
COMS 6998-01 Advanced Machine Learning
Assignment 3

March 14, 2002
Prof. Tony Jebara

The assignment is due onApril 1st 2002, before midnight either in my office CEPSR 605 or via email to
jebara@cs.columbia.edu. If you email me the assignment, please use standard formats, i.e. send me plain
text, latex, postscript, pdf or word.

1. Moralization and Undirected Graph Cliques

The directed graph below is of the ALARM network, which stands for 'A Logical Alarm Reduction
Mechanism'. This is used in medical diagnostics for patient monitoring in emergency room situations. All
nodes are discrete, but can have more than 2 states (not just binary). For example, PAP is Pulmonary Artery
Pressure and is split into Low, Normal and High (i.e. 3 states: 0,1,2). Many continuous nodes often get
discretized in this way because this generates simpler algorithms and probability distributions than dealing
directly with continuous and discrete nodes mixed in a single graph.

Catechol

HR

LVFailure

LVEDVolume

Hypovolemia

CVP

HRBP HREKG HRSat

ErrLowOutputTPRAnaphylaxis

BP

PCWP

StrokeVolume

CO

PVSat

InsuffAnesth

History

Shunt

SaO2

PAP

PulmEmbolus

ErrCauter

VentAlv

Intubation

VentLung

KinkedTube Disconnect

VentTube

PressArtCO2 ExpCO2 MinVol

MinVolSet

VentMach

FiO2

As usual, the graph below represents a distribution in terms of each node and its parents:

Convert the above directed graph into its corresponding undirected graph using moralization and draw the
resulting moral graph.

Find all the maximal cliques in the undirected graph and trace them out over the moral graph (or write them
out as sets). These then specify the joint distribution as a product of potential functions on undirected
cliques (i.e. write out the specific sets of nodes in each potential function).

2. Directed Graph Conditional Probability Tables Maximum Likelihood Parameter Learning

We want to estimate the numerical values of the probability tables in graphs such as the one above by
looking at real data (i.e. from real patients and what happened in previous emergency room situations). The
maximum likelihood estimate for each conditional probability function is as follows (as in class and in the
text in Chapter 8).

() ()|
ii

i

p X p X Xπ= ∏

() ()1
c

c

p X X
Z

= Ψ∏

Where the m() function counts the number of times a particular configuration of the node and its parents
appeared in the training data.

Implement in Matlab the above recipe for maximum likelihood learning from the counts for an arbitrary
directed graph (acyclic). Assume that the nodes and their parents appear in topological order and the
parent-child relationships are specified by a simple matrix. Also, assume that the nodes can handle an
arbitrary number of discrete states. However, in this assignment, we will only deal with binary states for
now. Your algorithm should take IID samples of the graph and generate the entries of the tables (make sure
that they are positive, normalized, etc.)

To store the tables, a matrix format will be used (Matlab is not the most flexible language for
datastructures, unfortunately). Each row corresponds to the conditional probability table (cpt) for a single
node:

That row of numbers is a long vector of the cpt hypercube rasterized where the earlier parents (i.e. lower
number) increase slowest while the largest number parents increase fastest and the node’s.

To understand what the above means, consider the following toy example over 3 binary variables. The
directed graph indicates we need to store P(X), P(Y|X) and P(Z|X,Y). There are 3 cpt’s therefore, and each
can be represented by a row of a matrix as follows (below we show the case for P(Z|X,Y). The P(Z|X,Y) is
shown as a probability cube is then expanded into a table that enumerates all configurations and then finally
we read off the vector of a cpt for p(Z|X,Y) at the bottom from the table:

Since each cpt will be different in size for each node (i.e. each has different number of parents and
cardinality of parent states and self-states), the sizes of each of the rows of the matrix will be different for
each row number (or node number). For example, the row above has 8 entries and would require a matrix
of 8 columns to contain it. But the graph for X has no parents and would require only a 2-element row
P(X=0) and P(X=1). To contain them all, the big matrix of all cpts should have as many columns as
required for the biggest cpt and the number of rows is the number of nodes in the graph. You can pad the
big matrix with –1.0 values at the empty locations.

Three pieces of code are given to get you started. The Matlab function likeNet.m computes the log-
likelihood of a directed graph, the function sampleNet.m gives out IID data samples from an existing graph
structure and its numerical tables, and the function learnNet.m actually learns the graph from the IID

()|
iip X Xπ

() ()
()

,
|

,
i

i

i

i

i

i

i
X

m X X
p X X

m X X

π
π

π

=
ÿ

samples and an existing graph structure. The last function, learnNet.m is what you need to complete. You
will need to write only on the order of 30 lines of Matlab code to complete it. Study the code that is given
to get more details of the datastructures work and how to implement directed graphs so that you can easily
write the learnNet.m function from there.

Test your algorithm on the following topological graph:

The parent-child relationship is captured with the following matrix (row number is the child node and
column number is the parent number, note diagonals are zero since children can’t be their own parents):

The data set to train on is dataset5.txt which contains 120 datapoints represented as 5-element row vectors
with binary (0,1) values. The first column is node 1’s values, and the last one is node 5’s values.

Hand in the resulting cpts you estimate in the format specified by the above Matlab functions. Hand in your
learnNet.m function and also hand in the log-likelihood you obtained with your estimates. Provide a brief
discussion of your results and code.

3. Cross-Validation for Graph Structure Learning

Here, you will use the learnNet.m function you have built to hunt for the best graph structure by learning
different ones and seeing which gets the best likelihood on test data. Train your graphs on dataset6.txt with
your learnNet.m function and test them on dataset7.txt (each is 120 points). Try the following graphs and
report their log-likelihoods on training and testing. The nodes are again all binary. By finding the graph
with the highest log-likelihood test score, you will isolate the best structure and that is the graph that was
originally used to create dataset6.txt and dataset7.txt.

Graph 1:

Graph 2:

Graph 3:

Graph 4:

Show your parents-child matrix for each of the above graphs. Discuss the relationship between log-
likelihood on testing and on training with the number of free parameters in the cpt’s. You are free to try out
different graphs as well if you like (just remember that for the above code pieces, the parents-children
matrix has to remain topological, i.e. only the lower triangle can be non-zero).

1 2 3 4 5

0 0 0 0 0

1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

� �
� �
� �
� �
� �
� �
� �� �

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

