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Motivation

* A lot of network-structured data
— Social networks
— Citation networks
— Biological networks

Protein-protein interaction network

« Important to discover the network structure y given the
node attributes x

— Biological network structure = how cellular processes are
regulated

« The network structure has dependency within y
=> not i.i.d
=>» structured prediction



Properties of Networks

« What properties make edges in the network
inter-dependent?? ' .,

« Degree distribution
— Power-law Pr[d=k] ~ k¢
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— many nodes with few neighbors & o \
— Few nodes with lots of neighbors oo
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Barabasi & Oltvai. 2004. Nature Review: Genetics



Properties of Networks

* Network growth

— Preferential attachment:
New nodes prefer to connect to nodes that already
have many links.

Pr[attach to i] = % S| !
Sid; I
— Infer incomplete networks f 2 .

Degree increase

Old degree

 Clustering coefficients, motifs, modules,
diameter of network, etc.

Barabasi & Oltvai. 2004. Nature Review: Genetics



Our Goals

Focus on protein-protein interaction network

Given a set of nodes (proteins), find the network
structure (edges) that indicates which proteins interact
with which other proteins.

Non-I.I.D. structured learning

Network degree constraints

Kernelization to take advantage of high-dimensional
features

Transductive learning



Overview
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Learning the similarity

- From features x; x; to similarity S;
— Correlation, Euclidean distance, etc.

« Want to learn a good transformation from x to S, such that the
output Y is most compatible with the true network structure

- T s.t. degree constraints
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Algorithms

.i.d perceptron

Input: {(x, y), i= 1, ..., n},
xe R",ye {-1,+1}
w®=0
for t=1 to max_iteration
for i=1 to num_examples
if sign(<w“),xi>) %y,
w™ =w 4+ xy,
end if
end 1
end t

network perceptron®

Input: X =[x, X,,.... X;;,... X, 1

Y = [yll’ y12’”‘yij"“’ ynn]
w”=0
for t=1 to max_iteration

y¥ = argmax (w' X)Y
%,—/

Y
s.t. Y satisfies degree constraints

(lower and upper bounds)

for all i, j

true
i

(t+1) _ . (1)
wh=Ewl Xy,

if y, #y

end if
end 1,]
end t

*Algorithm can use transductive learning and be kernelized.
Details not shown



Experiments

* Network data:
— DIP database*
— Protein-protein interaction network
— 2,312 proteins
— 5,299 interactions (y)

* interactions labeled as +1
* unseen protein pairs labeled as -1

« Features (X):

— Microarray data:
« 349 experiments,
o 2,312 x 349 matrix

— Used ICA / PCA to reduce dimensionality

*Xenarios |, et al. (2000) DIP: The Database of Interacting Proteins. Nucleic Acid Research



Results

Exact degree constraints
Non-exact degree constraints
Effect of features

Kernel diagonal to deal with unseparable data



Exact degree constraints

1,000 positives
1,000 negatives
5-fold cross-validation

Can reach low error very quickly due to the tight degree
constraints
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Looser degree constraints

More realistic in real-world problems.

Ex. true degree -2/+5

1,000 positives
1,000 negatives

Better than random. But the perceptron oscillates... Why??

error over iterations, fold #2 - deg -2/+5 train_tst
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Features

Are microarray data good features?
Try to add separable features to data to see if algorithm works

Add two separable random Gaussian bumps of the same dimensions
to the original positive and negative features respectively.

error over iterations, fold #2 - deg -5/+5 train_tst, mix .2
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T Algorithm works for separable data.
2z 3 4 s 6 7 8 9 U =3 Microarray features might not be that good

iteration




Kernel diagonal

Adding a constant C to the kernel diagonal to deal with unseparable (microarray)
data.

Helps the algorithm converge.

Cross-validate to find the C that gives the best performance
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Future work

Add more meaningful features.
— Ex. function annotation, sub-cellular localization

Add degree bound estimation
Add topological constraints
Memory-efficient kernel computation

Take into account how close each node’s degree is to
the expected degree.



