1 |v(j)|, Inequality 7.1 holds.
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7.2 Appendix B

We consider the the special case when k = 2. We will show that the worst case

value of the balancing factor p w.r.t. the change in the potential is a balanced p,

in particular we will prove the lemma which states that in the worst case setting

when ∆t is minimized, the value of p has to lie in the interval [0.4, 0.6].

Recall that π(n0)(1 − p) + π(n1)p = π1 and thus π(n0) = π1−π(n1)p
1−p . Therefore we

can write that:

π(n0)− π(n1) =

[
π1 − π(n1)p

1− p
− π(n1)

]
=

π1

1− p
− π(n1)

1− p
=

π1

1− p
− π1P1

p(1− p)
,

where the last equality comes from the fact that π(n1) = π1P1

p
. Let δ = π(n0)−π(n1)

and thus

p(1− p)δ = pπ1 − P1π1 = π1(p− P1) ≥ γπ1 ≥ γπ1(1− π1),

where the first inequality comes from the Weak Learning Assumption. Thus we

obtained that p(1− p)δ ≥ γπ1(1− π1). One can compare this result with Lemma 2

from [67] and observe that as expected we obtained similar condition. Now recall

that

∆t = G(π1)− (1− p)G(π(n0))− pG(π(n1)),
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where without loss of generality weight w was assumed to be w = 1. Notice that

π(n0) = π1− pδ and π(n1) = π1 + (1− p)δ (it can be easily verified by substituting

π1 = π(n0)(1− p) + π(n1)p). We can further express ∆t as a function of π1, p, δ as

follows

∆t(π1, p, δ) = G(π1)− (1− p)G(π1 − pδ)− pG(π1 + (1− p)δ).

For any fixed values π1, p ∈ [0, 1], ∆t(π1, p, δ) is minimized by choosing δ as small

as possible. Thus let us set δ = γπ1(1−π1)
p(1−p) and define

∆t(π1, p) = ∆t(π1, p,
γπ1(1− π1)

p(1− p)
)

= G(π1)− (1− p)G
(
π1 −

γπ1(1− π1)

(1− p)

)
− pG

(
π1 +

γπ1(1− π1)

p

)
. (7.2)

The next Lemma is a direct application of Lemma 4 from [67].

Lemma 15. Let γ ∈ [0, 1] be any fixed value, and let ∆t(π1, p) be as defined in

Equation 7.2. Then for any fixed π1 ∈ [0, 1], ∆t(π1, p) is minimized by a value of p

falling in the interval [0.4, 0.6].

That implies that in the worst case setting when ∆t is minimized the split has to

be close to balanced.
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7.3 Appendix C

First we provide some lemmas that will be used in subsequent proofs. These follow

the approach in [110]. We use the short-hand notation L(i, t) for L(xt, c
i
t), which

is valid since our loss is symmetric with respect to its arguments.

Lemma 16.

−
∑T

t=1 log
∑n

i=1 pt(i)e
− 1

2
L(i,t)

= − log[
∑

i1,...,iT
p1(i1)e−

1
2
L(i1,1)

∏T
t=2 e

− 1
2
L(it,t)P (it|it−1,Θ)]

Proof. First note that following [70], we design the HMM such that we equate our

loss function, L(i, t), with the negative log-likelihood of the observation given that

expert i is the current value of the hidden variable. In the unsupervised setting,

the observation is xt. Thus L(i, t) = − logP (xt|ai, x1, ..., xt−1). Therefore, we can

expand the left hand side of the claim as follows.

−
T∑
t=1

log
n∑
i=1

pt(i)e
− 1

2
L(i,t) = −

T∑
t=1

log
n∑
i=1

pt(i)P (xt|ai, x1, ..., xt−1)

= −
T∑
t=1

logP (xt|x1, ..., xt−1) = − log p1(x1)
T∏
t=2

P (xt|x1, ..., xt−1)

= − logP (x1, ..., xT ) = − log[
∑
i1,...,iT

P (x1, ..., xT |i1, ..., iT )P (i1, ..., iT |Θ)]

= − log[
∑
i1,...,iT

p1(i1)P (x1|i1, ..., iT )
T∏
t=2

P (xt|i1, ..., iT , x1, ..., xt−1)P (it|i1, ..., it−1,Θ)]
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= − log[
∑
i1,...,iT

p1(i1)P (x1|i1)
T∏
t=2

P (xt|it, x1, ..., xt−1)P (it|it−1,Θ)]

= − log[
∑
i1,...,iT

p1(i1)e−
1
2
L(i1,1)

T∏
t=2

e−
1
2
L(it,t)P (it|it−1,Θ)]

Lemma 17.

n∑
i=1

ρ∗iD(Θ∗i ‖Θi) = D(α∗‖α)

when θij = 1− α for i = j and θij = α
n−1

for i 6= j, α ∈ [0, 1],
∑n

i=1 ρ
∗
i = 1.

Proof.

n∑
i=1

ρ∗iD(Θ∗i ‖Θi) =
n∑
i=1

ρ∗i

n∑
j=1

θ∗ij log
θ∗ij
θij

=
n∑
i=1

ρ∗i [θ
∗
ii log

θ∗ii
θii

+
n∑
j 6=i

θ∗ij log
θ∗ij
θij

]

=
n∑
i=1

ρ∗i [(1− α∗) log
1− α∗

1− α
+

n∑
j 6=i

α∗

n− 1
log

α∗

n−1
α
n−1

]

=
n∑
i=1

ρ∗i [(1− α∗) log
1− α∗

1− α
+ α∗ log

α∗

α
]

=
n∑
i=1

ρ∗iD(α∗‖α) = D(α∗‖α)
n∑
i=1

ρ∗i = D(α∗‖α)

Proof of Theorem 6

Proof. Using Definitions 6 and 7, we can express the loss of the algorithm on a
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point xt as

L(xt, clust(t)) =
‖
∑n

i=1 p(i)(xt − cit)‖2

4R2

Then the following chains of inequalities are equivalent to each other.

L(xt, clust(t)) ≤ −2 log
n∑
i=1

p(i)e−
1
2
L(xt,cit)

‖
∑n

i=1 p(i)(xt − cit)‖2

4R2
≤ −2 log

n∑
i=1

p(i)e−
1
2

‖xt−c
i
t‖

2

4R2

e
‖
∑n
i=1 p(i)(xt−c

i
t)‖

2

4R2 ≤

(
n∑
i=1

p(i)e−
1
2

‖xt−c
i
t‖

2

4R2

)−2

n∑
i=1

p(i)e−
1
2

‖xt−c
i
t‖

2

4R2 ≤ e−
1
2

‖
∑n
i=1 p(i)(xt−c

i
t)‖

2

4R2 (7.3)

Let vit =
xt−cit

2R
. Since ‖xt‖ ≤ R and ‖cit‖ ≤ R then vit ∈ [−1 1]d. Equation (7.3) is

equivalent to
n∑
i=1

p(i)e−
1
2
‖vit‖2 ≤ e

−1
2
‖
∑n
i=1 p(i)v

i
t‖2

This inequality holds by Jensen’s Theorem since the function f(vit) = e−
1
2
‖vit‖2 is

concave when vit ∈ [−1 1]d.

Proof of Theorem 7

Proof. We can proceed by applying Theorem 6 to bound the cumulative loss of the

algorithm and then use Lemma 16. As we proceed we follow the approach in the
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proof of Theorem 2.1.1 in [110].

LT (alg) =
T∑
t=1

L(xt, clust(t))

≤ −
T∑
t=1

2 log
n∑
i=1

pt(i)e
− 1

2
L(i,t)

= −2 logP (x1, ..., xT )

= −2 log
n∑
i=1

P (x1, ..., xT |ai,1, ..., ai,T )P (ai,1, ..., ai,T )

= −2 log
n∑
i=1

p1(i)P (x1|ai,1)
T∏
t=2

P (xt|ai, x1, ..., xt−1)

= −2 log
1

n

n∑
i=1

e−
1
2
L(i,1)

T∏
t=2

e−
1
2
L(i,t)

= −2 log
1

n

n∑
i=1

e−
1
2

∑T
t=1 L(i,t)

= −2 log
1

n
− 2 log

n∑
i=1

e−
1
2

∑T
t=1 L(i,t)

≤ LT (ai) + 2 log n

The last inequality holds for any ai, so in particular for a∗i .

Proof of Theorem 8

Proof. By applying first Theorem 6 and then Lemma 16 and following the proof of
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Theorem 3 (Main Theorem) in the [110] we obtain:

LT (alg) =
T∑
t=1

Lt(alg) ≤
T∑
t=1

−2 log
n∑
i=1

pt(i)e
− 1

2
L(i,t)

= −2 log[
∑
i1,...,iT

p1(i1)
T∏
t=2

P (it|it−1,Θ)
T∏
t=1

e−
1
2
L(it,t)]

= −2 log[
∑
i1,...,iT

P (i1, ..., iT |Θ)
T∏
t=1

e−
1
2
L(it,t)]

where P (i1, ..., iT |Θ) = p1(i1)
∏T

t=2 P (it|it−1,Θ). Notice that also:

P (i1, ..., iT |Θ) = p1(i1)
n∏
i=1

n∏
j=1

(θij)
nij(i1,...,iT )

where nij(i1, ..., iT ) is the number of transitions from state i to state j, in a sequence

i1, ..., iT and
∑

j nij(i1, ..., iT ), is the number of times the sequence was in state i,

except at the final time-step. Thus
∑

j nij(i1, ..., iT ) = (T − 1)ρ̂i(i1, ..., iT ), where

ρ̂i(i1, ..., iT ) is the empirical estimate, from the sequence i1, ..., iT , of the marginal

probability of being in state i, at any time-step except the final one. It follows that:

nij(i1, ..., iT ) = (T − 1)ρ̂i(i1, ..., iT )θ̂ij(i1, ..., iT ) where θ̂ij(i1, ..., iT ) =
nij(i1,...,iT )∑
j nij(i1,...,iT )

is the empirical estimate of the probability of that particular state transition, on

the basis of i1, ..., iT . Thus:

P (i1, ..., iT |Θ) = p1(i1)
n∏
i=1

n∏
j=1

(θij)
(T−1)ρ̂i(i1,...,iT )θ̂ij(i1,...,iT )
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= p1(i1)e(T−1)
∑n
i=1

∑n
j=1 ρ̂i(i1,...,iT )θ̂ij(i1,...,iT ) log θij

Thus:

LT (alg) ≤ −2 log[
∑
i1,...,iT

P (i1, ..., iT |Θ)
T∏
t=1

e−
1
2
L(it,t)]

= −2 log[
∑
i1,...,iT

p1(i1)e(T−1)
∑n
i=1

∑n
j=1 ρ̂i(i1,...,iT )θ̂ij(i1,...,iT ) log θij

T∏
t=1

e−
1
2
L(it,t)]

Let i
′
1, ..., i

′
T correspond to the best segmentation of the sequence into s segments

meaning the s-partitioning with minimal cumulative loss. Obviously then the

hindsight-optimal (cumulative loss minimizing) setting of switching rate param-

eter α, given s, is: α
′
= s

T−1
and since we are in the fixed-share setting: θ

′
ij = 1−α′

for i = j and θ
′
ij = α

′

n−1
for i 6= j. We can continue as follows:

≤ −2 log[p1(i
′

1)e(T−1)
∑n
i=1

∑n
j=1 ρ̂i(i

′
1,...,i

′
T )θ̂ij(i

′
1,...,i

′
T ) log θij

T∏
t=1

e−
1
2
L(i
′
t,t)]

= −2 log p1(i
′

1)− 2(T − 1)
n∑
i=1

n∑
j=1

ρ̂i(i
′

1, ..., i
′

T )]θ̂ij(i
′

1, ..., i
′

T ) log θij +
T∑
t=1

L(i
′

t, t)

= 2 log n− 2(T − 1)
n∑
i=1

n∑
j=1

ρ̂i(i
′

1, ..., i
′

T )θ̂ij(i
′

1, ..., i
′

T ) log θij +
T∑
t=1

L(i
′

t, t)

=
T∑
t=1

L(i
′

t, t) + 2 log n− 2(T − 1)
n∑

i=1,j=i

ρ̂i(i
′

1, ..., i
′

T )θ̂ij(i
′

1, ..., i
′

T ) log θij

− 2(T − 1)
n∑
i=1

n∑
j=1,j 6=i

ρ̂i(i
′

1, ..., i
′

T )θ̂ij(i
′

1, ..., i
′

T ) log θij
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=
T∑
t=1

L(i
′

t, t) + 2 log n− 2(T − 1)(1− α′) log(1− α)
n∑

i=1,j=i

ρ̂i(i
′

1, ..., i
′

T )

− 2(T − 1)
α
′

n− 1
log(

α

n− 1
)

n∑
i=1

n∑
j=1,j 6=i

ρ̂i(i
′

1, ..., i
′

T )

=
T∑
t=1

L(i
′

t, t) + 2 log n− 2(T − 1)(1− α′) log(1− α)− 2(T − 1)α
′
log(

α

n− 1
)

=
T∑
t=1

L(i
′

t, t) + 2 log n− 2(T − 1)(1− α′) log(1− α)− 2(T − 1)α
′
logα

+ 2(T − 1)α
′
log(n− 1)

=
T∑
t=1

L(i
′

t, t) + 2 log n− 2(T − 1)(1− α′) log(1− α)− 2(T − 1)α
′
logα

+ 2s log(n− 1)

=
T∑
t=1

L(i
′

t, t) + 2 log n+ 2s log(n− 1)− 2(T − 1)((1− α′) log(1− α) + α
′
logα)

=
T∑
t=1

L(i
′

t, t) + 2 log n+ 2s log(n− 1) + 2(T − 1)(H(α
′
) +D(α

′‖α))

Proof of Lemma 8

Proof. Given any b, it will suffice to provide a sequence such that any b-approximate

algorithm cannot output xt, the current point in the stream, as one of its centers.

We will provide a counter example in the setting where k = 2. Given any b, consider

a sequence such that the stream before the current point consists entirely of n1 data

points located at some position A, and n2 data points located at some position B,
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where n2 > n1 > b − 1. Let xt be the current point in the stream, and let it be

located at a position X that lies on the line segment connecting A and B, but closer

to A. That is, let ‖A−X‖ = a and ‖B −X‖ = c such that 0 < a < n2

n2+1
c. This is

reflected by the figure, which includes some additional points D and E:

——–A———D————X—————E————————-B————-

where A,D,X,E,B are lying on the same line. Let D ∈ [A,X] and E ∈ [X,B]. Let

for particular location of D and E, ‖A −D‖ = a1, ‖D −X‖ = a2, ‖X − E‖ = c1

and ‖E −B‖ = c2, such that a1 + a2 = a and c1 + c2 = c.

We will first reason about the optimal k-means clustering of the stream including

xt. We will consider cases:

1) Case 1: optimal centers lie inside the interval (A,X). Any such set cannot be

optimal since by mirror-reflecting the center closest to X with respect to X (such

that it now lies in the interval (B,X) and has the same distance to X as before)

we can decrease the cost. In particular the cost of points in B will only decrease,

leaving the cost of points in A, plus the cost of X, unchanged.

2) Case 2: optimal centers lie inside the interval (B,X). In this case we can

alternately mirror-reflect the closest center to X with respect to X and then with

respect to A (reducing the cost with each reflection) until it will end up in interval

[A,X). The cost of the final solution is smaller than when both centers were lying

in (B,X), because while mirror-reflecting with respect to X, the cost of points in
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A can only decrease, leaving the cost of points in B and point X unchanged and

while mirror-reflecting with respect to A, the cost of point X can only decrease,

leaving the cost of points in A and in B unchanged.

Thus the optimal set of centers (let’s call them: C1, C2) must be such that: C1 ∈

[A,X] and C2 ∈ [B,X]. The figure above reflects this situation and is sufficiently

general; thus D = C1 and E = C2. We will now consider all possible locations of

such centers (C1, C2) and their costs:

1) (A,X): cost = n2(c1 + c2)2

2.1) (A,E) where E ∈ (X,B): cost = (a1 + a2)2 + n2c
2
2 when c1 ≥ a

2.2) (A,E) where E ∈ (X,B): cost = c2
1 + n2c

2
2 when c1 < a

3) (A,B): cost = (a1 + a2)2

4) (D,X) where D ∈ (A,X): cost = n1a
2
1 + n2(c1 + c2)2

5.1) (D,E) where D ∈ (A,X) and E ∈ (X,B): cost = n1a
2
1 +a2

2 +n2c
2
2 when a2 ≤ c1

5.2) (D,E) where D ∈ (A,X) and E ∈ (X,B): cost = n1a
2
1 +c2

1 +n2c
2
2 when a2 > c1

6) (D,B) where D ∈ (A,X): cost = n1a
2
1 + a2

2

7) (X,E) where E ∈ (X,B): cost = n1(a1 + a2)2 + n2c
2
2

8) (X,B) where E ∈ (X,B): cost = n1(a1 + a2)2

Notice:

cost(1) > cost(2.2) thus optimal configuration of centers cannot be as in case 1)

cost(7) > cost(8) thus optimal configuration of centers cannot be as in case 7)



Chapter 7. Appendix 159

cost(4) > cost(5.2) thus optimal configuration of centers cannot be as in case 4)

cost(8) > cost(6) thus optimal configuration of centers cannot be as in case 8)

cost(5.2) > cost(2.2) thus optimal configuration of centers cannot be as in case 5.2)

cost(5.1) > cost(6) thus optimal configuration of centers cannot be as in case 5.1)

cost(2.1) > cost(3) thus optimal configuration of centers cannot be as in case 2.1)

Consider case (2.2): cost = c2
1 + n2c

2
2 = c2

1 + n2(c− c1)2 and c1 ∈ (0, a). Keeping in

mind that 0 < a < n2

n2+1
c, it is easy to show that cost > a2 + n2(c − a)2 > n2a

2 >

n1a
2 > a2 = cost(case(3)). Thus the optimal configuration of centers cannot be as

in case 2.2). Therefore, the only cases we are left to consider are cases 3 and 6. In

both cases, one of the optimal centers lies at B. Let this center be C2. Since a < c,

the remaining points (in A and X) are assigned to center C1 whose location can be

computed as follows (please see figure below for notation simplicity):

A—C1———X———————–B = C2

Let ‖A − C1‖ = δ and ‖A − X‖ = a (as defined above). Since we proved that

C2 must be fixed at B, the points at B will contribute 0 to the objective, and we

can solve for C1 by minimizing the cost from points in A, plus the cost from X:

minδ{n1δ
2 + (a− δ)2}. The solution is δ = a

n1+1
. Thus the total optimal cost is:

OPT = n1δ
2 + (a− δ)2 =

n1a
2

(n1 + 1)2
+

n2
1a

2

(n1 + 1)2
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We will now consider any 2-clustering of set A,X,B when one cluster center is

xt, which is therefore located at X. We can lower bound the k-means cost of any

two set of centers that contain X, as follows: cost({X, ĉ}) ≥ n1a
2 for any ĉ; the

minimal cost is achieved when the other center is located at B (when one of the

centers is located in X, the location of the other center that gives the smallest

possible k-means cost can be either A (case 1), D (case 4), E (case 7) or B (case

8), where case 8 has the smallest cost from among them).

Violating the b-approximation assumption occurs when cost({X, ĉ}) > b ∗ OPT .

Given the above, it would suffice to show n1a
2 > b ∗OPT . That is:

n1a
2 > b

(
n1a

2

(n1 + 1)2
+

n2
1a

2

(n1 + 1)2

)
⇔ b < (n1 + 1)

This holds, as we chose n1 > b−1 in the beginning. Therefore the b-approximation

assumption is violated.

Proof of Lemma 10

Proof. For ease of notation, we denote by Φ(t−W,t> the k-means cost of algorithm

a on the data seen in the window (t−W, t > (omitting the argument, which is the

set of centers output by algorithm a at time t). Since a is b-approximate then:

∀W Φ(t−W,t> ≤ b ·OPT(t−W,t> (7.4)
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For any W such that W < T , we can decompose T such that T = mW + r where

m ∈ N and r ≤ W . Notice then that for any j ∈ {0, ...,W − 1} the following chain

of inequalities holds as the direct consequence of Equation 7.4:

Φ(T−W+j,T> + Φ(T−2W+j,T−W+j>

+ Φ(T−3W+j,T−2W+j>

+ . . .+ Φ(T−mW+j,T−(m−1)W+j>

+ Φ<1,T−mW+j>

≤ b ·OPT(T−W+j,T>

+ b ·OPT(T−2W+j,T−W+j>

+ b ·OPT(T−3W+j,T−2W+j>

+...+ b ·OPT(T−mW+j,T−(m−1)W+j>

+ b ·OPT<1,T−mW+j>

≤ b ·OPT<1,T>, (7.5)

where the last inequality is the direct consequence of Lemma 9. Notice that different

value of j refers to different partitioning of the time span < 1, T >. Figure 7.2

illustrates an example when T = 10 and W = 3.
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Figure 7.2: Illustration of the time spans over which the loss is being computed in Equation 7.6.
T = 10, W = 3. Colors red, blue and black correspond to different partitionings,
with respect to j, of time span T illustrated in Figure 7.2.

Let Wt refer to the data chunk seen in time span < max(1, t −W + 1), t >. We

finish by showing that,

T∑
t=1

ΦWt ≤
W−1∑
j=0

{Φ(T−W+j,T> (7.6)

+ Φ(T−2W+j,T−W+j>

+ Φ(T−3W+j,T−2W+j>

+ . . .+ Φ(T−mW+j,T−(m−1)W+j>

+ Φ<1,T−mW+j>}

≤ b ·W ·OPT<1,T>

The left hand side of the first inequality (7.6) sums the losses over only a subset of

all the windows that are induced by partitioning the time span T using all possible

values of j. The final inequality follows by applying (7.5).
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Figure 7.3: Different partitioning of time span T = 10 into time windows, W = 3, with respect
to different values of j.

To illustrate some of the ideas used in this proof, Figures 7.2 and 7.3 provide

schematics. Figure 7.3 shows the windows over which the loss is computed on the

left hand side of inequality (7.6), which is a subset of the set of all windows induced

by all possible partitioning of time span T using all possible values of j, which is

shown in Figure 7.2.

Proof of Lemma 11

Proof. The loss of expert i at time t is defined in Definition 6 as the scaled com-

ponent of the k-means cost of algorithm a’s clustering at time t. That is, Φt(Ct) =∑
x′t∈Wt

minc∈Ct ‖xt′ − c‖2 = minc∈Ct ‖xt − c‖2 +
∑

x′t∈Wt\xt minc∈Ct ‖xt′ − c‖2 =

4R2 · Lt(Ct) +
∑

x′t∈Wt\xt minc∈Ct ‖xt′ − c‖2.

Therefore, since all terms in the sum are positive, 4R2 · Lt(Ct) ≤ Φt(Ct), and
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Lt(a) ≤ Φt
4R2 . where in the second inequality we substitute in our simplifying nota-

tion, where Ct are the set of clusters generated by algorithm a at time t, and Φt is

algorithm a’s k-means cost on Wt. Now, summing over T iterations, and applying

Lemma 10, we obtain
∑T

t=1 Lt(a) ≤ b·W
4R2OPT<1,T>.

Proof of Theorem 12

Proof. The theorem directly follows from Theorem 8, Lemma 10 and Lemma 11.

Notice that both Lemma 10 and Lemma 11 hold in a more general setting when in

each time window the identity of the expert (b-approximate algorithm) may change

in an arbitrarily way. However we did not provide the generalized proofs of those

lemmas since it would only complicate the notation.

Proof of Theorem 9, Corollary 2, and Theorem 13

Theorem 9, Corollary 2, and Theorem 13 follow directly from the results that we

will next show.

Lemma 18.

LlogT (Θ) =
T∑
t=1

Llog(pt, t) = − log

[ ∑
i1,...,iT

p1(i1)e−
1
2
L(i1,1)

T∏
t=2

e−
1
2
L(it,1)P (it|it−1,Θ)

]

Proof. It follows directly from Lemma 16.
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Lemma 19.

LlogT (Θ)− LlogT (Θ∗) = − log

[∑
~s

Q(~s|θ∗) exp

{
T
′

n∑
i=1

n∑
j=1

ρ̂i(~s)θ̂ij(~s) log(
θij
θ∗ij

)

}]

where ~s = i1, ..., iT and Q(~s|Θ∗) is the posterior probability over the choices of

experts along the sequence, induced by hindsight-optimal Θ∗.

Proof. It follows directly from applying proof of Lemma A.0.1 in [110] with rede-

fined φ(~s) such that φ(~s) =
∏T

t=1 e
− 1

2
L(it,t).

Lemma 20.

LlogT (Θ)− LlogT (Θ∗) ≤ (T − 1)
n∑
i=1

ρ∗iD(Θ∗i ‖Θi) ≤ (T − 1) max
i
D(Θ∗i ‖Θi)

Proof. It holds by Theorem 3 in [110].

Lemma 21.

Llog
T (α) ≤ Llog

T (α∗) + (T − 1)D(α∗‖α)

Proof. It holds by Lemma 17, Lemma 20.
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Lemma 22.

LT (α) ≤ 2Llog
T (α∗) + 2(T − 1)D(α∗‖α)

Proof. It holds by Lemma 21 and Lemma 7.

Lemma 23.

LT (θ) ≤ bW

2R2
OPTT + 2(T − 1)

n∑
i=1

ρ∗iD(θ∗i ||θi)

Proof.

LlogT (θ∗) =
T∑
t=1

Llog(pt, t)|θ∗ = (
T∑
t=1

− log
n∑
i=1

pt(i)e
− 1

2
L(i,t))|θ∗ =

= (−
T∑
t=1

log
n∑
i=1

pt(i)e
− 1

2
‖xt−c

i
t

2R
‖2)|θ∗

Define as previously vit =
xt−cit

2R
and notice vit ∈ [−1; 1]d.

Thus we continue:

= (−
T∑
t=1

log
n∑
i=1

pt(i)e
− 1

2
‖vit‖2)|θ∗
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By the proof of Lemma 4 ‖vit‖2 ≤ φit
4R2 where φit is the k-means cost of algorithm ith

clustering (ith expert) at time t.

Thus we can continue as follows (we omitt conditioning by θ∗ since it holds for any

~pt):

≤ −
T∑
t=1

log
n∑
i=1

pt(i)e
− 1

2

φit
4R2 ≤ −

T∑
t=1

log
n∑
i=1

pt(i)e
− 1

2

maxi φ
i
t

4R2

≤ −
T∑
t=1

log e−
1
2

maxi φ
i
t

4R2 =
T∑
t=1

1

2

maxi φ
i
t

4R2
=

1

8R2

T∑
t=1

max
i
φit ≤

bW

8R2
OPTT

The last inequality follows from the proof of Theorem 7. Thus finally:

LT (θ) ≤ 2LlogT (θ) ≤ 2LlogT (θ∗) + 2(T − 1)
n∑
i=1

ρ∗iD(θ∗i ||θi)

≤ bW

4R2
OPTT + 2(T − 1)

n∑
i=1

ρ∗iD(θ∗i ||θi)

Proof of Theorem 10

Proof. The logloss per time step of the top-level algorithm (for the ease of notation
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we skip index log), which updates its distribution over α - experts (Fixed-Share (αj

algorithms) is:

Ltop(ptopt , t) = − log
m∑
j=1

ptopt (j)e−L
log(j,t)

where

Llog(j, t) = − log
n∑
i=1

pj(i)e
− 1

2
L(i,t)

thus:

Ltop(ptopt , t) = − log
m∑
j=1

ptopt (j)
n∑
i=1

pj(i)e
− 1

2
L(i,t)

The update is done via the Static Expert algorithm. When running Learn-α(m),

m possible values αj are tested.

Following [70, 110], the probabilistic “prediction” of the algorithm is defined as:

m∑
j=1

ptopt (j)
n∑
i=1

pj(i)e
− 1

2
L(i,t)
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Let us first show that this loss-prediction pair are (1, 1)-realizable, thus they satisfy:

Ltop(ptopt , t) ≤ − log
m∑
j=1

ptop(j)e
−Llog(j,t)

Thus we have to prove that following holds:

− log
m∑
j=1

ptopt (j)
n∑
i=1

pj(i)e
− 1

2
L(i,t) ≤ − log

m∑
j=1

ptopt (j)e−L
log(j,t)

thus we have to prove:

− log
m∑
j=1

ptopt (j)
n∑
i=1

pj(i)e
− 1

2
L(i,t) ≤ − log

m∑
j=1

ptopt (j)elog
∑n
i=1 pj(i)e

− 1
2L(i,t)

which is equivalent to

− log
m∑
j=1

ptopt (j)
n∑
i=1

pj(i)e
− 1

2
L(i,t) ≤ − log

m∑
j=1

ptopt (j)
n∑
i=1

pj(i)e
− 1

2
L(i,t)

where the last inequality holds. Now, since our logloss-prediction pair are (1,1)-

realizable, by Lemma 1 in [69] we have:

LtopT ≤ min
{αj}

Llog
T (αj) + logm
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where {αj} is the discretization of the α parameter that the Learn-α algorithm

takes as input. Now, by applying Corollary 2 we get:

Llog
T (alg) ≤ Llog

T (α∗) + (T − 1) min
{αj}

D(α∗‖αj) + logm
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