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Motivation

• A lot of network-structured data 
– Social networks

– Citation networks

– Biological networks

• Important to discover the network structure y given the 
node attributes x
– Biological network structure = how cellular processes are 

regulated

• The network structure has dependency within y

� not i.i.d

� structured prediction

Protein-protein interaction network



Properties of Networks

• What properties make edges in the network 

inter-dependent??

• Degree distribution

– Power-law 

– many nodes with few neighbors

– Few nodes with lots of neighbors

Barabasi & Oltvai. 2004. Nature Review: Genetics
Degree (connectivity)
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Properties of Networks

• Network growth

– Preferential attachment:

New nodes prefer to connect to nodes that already 
have many links.

– Infer incomplete networks

• Clustering coefficients, motifs, modules, 

diameter of network, etc.

Barabasi & Oltvai. 2004. Nature Review: Genetics



Our Goals

• Focus on protein-protein interaction network

• Given a set of nodes (proteins), find the network 
structure (edges) that indicates which proteins interact 
with which other proteins.

• Non-I.I.D. structured learning

• Network degree constraints

• Kernelization to take advantage of high-dimensional 
features

• Transductive learning



Overview
Protein 1

Interaction between proteins 1 and 2
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Degree constraints

Adjacency matrix YSimilarity matrix S

Maximum-weight b-matching problem



Learning the similarity

• From features xi xj to similarity Sij

– Correlation, Euclidean distance, etc.

• Want to learn a good transformation from x to S, such that the 
output Y is most compatible with the true network structure
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Perceptron learning



Algorithms
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*Algorithm can use transductive learning and be kernelized.
Details not shown

i.i.d perceptron network perceptron*



Experiments

• Network data:
– DIP database*

– Protein-protein interaction network

– 2,312 proteins

– 5,299 interactions (y)

• interactions labeled as +1

• unseen protein pairs labeled as -1

• Features (x):
– Microarray data: 

• 349 experiments, 

• 2,312 x 349 matrix

– Used ICA / PCA to reduce dimensionality

*Xenarios I, et al. (2000) DIP: The Database of Interacting Proteins. Nucleic Acid Research



Results

• Exact degree constraints

• Non-exact degree constraints

• Effect of features

• Kernel diagonal to deal with unseparable data



Exact degree constraints

• 1,000 positives

• 1,000 negatives

• 5-fold cross-validation

• Can reach low error very quickly due to the tight degree 
constraints



Looser degree constraints

• More realistic in real-world problems. 

• Ex. true degree -2/+5

• 1,000 positives

• 1,000 negatives

• Better than random. But the perceptron oscillates… Why??

Linear kernel



Features

• Are microarray data good features?

• Try to add separable features to data to see if algorithm works

• Add two separable random Gaussian bumps of the same dimensions 
to the original positive and negative features respectively.

Algorithm works for separable data.

� Microarray features might not be that good 



Kernel diagonal
• Adding a constant C to the kernel diagonal to deal with unseparable (microarray) 

data.

• Helps the algorithm converge.

• Cross-validate to find the C that gives the best performance
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Future work

• Add more meaningful features. 
– Ex. function annotation, sub-cellular localization

• Add degree bound estimation

• Add topological constraints

• Memory-efficient kernel computation

• Take into account how close each node’s degree is to 
the expected degree.


