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This code implements imperfect maximum-weight b-matching where b is allowed to vary by node. We
describe the reduction to perfect maximum-weight 1-matching, and the API and implementation of this
code.

Let G = (V,E) be a graph and let W ∈ N|V |×|V | and P ∈ B|V |×|V | denote symmetric weight and
adjacency matrices. Let δu denote the degree of node u. Let b ∈ N|V | be a vector such that entry bi
upper-bounds the number of neighbors node i may match. The code then solves

max
P

∑
ij

PijWij

s.t.
∑
j

Pij ≤ bi
(1)

by combining reductions due to Bondy and Murty [1] (b-matching to 1-matching) and Schäfer [3] (imperfect
to perfect matching) and then calling out to the BlossomV solver [2].

The same code can also solve a minimum-weight matching with a lower bound constraint. To see, let
P denote the relative complement of P in G. That is, P ij = 1 if and only if Pij = 0 and (i, j) ∈ E. Then
problem (1) is equivalent to

min
P

∑
ij

P ijWij

s.t.
∑
j

P ij ≥ δi − bi
(2)

This is because since vertex i has δi neighbors, if we picked at most bi of its neighbors that maximized the
objective, then there main at least δi − bi neighbors, which, if matched, would minimize the objective.

In practice, the weights W are nonnegative real, but BlossomV requires integral weights. We thus scale
by normalizing weights to [0, 1] and then scaling by a large number (107 works) and rounding, keeping 7
significant figures. As a final detail, BlossomV solves a minimum-weight matching, but handles negative
weights, so we simply negate W before calling out.

To simplify our proofs, we assume elements of W are unique, which can always be arranged in practice
by solving a perturbed problem.

1 Reducing to perfect 1-matching
Bondy and Murty [1, pp. 431] describe a reduction from perfect b-matching to perfect 1-matching (adding
polynomially more nodes) and [3, Sec. 1.5.2] describes a reduction from imperfect 1-matching to perfect
1-matching (doubling the number of nodes). With some care, we can combine the two ideas and obtain a
polynomial-sized reduction from imperfect b-matching to perfect 1-matching.
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1.1 Perfect b-matching to perfect 1-matching
To reduce a perfect b-matching a perfect 1-matching, convert each of original vertices to a bipartite graph,
consisting of a core vertices and a peripheral vertices. The edges in the original graph map to edges between
peripheral vertices, and extra edges between the core and periphery enforce the b constraint.

For each vertex u ∈ V , form δu− bu vertices in the core set Xu and δ(u) vertices in the peripheral set Yu.
Form a zero-weight edge from each vertex in Xu to each vertex in Yu, called interior edges. Now Xu and Yu
form a bipartite subgraph. Form Ṽ as the union of the new vertices.

For each edge (u, v) ∈ E, we can find a unique pair yu ∈ Yu and yv ∈ Yv. This is simply because
|Yu| = δ(u), so for every edge incident to u, one vertex in Yu can be devoted to representing that edge.
Similarly for v. Form Ẽ containing each peripheral edge (yu, yv), and copy the weights W̃yuyv

=Wuv.
We can see how the interior edges enforce the b constraint: vertex u has δu neighbors, of which bu must

be matched. This means that δu − bu neighbors are unmatched, which is the exact number of core vertices.
Each core vertex will match a peripheral vertex, leaving bu peripheral vertices left to match with peripheral
vertices of other subgraphs.

Now given a perfect 1-matching P̃ of G̃, we can collapse it to get a perfect b-matching P of G by
remembering the origins of each peripheral edge. Begin with P empty. For each (yu, yv) ∈ P̃ where yu ∈ Yu
and yv ∈ Yv, add (u, v) to P . Since P̃ is a 1-matching, each extracted yu and yv is unique. Because vertex u
has bu peripheral vertices matched to other peripheral vertices in P̃ , u will be matched exactly bu times in
P .

1.2 Imperfect 1-matching to perfect 1-matching
To reduce an imperfect 1-matching of G to a perfect 1-matching, we first create an isomorphic copy called
G+N and add zero-weight edges between each vertex in G to its isomorphic image in G+N .

More precisely, assume V = {1, . . . , N}. Let V+N := {v+N |v ∈ V }, E+N := {(u+N, v +N)|(u, v) ∈ E},
F := {(u, f(u)) |u ∈ V }. Define an isomorphism f : V → V +N as f(u) := u+N and define G′ := (V ′, E′)
where

V ′ := V ∪ V +N

E′ := E ∪ E +N ∪ F

The isomorphic copy gives an escape route: If in G we can get a higher total weight by not matching some
vertex v ∈ G at all, then in G′ we match it instead to f(v)—still a perfect matching.

Proposition 1 ([3, Lemma 1.5.1]). Let P ′ be a maximum-weight perfect 1-matching of G′ and let P be the
upper-left N ×N block of P̃ . Then P is a maximum-weight imperfect 1-matching of G. Conversely, if P is
a maximum-weight imperfect 1-matching of G, then there exists a maximum-weight perfect 1-matching of G′
such that its upper-left N ×N block is P .

1.3 Imperfect b-matching to perfect 1-matching
To reduce an imperfect b-matching to a perfect 1-matching, we first take the Bondy-Murty reduction G̃ =
(Ṽ , Ẽ) and again create an isomorphic copy G̃+M , whereM = |Ṽ |. The difference here is that we add edges
across the isomorphic copies only for peripheral vertices. That is, withH = {(yu, f(yu))|yu ∈ Yu for some u ∈ V },
define G̃+ = (Ṽ +, Ẽ+) where

Ṽ + := Ṽ ∪ Ṽ +M

Ẽ+ := Ẽ ∪ Ẽ +M ∪H

We can interpret the reduction as follows: we ultimately care about peripheral vertices because the edges
from the original graph are the edges between peripheral vertices. Each peripheral vertex is incident to
exactly one other peripheral vertex in G̃. If there were no core vertices, then each peripheral vertex would
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be matched, and the matching corresponds to the entire original graph G. It is in fact a maximum-weight
perfect b-matching where bu = δu for each u ∈ V .

In general, bu ≤ δu, so we form δu − bu core vertices. On the subgraph for vertex u, each core vertex is
connected to each peripheral vertex. Inner edge weights are zero, so the total weight is unchanged. For a
matching on G̃ to be perfect, each core vertex matches a peripheral vertex on the same subgraph. This leaves
bu peripheral vertices to match with peripheral vertices on other subgraphs, corresponding to matching u
with bu of its neighbors in the original G.

Now suppose we could attain a higher total weight by matching vertex u with cu < bu neighbors. Then
we would have δu − (δu − bu) − cu = bu − cu > 0 peripheral vertex which match neither a vertex nor a
peripheral vertex in G̃. These leftover vertices then match their isomorphic copies, contributing zero weight.
Note if the original weights W are unique, then both copies have isomorphic matchings. We formalize this
story in the following proof:

Proposition 2. Let P̃+ be a maximum-weight perfect 1-matching of G̃+ whose upper-left M ×M block is
P̃ . Then P̃ can be collapsed to a maximum-weight imperfect b-matching P of G.

Conversely, if there exists a maximum-weight imperfect b-matching P of G, then there exists a maximum-
weight perfect 1-matching of G̃+ whose upper-left M ×M block can be collapsed to P .

Proof. Because P̃+ is an adjacency matrix and vertex i is isomorphic to vertex i+M , we can decompose in
block form

P̃+ =

[
P̃ Q

Q> P̃ +M

]
Suppose P̃+ is a maximum-weight perfect 1-matching of G̃+, but P̃ were not a maximum-weight imperfect
1-matching of G̃. Let P̃M be an imperfect 1-matching of G̃ and form P̃+

M whose upper-left block is P̃M , lower-
right block is P̃M +M , and off-diagonal blocks set to satisfy the equality constraint

∑
j P̃

+
ij = 1. Then P̃+

M

is a perfect 1-matching. Since the off-diagonal blocks have zero weight, the total weight is
∑

ij P̃
+
M,ijW̃

+
ij =

2
∑

i′j′ P̃M,i′j′W̃i′j′ > 2
∑

i′j′ P̃i′j′W̃i′j′ =
∑

ij P̃
+
ij W̃

+
ij , contradicting that P̃+ is maximum weight.

For any u ∈ G, consider xu ∈ Xu. Since xu is a core vertex, the edge (xu, xu+M) does not exist in G̃+, so
P̃ must match xu to some vertex in Yu in Ṽ . Since P̃ is an imperfect 1-matching, at most δu− (δu−bu) = bu
vertices remain in Yu that are not matched to vertices in Xu. Let yu be any one of those. By construction,
yu is incident to at most 2 edges in Ẽ+: (yu, yw) for one particular w ∈ V such that (u,w) ∈ E, and
(yu, yu+M). Since P̃+ is a perfect matching, exactly one of the two edges is chosen. Collapsing as discussed
in Section 1.1 reuslts in u’s matching at most bu neighbors in the original graph G.

Now suppose P is a maximum-weight imperfect b-matching of G. Then P corresponds to peripheral
edges in G̃; put these edges in P̃ . Then P̃ is a maximum-weight imperfect 1-matching of G̃, because the non
zero-weight edges of G̃ are exactly those in G. Consider u ∈ V . Since u matches at most bu neighbors in G,
at least δu − bu elements of Yu will not yet be matched in P̃ , so augment to match them to the core vertices
Xu. If there are not enough core vertices, then augment P̃ to match the remaining yu’s to their isomorphic
images yu + N . Copy P̃ onto the isomorphic copy G̃ + N and call it P̃+. note that the edges between
isomorphic copies are symmetric. These extra edges have zero weight, and P̃ + N is a maximum-weight
matching of G̃+N by the isomorphism (since all edges across the isomorphic copies have zero weight). Now
each vertex in G̃+ is matched to exactly one neighbor in P̃+, so we have a maximum-weight 1-matching.

2 Code interface
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