Each step maximizes log-likelihood over y_k alone. Coordinate ascent.

\[L(D) = \frac{1}{2} \sum_{i} \frac{m(x_i)}{\psi^{(i)}(x_i)} \log \psi^{(i)}(x_i) - \frac{N}{2} \sum_{i} \frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} \left(\frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} - 1 \right) \]

\[= \frac{m(x_i)}{\psi^{(i)}(x_i)} - \frac{N}{2} \sum_{i} \frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} \left(\frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} - 1 \right) \]

\[= \frac{m(x_i)}{\psi^{(i)}(x_i)} - \frac{N}{2} \sum_{i} \frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} \left(\frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} - 1 \right) \]

\[= \frac{m(x_i)}{\psi^{(i)}(x_i)} - \frac{N}{2} \sum_{i} \frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} \left(\frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} - 1 \right) \]

\[\text{Example:} \quad \psi^{(i)}(x_i) = \frac{m(x_i)}{\psi^{(i)}(x_i)} - \frac{N}{2} \sum_{i} \frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} \left(\frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} - 1 \right) \]

\[= \frac{m(x_i)}{\psi^{(i)}(x_i)} - \frac{N}{2} \sum_{i} \frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} \left(\frac{\psi^{(i)}(x_i)}{\psi^{(i)}(x_i)} - 1 \right) \]

Summary: have efficient algos for ADDC, phy(x) & Max Likelihood.

Junction Tree Algorithm: general inference tool for graphical mod.

- Workhorse, inference spf is main too.

- Node elimination algo must be repeated for each query.
- Redundant work gets discarded & repeated.

- Instead look closely at cliques we are eliminating connect the m & their separators.

- Tree: unique path between vertices, root node.
from node elimination

- junction tree property: each node appears connected (in a path) to its other instantiations through the tree & all subtrees.

- more generally, undirected graphs not on maximal cliques:

 \[p(c) = \frac{1}{Z} \prod_{c \in C} p(c(k)) \]

- want to generally compute \(p(X_c | X_e) \) or \(p(X_e | X_c) \)

- efficiently infer marginals & cond.

- for a single clique

 \[p(X_c, X_e) \] then set \(p(X_e) = \sum_{X_c} p(X_c, X_e) \)

 \[p(X_e | X_c) = \frac{p(X_c, X_e)}{p(X_c)} \]

Example: \(A \rightarrow B \rightarrow C \)

\[p(x) = p(x_A) p(x_B | x_A) p(x_C | x_B) \]

- easily can get \(p(A, B) \) by \(p(x_A) p(x_B | x_A) \)

- but how to get \(p(B, C) \)?

First \(p(x) = \prod_{c} p(x_k | x_{\sim c}) = \frac{1}{Z} \prod_{c} \psi_c(x_c) \)

- moralization
Junction Trees Continued: want local marginals everywhere
\[\Pi \Psi(X_i) = \prod_{S \in \text{cliques}} \prod_{\delta \in \text{separators}} \Psi_S(X_i) \]
Can write
\[\Psi_{AB} = p(X_A) p(X_B | X_A) = p(X_A, X_B) \]
\[\Psi_{BC} = p(X_C | X_B) \neq p(X_B, X_C) \]

Would like all cliques
More flexible notation needed:

\[p(X) = \frac{1}{Z} \prod_{S \in \text{cliques}} \prod_{\delta \in \text{separators}} \Phi_\delta(X_i) \]

2 = 1 in practice
Put this to a normal set

Separators are function of intersection of neighbouring cliques
Supercut, if all \(\Psi_S(X_i) = 1 \) get previous.
But doesn't span anything new. Since any separator is subset of clique

![Graph and notation]

TRUNCULATE

... directed graph

\[p(X) = \frac{p(A, B) p(B, C)}{p(B)} \]
\[\Psi_{AB} = \prod_{\delta} \phi_\delta \]

But division by zero can occur, but numerator will also be 0 so treat \(\frac{0}{0} = 0 \)

Since
\[p(B) = \prod_{\delta} p(B | \delta) \]
How to get the product over marginals form from \(p(x; k_{Na}) \)?

Junction Tree Algorithm

Message Passing between cliques

To get marginals with \(p(x) \) staying consistent:

\[
v_A = 0 \quad s = G \quad w \neq x
\]

Mini-example

Marginal:

\[
\phi^*_{S'} = \frac{\psi_S}{\sum_{w \in S} \psi_w} \quad \phi^*_{S''} = \frac{\psi_{S''}}{\sum_{w \in S} \psi_w}
\]

\[
p(S) = \frac{\psi_S}{\sum_{w \in S} \psi_w} \quad i.e. \quad p(B) = \frac{\psi_B}{\sum_{w \in B} \psi_w}
\]

If \(\psi \) is unknown:

\[
\phi^*_{S'} = \frac{\phi^*_{S'} \psi_{S'}}{\phi^*_{S'} \psi_{S'} + \phi^*_{S''} \psi_{S''}} \quad \text{where} \quad \text{p(x) unchanged}
\]

From \(s \) to \(U \):

\[
\psi_{S'} = \phi_{S'} \psi_{S'} \quad \text{AND} \quad \psi_{S''} = \phi_{S''} \psi_{S''}
\]

Can pool these out now.

Full clique marginals \(V \& W \) agree with marginal on \(S \).

Mini-example 2

\[
\phi^*_{S'} = \frac{\psi_{S'}}{\sum_{w \in S} \psi_w} \quad \phi^*_{S''} = \frac{\psi_{S''}}{\sum_{w \in S} \psi_w}
\]

with evidence \(x = 1 \), Init as above:

\[
\phi^*_{S'} = \frac{\psi_{S'}}{\psi_S} \quad \phi^*_{S''} = \frac{\psi_{S''}}{\psi_S}
\]

and \(\psi_{S'} = \psi_{S''} = \psi_S \), as before. End.

Message Passing Makes marginals with proper interactions.

On big junction tree, can keep iterating messages but inefficient.
- Send message only after hearing from all neighbours.

JTA: - No need to iterate mindlessly.

- Initialize: pick a root
 - $\Phi = 1$ for all cliques
 - $\Psi_c(x_0) = p(x; I(x_i)) \forall i$

 $p(x) = \prod_i p(x; I(x_i)) = \prod_c \Psi_c(x_0)$

 $= \prod_c \Psi_c(x_0) \quad \forall x_0$

 $\prod_c \Psi_c(x_0) \Leftarrow \text{done} = 1$

- Update cliques & separators on a tree structure recursively

```
Collect Evidence (node)
for each child of node
  $\mathcal{I}$ update (node, collect Evidence (child))
return (node);
```

```
Distribute Evidence (node)
for each child of node
  $\mathcal{I}$ update (child, node)
  distribute evidence (child)
```

collect

```
root
```

```
root
```

```
node
```
TRIANGULATION

To get a valid Junction Tree → triangulate

Undiv. Node Elimination Alog → Triangulates Graph

Triangulation (like Moralization) adds links → more complex graph, fewer independencies

such that: No 4 or more node cycle within graph where some nodes do not l

i.e. a 4-cycle

3-cycle

2-cycle

1-cycle

example:

triangle:

optimal triangulation (adds fewest links) is NP

but any triangulation (can be bad (heuristic)) is P

want to keep a clique size small

also need resulting clique graph to be junction tree

a) tree (no loops)

b) satisfy junction tree property: cliques between path a Pb & Pb contain AB nodes
- When junction tree algo completes (induction proof)
 \[\mathcal{C} = p(x_c, \overline{x_e}) \]
 \[\Phi_S = p(x_S, \overline{x_E}) \]
 - all cliques are marginals.

- Hugin (Junction Tree Algorithm) \(\rightarrow\) Jensen's book

 - Moralize (poly complex)

 - Introduce evidence \(x_e \rightarrow \overline{x_e}\) (poly)

 - Triangulate (poly or NP for optimal)

- Construct Junction Tree (poly, Kruskal)

- Propagate Probabilities (poly in # of cliques, expo in clique size)
 \[\mathcal{A}^* = \sum_S \Psi_S \]
 \[\Psi_W^* = \frac{\Phi_C^* \Psi_W}{\Phi_S} \]

- Without Proof: Triangulated Graph \(\iff\) decomposable

- With Proof: Decomposable \(\iff\) junction tree

 - largest cardinality of separator nodes

 \[\text{max weight spanning tree} \]

- Not a junction tree
 \[\text{ separators } = (B \cap C \cap D) \]
 \[|\text{ separators }| = |D| + |(CD)| \]
 \[= 3 \]

- Algo to find junction tree: max card. of separators \(\rightarrow\) Kruskal
- Kruskal: Max Span Tree: 1) Begin with no edges between cliques
 2) Add edge with max separator card.
 3) Make sure we don’t make a loop
 4) Repeat 2 until graph connected
 (all cliques are connected via a path)

- Example: Example: B, C, A

- Can compute fast marginals
- Can also compute fast argmax

\[p(X_1, X_2) = \text{argmax} \left\{ \text{argmax} \left\{ \text{argmax} \left\{ \cdots \right\} \right\} \right\} \]

\[p(X_1, X_2) = \text{argmax} \left\{ \text{argmax} \left\{ \text{argmax} \left\{ \cdots \right\} \right\} \right\} \]

\[p(X_1, X_2) = \text{argmax} \left\{ \text{argmax} \left\{ \text{argmax} \left\{ \cdots \right\} \right\} \right\} \]

- i.e. what is most likely state of patient if he has

- Fever & headache?

\[p(X_1, X_2) = \text{argmax} \left\{ \text{argmax} \left\{ \text{argmax} \left\{ \cdots \right\} \right\} \right\} \]

\[p(X_1, X_2) = \text{argmax} \left\{ \text{argmax} \left\{ \text{argmax} \left\{ \cdots \right\} \right\} \right\} \]

\[p(X_1, X_2) = \text{argmax} \left\{ \text{argmax} \left\{ \text{argmax} \left\{ \cdots \right\} \right\} \right\} \]