Imperfect *b*-matching

Kui Tang

May 2, 2013

This code implements imperfect maximum-weight b-matching where b is allowed to vary by node. We describe the reduction to perfect maximum-weight 1-matching, and the API and implementation of this code.

Let G = (V, E) be a graph and let $W \in \mathbb{N}^{|V| \times |V|}$ and $P \in \mathbb{B}^{|V| \times |V|}$ denote symmetric weight and adjacency matrices. Let δ_u denote the degree of node u. Let $\mathbf{b} \in \mathbb{N}^{|V|}$ be a vector such that entry b_i upper-bounds the number of neighbors node i may match. The code then solves

$$\max_{P} \sum_{ij} P_{ij} W_{ij}$$

s.t. $\sum_{j} P_{ij} \le b_i$ (1)

by combining reductions due to Bondy and Murty [1] (b-matching to 1-matching) and Schäfer [3] (imperfect to perfect matching) and then calling out to the BlossomV solver [2].

The same code can also solve a minimum-weight matching with a lower bound constraint. To see, let \overline{P} denote the relative complement of P in G. That is, $\overline{P}_{ij} = 1$ if and only if $P_{ij} = 0$ and $(i, j) \in E$. Then problem (1) is equivalent to

$$\min_{\overline{P}} \sum_{ij} \overline{P}_{ij} W_{ij} \\
\text{s.t.} \sum_{j} \overline{P}_{ij} \ge \delta_i - b_i$$
(2)

This is because since vertex *i* has δ_i neighbors, if we picked at most b_i of its neighbors that maximized the objective, then there main at least $\delta_i - b_i$ neighbors, which, if matched, would minimize the objective.

In practice, the weights W are nonnegative real, but BlossomV requires integral weights. We thus scale by normalizing weights to [0, 1] and then scaling by a large number (10⁷ works) and rounding, keeping 7 significant figures. As a final detail, BlossomV solves a *minimum*-weight matching, but handles negative weights, so we simply negate W before calling out.

To simplify our proofs, we assume elements of W are unique, which can always be arranged in practice by solving a perturbed problem.

1 Reducing to perfect 1-matching

Bondy and Murty [1, pp. 431] describe a reduction from perfect *b*-matching to perfect 1-matching (adding polynomially more nodes) and [3, Sec. 1.5.2] describes a reduction from imperfect 1-matching to perfect 1-matching (doubling the number of nodes). With some care, we can combine the two ideas and obtain a polynomial-sized reduction from imperfect *b*-matching to perfect 1-matching.

1.1 Perfect b-matching to perfect 1-matching

To reduce a perfect *b*-matching a perfect 1-matching, convert each of original vertices to a bipartite graph, consisting of a *core* vertices and a *peripheral* vertices. The edges in the original graph map to edges between peripheral vertices, and extra edges between the core and periphery enforce the b constraint.

For each vertex $u \in V$, form $\delta_u - b_u$ vertices in the core set X_u and $\delta(u)$ vertices in the peripheral set Y_u . Form a zero-weight edge from each vertex in X_u to each vertex in Y_u , called *interior edges*. Now X_u and Y_u form a bipartite subgraph. Form \tilde{V} as the union of the new vertices.

For each edge $(u, v) \in E$, we can find a unique pair $y_u \in Y_u$ and $y_v \in Y_v$. This is simply because $|Y_u| = \delta(u)$, so for every edge incident to u, one vertex in Y_u can be devoted to representing that edge. Similarly for v. Form \tilde{E} containing each *peripheral edge* (y_u, y_v) , and copy the weights $\tilde{W}_{y_u y_v} = W_{uv}$.

We can see how the interior edges enforce the b constraint: vertex u has δ_u neighbors, of which b_u must be matched. This means that $\delta_u - b_u$ neighbors are unmatched, which is the exact number of core vertices. Each core vertex will match a peripheral vertex, leaving b_u peripheral vertices left to match with peripheral vertices of other subgraphs.

Now given a perfect 1-matching \tilde{P} of \tilde{G} , we can *collapse* it to get a perfect *b*-matching P of G by remembering the origins of each peripheral edge. Begin with P empty. For each $(y_u, y_v) \in \tilde{P}$ where $y_u \in Y_u$ and $y_v \in Y_v$, add (u, v) to P. Since \tilde{P} is a 1-matching, each extracted y_u and y_v is unique. Because vertex uhas b_u peripheral vertices matched to other peripheral vertices in \tilde{P} , u will be matched exactly b_u times in P.

1.2 Imperfect 1-matching to perfect 1-matching

To reduce an imperfect 1-matching of G to a perfect 1-matching, we first create an isomorphic copy called G + N and add zero-weight edges between each vertex in G to its isomorphic image in G + N.

More precisely, assume $V = \{1, \ldots, N\}$. Let $V+N := \{v+N | v \in V\}$, $E+N := \{(u+N, v+N) | (u, v) \in E\}$, $F := \{(u, f(u)) | u \in V\}$. Define an isomorphism $f : V \to V + N$ as f(u) := u + N and define G' := (V', E') where

$$V' := V \cup V + N$$
$$E' := E \cup E + N \cup F$$

The isomorphic copy gives an escape route: If in G we can get a higher total weight by not matching some vertex $v \in G$ at all, then in G' we match it instead to f(v)—still a perfect matching.

Proposition 1 ([3, Lemma 1.5.1]). Let P' be a maximum-weight perfect 1-matching of G' and let P be the upper-left $N \times N$ block of \tilde{P} . Then P is a maximum-weight imperfect 1-matching of G. Conversely, if P is a maximum-weight imperfect 1-matching of G, then there exists a maximum-weight perfect 1-matching of G' such that its upper-left $N \times N$ block is P.

1.3 Imperfect b-matching to perfect 1-matching

To reduce an imperfect *b*-matching to a perfect 1-matching, we first take the Bondy-Murty reduction $\tilde{G} = (\tilde{V}, \tilde{E})$ and again create an isomorphic copy $\tilde{G} + M$, where $M = |\tilde{V}|$. The difference here is that we add edges across the isomorphic copies only for peripheral vertices. That is, with $H = \{(y_u, f(y_u)) | y_u \in Y_u \text{ for some } u \in V\}$, define $\tilde{G}^+ = (\tilde{V}^+, \tilde{E}^+)$ where

$$\begin{array}{rcl} \tilde{V}^+ & := & \tilde{V} \cup \tilde{V} + M \\ \tilde{E}^+ & := & \tilde{E} \cup \tilde{E} + M \cup H \end{array}$$

We can interpret the reduction as follows: we ultimately care about peripheral vertices because the edges from the original graph are the edges between peripheral vertices. Each peripheral vertex is incident to exactly one other peripheral vertex in \tilde{G} . If there were no core vertices, then each peripheral vertex would be matched, and the matching corresponds to the entire original graph G. It is in fact a maximum-weight perfect b-matching where $b_u = \delta_u$ for each $u \in V$.

In general, $b_u \leq \delta_u$, so we form $\delta_u - b_u$ core vertices. On the subgraph for vertex u, each core vertex is connected to each peripheral vertex. Inner edge weights are zero, so the total weight is unchanged. For a matching on \tilde{G} to be perfect, each core vertex matches a peripheral vertex on the same subgraph. This leaves b_u peripheral vertices to match with peripheral vertices on other subgraphs, corresponding to matching u with b_u of its neighbors in the original G.

Now suppose we could attain a higher total weight by matching vertex u with $c_u < b_u$ neighbors. Then we would have $\delta_u - (\delta_u - b_u) - c_u = b_u - c_u > 0$ peripheral vertex which match neither a vertex nor a peripheral vertex in \tilde{G} . These leftover vertices then match their isomorphic copies, contributing zero weight. Note if the original weights W are unique, then both copies have isomorphic matchings. We formalize this story in the following proof:

Proposition 2. Let \tilde{P}^+ be a maximum-weight perfect 1-matching of \tilde{G}^+ whose upper-left $M \times M$ block is \tilde{P} . Then \tilde{P} can be collapsed to a maximum-weight imperfect b-matching P of G.

Conversely, if there exists a maximum-weight imperfect b-matching P of G, then there exists a maximumweight perfect 1-matching of \tilde{G}^+ whose upper-left $M \times M$ block can be collapsed to P.

Proof. Because \tilde{P}^+ is an adjacency matrix and vertex *i* is isomorphic to vertex i + M, we can decompose in block form

$$\tilde{P}^{+} = \left[\begin{array}{cc} \tilde{P} & Q \\ Q^{\top} & \tilde{P} + M \end{array} \right]$$

Suppose \tilde{P}^+ is a maximum-weight perfect 1-matching of \tilde{G}^+ , but \tilde{P} were not a maximum-weight imperfect 1-matching of \tilde{G} . Let \tilde{P}_M be an imperfect 1-matching of \tilde{G} and form \tilde{P}_M^+ whose upper-left block is \tilde{P}_M , lower-right block is $\tilde{P}_M + M$, and off-diagonal blocks set to satisfy the equality constraint $\sum_j \tilde{P}_{ij}^+ = 1$. Then \tilde{P}_M^+ is a perfect 1-matching. Since the off-diagonal blocks have zero weight, the total weight is $\sum_{ij} \tilde{P}_{M,ij}^+ \tilde{W}_{ij}^+ = 2\sum_{i'j'} \tilde{P}_{M,i'j'} \tilde{W}_{i'j'} > 2\sum_{i'j'} \tilde{P}_{i'j'} \tilde{W}_{i'j'} = \sum_{ij} \tilde{P}_{ij}^+ \tilde{W}_{ij}^+$, contradicting that \tilde{P}^+ is maximum weight.

For any $u \in G$, consider $x_u \in X_u$. Since x_u is a core vertex, the edge $(x_u, x_u + M)$ does not exist in \tilde{G}^+ , so \tilde{P} must match x_u to some vertex in Y_u in \tilde{V} . Since \tilde{P} is an imperfect 1-matching, at most $\delta_u - (\delta_u - b_u) = b_u$ vertices remain in Y_u that are not matched to vertices in X_u . Let y_u be any one of those. By construction, y_u is incident to at most 2 edges in \tilde{E}^+ : (y_u, y_w) for one particular $w \in V$ such that $(u, w) \in E$, and $(y_u, y_u + M)$. Since \tilde{P}^+ is a perfect matching, exactly one of the two edges is chosen. Collapsing as discussed in Section 1.1 reuslts in u's matching at most b_u neighbors in the original graph G.

Now suppose P is a maximum-weight imperfect b-matching of G. Then P corresponds to peripheral edges in \tilde{G} ; put these edges in \tilde{P} . Then \tilde{P} is a maximum-weight imperfect 1-matching of \tilde{G} , because the non zero-weight edges of \tilde{G} are exactly those in G. Consider $u \in V$. Since u matches at most b_u neighbors in G, at least $\delta_u - b_u$ elements of Y_u will not yet be matched in \tilde{P} , so augment to match them to the core vertices X_u . If there are not enough core vertices, then augment \tilde{P} to match the remaining y_u 's to their isomorphic images $y_u + N$. Copy \tilde{P} onto the isomorphic copy $\tilde{G} + N$ and call it \tilde{P}^+ . note that the edges between isomorphic copies are symmetric. These extra edges have zero weight, and $\tilde{P} + N$ is a maximum-weight matching of $\tilde{G} + N$ by the isomorphism (since all edges across the isomorphic copies have zero weight). Now each vertex in \tilde{G}^+ is matched to exactly one neighbor in \tilde{P}^+ , so we have a maximum-weight 1-matching. \Box

2 Code interface

References

 Adrian Bondy and U.S.R. Bondy. Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, 3 edition, 2008. 1

- [2] Vladimir Kolmogorov. Blossom v: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation, 1(1):43–67, 2009.
- [3] Guido Schäfer. Weighted matchings in general graphs. Master's thesis, Universität des Saarlandes, 2000. 1, 2