Entity Resolution, Clustering Author References

Vlad Shchogolev vs299@columbia.edu

May 1, 2007

◆□ > ◆□ > ◆豆 > ◆豆 > -

3

Vlad Shchogolev vs299@columbia.edu Entity Resolution

Outline

Introduction

- What is Entity Resolution?
- Motivation
- 2 Background
 - Formal Definition
 - Efficieny Considerations
 - Measuring Text Similarity
 - Other approaches

3 Methodology

- Clustering author references
- Learning distance function
- Clustering experiment

< ロ > < 同 > < 三 > .

ъ

What is Entity Resolution? Motivation

イロト イポト イヨト イヨト

3

- Given: a table of records, each record has a number of "fields".
- Problem: decide which pairs of records refer to the same "entity".
- Variation: given two tables, pair up matching records

What is Entity Resolution? Motivation

(日)

A new name for an old research area

- Record linkage
 - Originally studied by Dunn, 1946
 - Formalized by Fellegi and Sunter, 1969
- Merge/purge problem
- Data matching, object identity problem
- Coreference resolution, reference reconciliation, etc.

What is Entity Resolution? Motivation

イロト イポト イヨト イヨト

3

Why is this useful?

- Historical research
- Medical research
- Government record-keeping
- Tracking terrorists
- Wal-Mart
- Yahoo Local, Google Local
- Bibliographic citations

Formal Definition Efficiency Considerations Measuring Text Similarity Other approaches

イロト イポト イヨト イヨト

Formal Definition

- Two datasets A and B, and let $(a, b) \in A \times B$.
- Also define *M* as the set of matched pairs (*a* = *b*) and *U* as the set of unmatched pairs.
- For a given pair, there is a list of comparison values for $(c_1, \ldots c_n)$ where c_k is the comparison value for the k^{th} field of the item.

Formal Definition Efficiency Considerations Measuring Text Similarity Other approaches

ヘロト ヘ戸ト ヘヨト ヘヨト

Probabilistic Model, Fellegi and Sunter

- Define quantities $m_k = P\{c_k = 0 | (a, b) \in M\}$ and $u_k = P\{c_k = 0 | (a, b) \in U\}$
- Assume independence assumption (!)
- Weight assigned to each component is:

$$w_k = egin{cases} \log(m_k/u_k) & ext{if } c_k = 0, \ \log(1-m_k)/(1-u_k)) & ext{if } c_k = 1. \end{cases}$$

Equivalent to Naive Bayes

Formal Definition Efficiency Considerations Measuring Text Similarity Other approaches

(日)

- Need methods to find candidate pairs
- McCallum, Nigam, Ungar introduced "canopies" approach: clustering is performed in two stages, starting with a rough stage that divides data into overlapping subsets
- If clustering measures distance to cluster using cluster centroid, and canopy is larger than true cluster, nothing is lost.

Formal Definition Efficiency Considerations Measuring Text Similarity Other approaches

ヘロト ヘアト ヘヨト

Clustering bibliographic references

- Goal was to compute the citation graph for research papers
- First pass: used a fast TF-IDF approach
- Second pass: used an expensive string edit distance computation, combined with a HMM for field extraction
- Results in equally good accuracy, but orders of magnitude faster

Formal Definition Efficiency Considerations Measuring Text Similarity Other approaches

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

Measuring Text Similarity

Several methods exist to construct a similarity measure for text:

- edit distance (customizable costs)
- Jaro's algorithm (transpositions)
- character N-grams
- TF-IDF
- string kernels
- term-vector dot product
- soundex

Research typically finds that no single method is best

Formal Definition Efficiency Considerations Measuring Text Similarity Other approaches

イロト イポト イヨト イヨト

æ

Refinements

Minton, Nanjo et al. introduced "transformation graphs" to handle higher level concepts:

- synonyms
- misspelling
- abbreviation
- acronym
- concatenation

Again, a Naive Bayes approach is used to learn weights for transformations.

Formal Definition Efficiency Considerations Measuring Text Similarity Other approaches

イロト イポト イヨト イヨト

æ

Domain-independent approach

- Monge and Elkan suggest a "domain-independent" approach
- Each record is treat as a single long string
- Similarity is measured using edit distance

Clustering authors Learning distance function Clustering experiment

・ロト ・ ア・ ・ ヨト ・ ヨト

Clustering author references

- A related problem to bibliographic references
- Experiment run on a large biology research corpus
- Goal is to determine when two matching names (e.g. Smith J.) refer to the same person
- Extra structure: social network consisting of co-authorship edges

Clustering authors Learning distance function Clustering experiment

イロト イポト イヨト イヨト

Learning distance function

- Similar to distance metric learning paper, but not in Euclidean space
- Not domain-independent
- Domain knowledge used to pick from one of 3 comparison functions for each field:
 - equality
 - set intersection
 - character N-gram similarity
- Most important feature: number of common co-authors

Clustering authors Learning distance function Clustering experiment

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Clustering experiment

- Clustering name references can be useful for judging co-authorship importance
- Tried experiments with simple Greedy Agglomerative Clustering.
- Measured within-cluster dispersion at each clustering step:
 - Data is clustered into k clusters $C_1, \ldots C_k$
 - Sum of pairwise distances: $D_r = \sum_{i,j \in C_r} d_{i,j}$
 - Dispersion measure: $W_k = \sum_{r=1}^k \frac{1}{2n_r} D_r$

Clustering authors Learning distance function Clustering experiment

イロト イポト イヨト イヨト

Gap Statistic

- Can we estimate the true number of clusters?
- Define Gap Statistic (Tibshirani et al. 2000)

$$Gap_n(k) = E_n^*(\log(W_k)) - \log(W_k)$$

- Expectation is over a sample from reference distribution
- The quantity $log(W_k)$ can be thought of as log-likelihood

Clustering authors Learning distance function Clustering experiment

ヘロト 人間 とくほとく ほとう

э.

Reference distribution

- $Gap_n(k) = E_n^*(\log(W_k)) \log(W_k)$
- For uniform distribution, expectation should decrease at the rate (2/p) log k.
- Better: a uniform distribution over a box align with the principal components.
- Goal is to produce evidence against the null model (single cluster)

Clustering authors Learning distance function Clustering experiment

くロト (過) (目) (日)

æ

Estimation Procedure

- Sample *B* Monte Carlo reference datasets from reference distribution
- Cluster each sampled dataset
- Estimate the gap:

$$Gap(k) = (1/B) \sum_{b} \log(W_{kb}^*) - \log(W_k)$$

• Pick smallest k such that $Gap(k) > Gap(k+1) - s_{k+1}$

Clustering authors Learning distance function Clustering experiment

くロト (過) (目) (日)

ъ

Estimation Procedure

- Estimation performs poorly; reference distribution not appropriate?
- Euclidean distance metric not appropriate for high dimensions
- However: have evidence that W_k graph has some signal

Clustering authors Learning distance function Clustering experiment

ヘロト ヘワト ヘビト ヘビト

ъ

Two within-cluster dispersion graphs

Vlad Shchogolev vs299@columbia.edu Entity Resolution

- Rethink cluster estimation for this class of problems
- Distance metric learning works well, but...
- Should take advantage of additional structure

ヘロト 人間 ト ヘヨト ヘヨト

3