Recent Developments in Clustering

- Ben London (bal2123@columbia.edu)
- COMS W4772
- Prof. Tony Jebara

Abstract

- Part 1: Unsupervised
 - Implement / test k-means++ algo
 - Extend k-means++ technique to EM
 - Theoretical results?
 - Empirical results: improves EM
- Part 2: Semi-supervised
 - Implement / test BoostCluster algo
 - Empirical results: better than spectral?

Clustering

- Given set of N points in R^d, partition into k clusters (groups/classes)
- Deterministic solution is in NP
- Many heuristics
- We have seen
 - Gradient descent: k-means, EM
 - Graph theory: spectral
- New!
 - Initialization (seeding)?
 - Boosting?

Initializing k-means

- Traditional approach: RANDOM
 - PRO: simple, efficient
 - CON: centroids sometimes overlap
 - Can we do better?
- Deterministic approach: Farthest-point heuristic
 - PRO: good for well-formed clusters
 - CON: sensitive to noise (outliers)
- Can we combine these two techniques?

k-means++

- Approximation method:
 - Heuristic algo
 - O(log k)-competitive with optimal
- Minimize potential function: $\phi = \sum_{x \in X} \min_{c \in C} ||x c||^2$
- Algorithm:
 1)Initialize k clusters with D² seeding
 2)Run k-means

D² Seeding

1)Select first centroid c_1 uniformly at random from X. 2)Calculate $D^2(x)$, for all x in X. $D^2(x) = ||x - c_{closest}||^2$ 3)Select each successive centroid c_1 with probability

$$Pr[x chosen] = \frac{D^{2}(x)}{\sum_{x \in X} D^{2}(x)}$$

4)Repeat steps 2 and 3 until all k centroids have been selected

Initializing EM

- Can we apply D² seeding to EM?
- Empirical results:
 - Improves convergence time
 - Improves quality of converged solution (higher log-likelihood)
- Theoretical analysis is difficult

Semi-supervised

- Extremely relevant
- Partially labeled data
- Can be represented in the form of pairwise clustering contraints (NxN matrix)

BoostCluster

- Semi-supervised clustering using boosting methodology
- Assumption: if a clustering satisfies the known pairwise constraints, then it is likely to satisfy the unknown pairwise constraints
- Uses iterative boosting technique to satisfy constraints
- Algorithm agnostic
 - Could use kNN, k-means, spectral, etc.
- Does not return classifier; only pairwise clusterings

Input

- X: $d \times n$ matrix for the input data
- \mathcal{A} : the given clustering algorithm
- s: the number of principal eigenvectors used for projection
- S^+ : matrix for must-link pairs
- S^- : matrix for cannot-link pairs

Output: cluster memberships

Algorithm

- Initialize $K_{i,j} = 0$ for any i, j = 1, 2, ..., n.
- For t = 1, 2, ..., T
 - Compute $p_{i,j}$ and $q_{i,j}$ using (5) and (6).
 - Compute matrix T using (10).
 - Compute the top s eigenvectors and eigenvalues $\{(\lambda_i, \mathbf{v}_i)\}_{i=1}^s$ of T.
 - Construct the projection matrix P using (11), and generate the new data representation X'by projecting the input data X onto P.
 - Run the clustering algorithm \mathcal{A} using the new data representation X'. Compute the matrix Δ with $\Delta_{i,j} = 1$ when \mathbf{x}_i and \mathbf{x}_j are grouped into the same cluster by \mathcal{A} , and zero otherwise.
 - Compute α using (13).
 - Update the kernel similarity matrix K as $K+\alpha\Delta \to K$
- Run the clustering algorithm \mathcal{A} with the kernel matrix K (if \mathcal{A} does not take a kernel similarity matrix as input, a data representation can be generated by the first s + 1 eigenvectors of the matrix K).

BoostCluster: High-level

- Loss function: $L = \left(\sum_{i,j} S_{i,j}^{+i} \exp(-K_{i,j})\right) \left(\sum_{a,b} S_{a,b}^{-i} \exp(K_{a,b})\right)$
- Calculate kernel similarity matrix K
- At each stage of boosting,
 - Use loss to calculate a new data representation that will allow the algo to better satisfy the constraints on which it is performing poorly
 - Use eigen decomposition, find greatest inconsistencies
 - Project data onto new space
 - Cluster in new space; get pairwise clusterings
 - Compute performance and update K accordingly
 - Repeat until either all constraints satisfied or convergence
- Eigen decomp on K, cluster with algo, return pairwise clusterings

Results

- BoostCluster is consistent: ave accuracy very close to max accuracy
- BoostKmeans < Spectral < BoostSpectral
- BoostCluster with spectral algo kicks ass!