COMS 6998-01 Advanced Machine Learning
Assignment 1
February 5, 2002
Prof. Tony Jebara

The assignment is due on February 19th, before 5pm either in my office CEPSR 605 or via email to
jebara@cs.columbia.edu. If you email me the assignment, please use convential formats, i.e. send me
plain text, latex, postscript, pdf or word and keep the file size reasonable. The assignment will be
evaluated not just on your ability to get the right result but also your ability to provide reasoning,
derivations and discussion for your answer.

1. Graphical Models and Conditional Independence

Write out a factorized version of the probability distribution p(xy,...,xs) which captures the con-
ditional independency properties implied by the graph below.

If the z; variables are binary, i.e. they can assume the values {0, 1}, how many entries would the
probability table representing the factorized distribution contain in its most compact form? How
does this compare with the number of table elements in the unfactored distribution p(x1,...,xs)
with no independence properties. What happens to the sizes of the factorized and unfactorized
forms if the variables x; are not binary but, rather, can assume one of three discrete states, eg.
z; € {0,1,2}7

2. ML Estimation for Exponential Distribution

Recall the exponential distribution over positive scalar values of x:
plald) = A e

Given a data set of n IID (independent identically distributed) samples: zy,...,z,, derive the
maximum likelihood (ML) estimate for A.

3. ML Estimation for Poisson Distribution

Recall the Poisson distribution over postive integer values of z:

AT e
plaly) = =
Given a data set of n IID (independent identically distributed) samples: zy,...,z,, derive the

maximum likelihood (ML) estimate for A



4. Jensen’s Inequality

Recall Jensen’s inequality for concave functions f(z) which states f(E{X}) > E{f(X)} or, more
explicitly:

f <sz$z> > Zpif(l’i)

where p; > 0 and ), p; = 1. The inequality flips when f(z) is convex.

The Kullback-Leibler divergence measures the 'distance’ between two distributions and is defined
as:

KL(p,q) =) _pilog (%)

Where p; >0and ), p; =1and ¢; > 0and ), ¢; = 1. Use Jensen to prove that the KL-divergence
is never negative.

5. Exponential Family Form for Gaussian Covariance

The exponential family has the following natural form:

p(X[6) = exp(H (X) + TT(X) — A(9))

Where T'(X) is a vector function of the input X. Consider a zero-mean Gaussian with the covariance
o2 as the free parameter:

&)

(2]0?) = —— ¢
o =
b V2ro?

Derive the exponential family natural form where a scalar # parameterizes the exponential family
model instead of the scalar covariance parameter ¢ in the traditional Gaussian above.
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6. BONUS: Exponential Family Form for Multivariate Gaussian

The multivariate Gaussian distribution over vectors z in R” is traditionally expressed in the fol-
lowing form:
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As a bonus question, derive the exponential family natural form of the multivariate Gaussian where
both the mean vector y and the covariance matrix ¥ are variable and are mapped into a 6 natural
parameter. HINT: the exponential family natural § parameter and the T'(X) features can each be
of size D + D?.



