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Independent component analysis (ICA)

D-dimensional random variable x , unobserved

p(x) =
∏D

d=1 pd(xd)

Unknown mixing matrix A

Observations: N IID samples from y = Ax

Want to recover xn, W = A−1

Can show that W is orthogonal, W TW = I
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Previous work: Jebara (2002)

Describes alternating projection solution to ICA

Makes no assumptions about pd(xd)

Nonparametric

Uses approximate iterated variational singular value decomposition
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This work

Replaces variational SVD with brute force and perceptron solutions

Compares all three to Kernel ICA, (Bach & Jordan, 2003) on 18
different 2D distributions

Shows that these two new methods more accurately estimate W than
the variational method, with accuracy close to Kernel ICA
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Alternating projection

Two manifolds in probability
distribution space

PR : space of all rotated versions
of empirical distribution

PF : space of all
product-of-marginal
distributions

Alternate projecting from one to
the point on the other with
minimum KL divergence
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Projecting from rotated to factored

P∗ is the distribution in PR

P is any product of marginals, i.e. in PF

P̃ is the product of the marginals of P∗

KL(P∗||P) = KL(P∗||P̃) + KL(P̃||P)
(Cover & Thomas, 1991)

Therefore KL(P∗||P) is minimized when P = P̃
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Projecting from factored to rotated
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Dimensions are independent

Gaussianize ith dimension using
transfer function Ti (x) based on
empirical CDF

Find W that minimizes cost

C (W ) =
∑
in

T 2
i (W T

i yn)
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Brute force solution

Repeat until fix point

Build Ti (x) from the current rotation of data

Construct Wθ for 500 angles from −π to π

Find Ŵθ minimizing C (Wθ) =
∑

in Ti (Wθyn)

Rotate data by Ŵθ

Only works in 2D
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Perceptron solution
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Break cost function into a set of
steps, positive and negative

Treat each step as a classifier

End up with loss:
L(W ) = tr(W TQ)

Qi =
∑

n ynT
2
i (yn)

Solve with SVD

Works in any dimensionality
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Distributions

18 marginal distributions, 1D

k = kurtosis

Same distribution for two
independent dimensions

Draw N = 250 data points

Rotate data by random A matrix

Compare estimated Ŵ to actual
A matrix using Amari distance,
invariant to permutations and
reflections
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Results: average error over 5 trials
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Variational
Perceptron
Brute force
Kernel

Method Avg

Variational 0.184
Perceptron 0.121
Brute force 0.104
Kernel 0.088
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Summary

Nonparametric ICA, making no assumptions about source
distributions

Improves upon Jebara (2002)

Accuracy close to that of kernel ICA

Still working on convexifying of PR
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Thank you

Any questions?
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