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Abstract
A general-purpose object indexing technique is described

that combines the virtues of principal component analysis
with the favorable matching properties of high-dimensional
spaces to achieve high precision recognition. An object is
represented by a set of high-dimensional iconic feature vec-
tors comprised of the responses of derivative of Gaussian
filters at a range of orientations and scales. Since these
filters can be shown to form the eigenvectors of arbitrary
images containing both natural and man-made structures,
they are well-suited for indexing in disparate domains. The
indexing algorithm uses an active vision system in conjunc-
tion with a modified form of Kanerva’s sparse distributed
memory which facilitates interpolation between views and
provides a convenient platform for learning the association
between an object’s appearance and its identity. The robust-
ness of the indexing method was experimentally confirmed
by subjecting the method to a range of viewing conditions
and the accuracy was verified using a well-known model
database containing a number of complex 3D objects under
varying pose.

1 Introduction
The earliest models of objects for computer vision em-

phasized geometrical descriptions based on shape [20, 5].
Such descriptions are attractive as they are easily adapted
for the manipulation requirements of robotic assembly tasks.
However, they have proved very difficult to extract from the
image owing to the fact that geometric and photometric
properties are relatively uncorrelated. Insights gained from
work on active/animate vision [1, 2, 4] seem to suggest that
simpler iconic descriptions of objects based on their pho-
tometric properties may often suffice for many visual tasks
[18].

This paper investigates the use of an iconic description
comprised of photometric features at a local image patch as
a medium for efficient object indexing in active vision sys-
tems. The photometric features are obtained by taking the
responses of nine derivative-of-Gaussian filters at various
orientations, each at five different scales. The derivative-of-
Gaussian filters can be shown to arise as a result of unsuper-
vised Hebbian learning by a neural network that performs
principal component analysis on natural image patches dur-
ing an initial “development” phase. An object can then be
represented by a set of filter response vectors from different
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loci within the object for a small number of views sampled
from the viewing sphere.

The process of object indexing itself is realized within
the framework of an active vision system used in conjunc-
tion with a modified form of Kanerva’s sparse distributed
memory [10]; the memory facilitates interpolation between
different views of an object and provides a convenient plat-
form for learning the association between an object’s ap-
pearance and its identity. Real-time performance is achieved
by implementing both visual preprocessing and associative
memory within a pipeline image processor and exploiting
its ability to perform convolutions at frame-rate (Section 5).

Experimental results as presented in Section 6 indicate
that the indexing scheme is remarkably tolerant to moderate
changes in viewing conditions caused by occlusions, illu-
mination changes, scale changes and rotations in 3D. The
accuracy of the indexing method was verified on the well-
known Columbia object database containing a number of
arbitrary 3D objects with complex appearance characteris-
tics; the method was able to attain a 100% recognition rate
with a small number of iconic indexes per object.

2 Unsupervised Learning of Spatial Filters
for Recognition

Typical natural stimuli are highly redundant containing
statistical regularities that can be exploited for the purposes
of visual coding. For example, in most images, nearby
pixels tend to be highly correlated due to the morpholog-
ical consistency of objects. Thus, some form of recod-
ing into a more efficient representation is highly desirable.
An optimal linear method for reducing redundancy is the
Karhunen-Loéve transform or eigenvector expansion via
Principal Component Analysis (PCA). Briefly, PCA gen-
erates a set of eigenvectors or principal components (or-
thogonal axes of projections) of a set of input images in the
order of decreasing variance. Thus, by projecting new input
only along the directions given by the dominant eigenvectors
(i.e. those associated with the highest variance), significant
data-compression can be achieved.

In recent years, there has been considerable interest in the
use of PCA for both synthesis and analysis. For example,
PCA has recently been applied quite successfully to synthe-
size basis functions for recognition of faces [23] and arbi-
trary 3D objects [15]. Researchers analyzing the human vi-
sual pathway have found PCA to be the crucial link between
the profiles of cortical receptive fields and the statistics of
natural images. Oja [16] first noted that a simple one-layer
feedforward neural-network employing a form of the Heb-
bian learning rule acted as a principal component analyzer.
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Figure 1: (a) Twelve of the 20 images that we used for training Sanger’s
PCA network. The network adapted its weights according to a form of the
Hebbian learning rule in response to 12000 32 � 32 image patches obtained
by scanning across the images. (b) First nine dominant eigenvectors that
the weights of the network converged to, shown here for different scales
( � ) of the Gaussian window (intensity is proportional to magnitude). (c)
The Gaussian derivative basis functions of up to the third-order used in
our iconic representations. The first few dominant eigenvectors of natural
images shown in (b) closely resemble these analytically derived function
profiles. Note however that we do not use the first eigenvector to avoid il-
lumination dependence and additionally incorporate some non-orthogonal
basis functions at the higher orders in order to achieve rotational invariance
using the property of steerability. This choice also obviates using mixed
derivatives (as in (b)) since the other oriented filters yield a complete basis.

Sanger [21] extended this work to obtain the first
�

princi-
pal components and noted that when iteratively applied to
natural image patches, his network converged to approxi-
mations of oriented first- and second-derivative operators.
Hancock et al. [9] used Sanger’s network to extract the first
few principal components of an ensemble of natural images
windowed by a Gaussian in order to avoid the distortions
that may have been caused by the use of square windows in
Sanger’s work. They observed that the eigenvectors that the
network converged to were very close approximations of the
different oriented derivative-of-Gaussian operators that have
been shown to provide the best fit to primate cortical recep-
tive field profiles among the different mathematical profiles
suggested in the literature [24]. We employed Sanger’s
network to ascertain whether the results of Hancock et al.
remained true for collections of images containing equal
proportions of natural and man-made stimuli. The results,
parts of which are shown in Figure 1 (b), confirmed that
regardless of the scale of analysis, the weight vectors of the
network eventually converged to approximations of different
Gaussian derivative operators.

The oriented derivative-of-Gaussian operators can be re-
garded as an ideal set of natural basis functions for general-
purpose recognition. Part of the rationale for this belief
stems from the fact that these functions are obtained as a re-

sult of applying the principle of dimensionality-reduction to
arbitrary collections of images containing a plethora of fea-
tures from natural as well as man-made structures rather than
just the images of particular objects or faces. By sacrificing
specialization for a particular class of objects, we achieve
wider applicability and by using fixed basis functions which
were learned during an initial “development” phase, we
avoid the high computational overhead involved in recom-
puting new basis functions upon the introductionof new ob-
jects as necessitated by previous methods [15, 23]. Further
support for using the oriented derivative-of-Gaussian opera-
tors comes from the observation that correlation filters gen-
erated by principal component expansion maximize signal-
to-noise ratio and yield much sharper correlation peaks than
traditional raw image cross-correlation techniques (see, for
instance, [13]). Finally, while it is relatively well-known
that the class of functions that simultaneously minimize the
product of the standard deviation of the spatial position sen-
sitivity and spatial frequency sensitivity (as given by the
uncertainty principle from Fourier theory) are the complex-
Gabor elementary functions [8], a relatively lesser known
fact is that the class of real-valued functions that minimize
the above conjoint localization metric are in fact the Gaus-
sian derivative functions as first noted by Gabor himself ([8]
p. 441; see also [22]).

3 The Multiscale Iconic Index
Our iconic representation for objects is inspired by the

existence of “natural basis functions” as outlined in the pre-
vious section. The current implementation uses nine Gaus-
sian derivative basis filters denoted by:������
	���
 1 	 2 	 3 	�� � 
 0 	�������	 ������� ��� 1 � 	 � 
 1 	�������	��

(1)
where � denotes the order of the filter and � � the orienta-
tion of the filter. Figure 1 (c) shows the basis filters for a
particular scale.

The response of an image patch � centered at
� �

0 	�! 0 � to
a particular basis filter

� �#"$ can be obtained by convolving
the image patch with the filter:
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The iconic index for a local image patch on an object can
then be formed by combining into a single high-dimensional
vector the responses of each of the nine basis filters at dif-
ferent scales:. 
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(3)
where % $*& '=& 1 denotes the response of a filter with the index3 denoting the order of the filter, 4 denoting the number
of filters per order, and 8 denoting the number of different
scales. In our experiments, we used five octave-separated
scales.

An attractive property of the index is that it can be made
rotation-invariant about the viewing axis when scale is un-
changed. This can be done by exploiting the steerability
[7] of the basis functions. First, a canonical orientation
(say, horizontal) is assumed. Then, the orientation for a
given vector of responses r can be computed from the two
first-order responses as> 
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Figure 2: Rotation Normalization. (a) A test image; (b) The same
image rotated 38

�
counterclockwise; (c) The response vectors for corre-

sponding points near the elephant’s mouth in the two images before nor-
malization; (d) the responsevectors after normalization (Positive responses
are represented by upward bars proportional to the response magnitudeand
negative ones by downward bars with the nine smallest scale responses at
the beginning and the nine largest ones at the end).

For normalization, the entire set of filter responses can be
“rotated” to the canonical orientation using a set of interpo-
lation functions as derived by Freeman and Adelson [7]

%��$ & '0& 1 

$��

1�
'��	�

1

% $ & ' � & 1 � ' � $ � > � 	 (5)

where 3 
 1 	 2 	 3; 4 
 1 	�������	�3�� 1; 8 
 8 9 $ � 	�������	 8 9;:�< ,
and

� ' �
1
� � � 
 1

2



2 cos

� � + � 4 � + 1 � ���
2 ��� 	 4 � 
 1 	 2 (6)

� ' �
2
� � � 
 1

3



1 � 2 cos

�
2
� � + � 4 � + 1 � ���

3 ���
� 	 4 � 
 1 	 2 	 3
(7)

and

� ' �
3
� � � 
 1

4



2 cos

� � + � 4 � + 1 � ���
4 � � 2 cos

�
3
� � + � 4 � + 1 � ���

4 ��� �
(8)

where 4 � 
 1 	 2 	 3 	 4. Figure 2 illustrates the rotation nor-
malization procedure. It is can be seen that the two previ-
ously uncorrelated response vectors of the same point have
been rendered almost identical after normalization.

4 Sparse Distributed Memory
For object indexing, the response vectors obtained from

various objects need to be stored along with their asso-
ciated labels. One way of accomplishing this is to use
an associative memory. A model of associative memory
that is specifically geared towards storage and retrieval of
high-dimensional vectors is Kanerva’s Sparse Distributed
Memory (SDM) [10].

SDM was developed by Kanerva in an attempt to model
human long-term memory. The model is based on the cru-
cial observation that if concepts or objects of interest are
represented by high-dimensional vectors, they can benefit
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Figure 3: Distribution of distances (correlations) between response vec-
tors for a given point and 220268other unrelatedpoints in a cluttered scene.
A vast majority of the vectors lie near the mean distance ��� 0 � 037 and are
thus relatively uncorrelated with the response vector for the given point.

from the very favorable matching properties caused by the
inherent tendency toward orthogonalityin high-dimensional
spaces. For example, consider the space � 0 	 1 � � for large� ( ��� 100). If Hamming distance is used as the distance
metric between points in this space, then the number of
points that are within a distance of � bits from an arbitrary
point follows a binomial distribution which, for large � , can
be approximated by the normal distribution with mean � �

2
and standard deviation � � �

2. In other words,

� � � ��� Φ / � + � �
2� � �

2
2 (9)

where Φ
��� � denotes the standard normal distribution func-

tion with zero mean and unit deviation. Then,� %��! � + � �
2  �
A � � �

2"$# 2
�
1 + Φ

� A ��� (10)

The important observation is that most of the space is or-
thogonal (or “indifferent”) to any given point. For example,
with � 
 360, the mean distance is 180 with a standard de-
viation of 9 � 5. Using Φ

�
4 � 
 0 � 99997, we see that most of

the space (99 � 994%) is approximately at the mean distance
of 180 from a given point; less than 0 � 00006th of the vector
space is closer to the point than 142 bits or further from
it than 218 bits. Thus, an object of interest can be repre-
sented by a high-dimensionalvector that can be subjected to
considerable noise before it is confused with other objects.
The same argument also applies to high-dimensional vec-
tors whose components are non-binary such as the iconic
feature vectors. Figure 3 shows the distribution of distances
(computed as normalized dot-products or correlations) be-
tween the feature vector for a given model point and 220268
other unrelated points in a cluttered scene. The distribution
of the distances has a mean % 
 0 � 037 with a standard devi-
ation & 
 0 � 263. It is clear most of the space is indifferent
(correlation � 0 � 0) to the given model point. Only 0 � 018%
of the points had a correlation greater than 0 � 90, most of
these points being located close to the model point.

4.1 Description of SDM
Simply put, SDM is a generalized random-access mem-

ory wherein the memory addresses and data words come



from high-dimensional vector spaces. As in a conventional
random-access memory, there exists an array of storage lo-
cations, each identified by a number (the address of the
location) with associated data being stored in these loca-
tions. However, due to the astronomical size of the vector
space spanned by the address vectors, only a sparse subset
of the address space is used for identifying data locations
and input addresses are not required to match stored ad-
dresses exactly but to only lie within a specified distance of
an address to activate that address.

The basic operation of SDM1 as proposed by Kanerva
can be summarized as follows :
� Initialization: The physical locations in SDM cor-

respond to the rows of an ��� �
contents matrix

C (initially filled with zeroes) in which data vectors� � + 1 	 1 � � are to be stored (see Figure 4). Pick �
unique addresses ( � -element binary vectors) at random
for each of these locations.

� Data Storage: Given an � -element binary address vec-
tor a and a

�
-element data vector - for storage, select

all storage locations whose addresses lie within a Ham-
ming distance of � from a. Add the data vector - to the
previous contents of each of the selected row vectors
of C. Note that this is different from a conventional
memory where addresses need to exactly match and
previous contents are overwritten with new data.

� Data Retrieval: Given an � -element binary address
vector a, select all storage locations whose addresses
lie within a Hamming distance of � from a. Add the
values of these selected locations in parallel (i.e. vector
addition) to yield a sum vector s containing the

�
sums.

Threshold these
�

sums at 0 to obtain the data vector
d � i.e. - $ 
 1 if 8 $�� 0 and - $ 
 + 1 otherwise.

The statistically reconstructed data vector d � should be the
same as the original data vector provided the capacity of
the SDM [11] has not been exceeded. The intuitive reason
for this is as follows: When storing a data vector d using
an � -dimensional address vector a, each of the selected
locations receives one copy of the data. During retrieval
with an address close to a, say a � , most of the locations that
were selected with a are also selected with a � . Thus, the
sum vector contains most of the copies of d, plus copies of
other different words; however, due to the orthogonality of
the address space for large � , these extraneous copies are
much fewer than the number of copies of d. This biases the
sum vector in the direction of d and hence, d is output with
high probability. A more rigorous argument can be found
in [11].

4.2 Using SDM for Visual Recognition
The model of SDM used in our method differs from the

one proposed by Kanerva in the following ways:
� The addresses are no longer binary but correspond

to multivalued response vectors whose range is de-
termined by the range of filter outputs.

1The SDM model can be realized as a three-layer feedforward neural
network. In fact, the organization of SDM is strikingly similar to the
organization of the human cerebellum. In particular, the cerebellar model
proposedby the late David Marr [14] (and also the CMAC of James Albus)
are closely related to generalized forms of the SDM as discussed in [11].
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Figure 4: The modified Sparse Distributed Memory (SDM) model for
learning associations between object appearance and object identity.

� The normalized dot product is used as the distance met-
ric instead of the Hamming distance. In other words,
the distance between response vectors .	� and .�
 is
computed as:

- � . � 	 . 
 � 
 .���
=.�
  . �     . 
   (11)

� The set of response vectors will be clustered in many
correlated groups distributed over a large portion of
the response vector space. Therefore, if addresses are
picked randomly, a large number of locations will never
be activated while a number of locations will be se-
lected so often that their contents will resemble noise.
The way out of this dilemma is to pick addresses ac-
cording to the distributionof the data [12]. In our case,
we simply use an initial subset of the training response
vectors. When all address locations have subsequently
been filled, the address space can be allowed to self-
organize using the well-known competitive Hebbian
learning rule (or the Kohonen rule) as suggested by
Keeler in [12].

Assume that the number of response vectors (each � -
element long) currently stored is � . Let � represent the
��� � matrix of magnitude-normalized (i.e. .�� �   .��   ) re-
sponse vectors from the objects. Assume that we have stored
response vectors for � objects. Each object is assigned an
identity vector which can be viewed as the response of the
system to the visual stimulus provided by the object; for
instance, the identity vector could specify a name, a motor
command, or even the response vector itself. For the cur-
rent purposes, we associate the identity vectors with object
labels, each object being defined by a fixed range of values
giving an indication of the pose of the object. The identity
vectors are assumed to belong to the set � + 1 	 1 � � , where

�
is chosen large enough to allow distinct labels for the various
objects in the domain. Let � represent the ��� �

counter
(or object identity) matrix whose rows will hold summa-
tions of object labels and whose entries fall within the set� +�� 	�������	 � � + 1 � � for some positive integer � . Figure 4
illustrates this organization.



4.2.1 Visual Learning of Object Identity

During the training phase, objects are presented to the active
vision system which extracts the response vectors from the
image region lying within the fovea. Each response vector r
extracted from an object with a label l is stored in the SDM
as follows. Let � $ denote the threshold for the 3 th address
location and let

�
denote the nonlinear threshold function

defined on � -element vectors whose 3 th component is given
by : � ��� � $ 


�
1 if

� $ � � $
0 otherwise (12)

Note that
�

can in general be an arbitrary radial basis func-
tion [17]. The select vector

� 
 � � � 
 .  .   � (13)

is then simply the vector containing ones in the locations 3
that have a correlation of at least � $ with r.2 The object
identity label l is then stored in the counter matrix C by
simply adding it to the rows of C that were selected by s :

� : 
 � � ����� (14)

where � represents the outer product operation. This in fact
corresponds to a generalized Hebbian learning rule as noted
in [12].

4.2.2 Retrieving Object Identity

Let r be a response vector obtained from one of the points
in the current foveal region. Then the identity label l � cor-
responding to r is computed by summing all the vectors
selected by s and thresholding the sum vector thus obtained
at 0 : � � 
 Θ

� �
	 � � (15)

where Θ
�
x � 
 u where � $ 
 1 if

� $ � 0 and � $ 
 + 1
otherwise. When more than one vector is used per object, the
output label is obtained by thresholding the cumulative sum
vector over the different object vectors. An alternative here
is to use separate SDMs for the different foveal locations,
thereby yielding a topographic memory [19].

5 Implementation
The algorithms described in the previous section have

been implemented on an active vision system comprised of
a binocular head with two color CCD television cameras
that provide input to a � ?BA�? � �
����� ? ��� 3 -���� 	�� MV200
pipeline image-processing system. The MV200 is a sin-
gle integrated 6U VME circuit board with a wide range
of frame-rate image analysis capabilities. Of particular in-
terest to our work is its ability to perform convolutions at
frame-rate (30

� 8�� � ).
There are clearly three distinct phases in the algorithms

of the previous section during either storage or retrieval :
(a) Figure-ground segmentation, (b) Visual preprocessing
to extract filter responses, and (c) Memory access.

2Note that s is a new representation in an � -dimensional space and
correspondsto the codonrepresentationof input in Marr’s cerebellarmodel
[14]. This transformation from an � -dimensional to an � -dimensional
space ( ������� ) adds further orthogonality to the matching process by
amplifying any differences between input response vectors.

5.1 Figure-Ground Segmentation
The problem of figure-ground segmentation is much sim-

pler than the general segmentation problem and can be
solved in a number of different ways, most notably by the
use of stereo. We have previously shown [3] that the use of
an active binocular head allows stereo to be used for seg-
menting an occluder by using zero disparity filtering [6].
The zero disparity filter is a simple non-linear image fil-
ter that suppresses features that have non-zero disparity; in
other words, it only passes image energy in the horopter.
Such a filter is well-suited to perform a crude figure-ground
segmentation of an object amidst a cluttered background.

5.2 Visual Preprocessing
Once the approximate boundary of the face is determined,

the fovea can be directed to the centroid of the object. The
MV200 executes nine convolutions with the different 8 � 8
Gaussian derivative kernels on a low-pass filtered five-level
pyramid of the input image and filter responses are extracted
for each of the sparse number of points in the foveal region.
For the experiments, an object was represented by response
vectors from the centroid and each of the points lying on
the intersections of radial lines with concentric circles of
exponentially increasing radii centered on the centroid as
shown in Figure 6 (c). Note that this corresponds to an
implicit representation by parts.

5.3 Memory Access
Our implementation optimizes the traditionally time-

consuming step of memory access by implementing mem-
ory directly within the MV200 image processing system it-
self and using convolutions for distance computations. The
modified SDM described in Section 4.2 can be implemented
by using one (or more) of the memory banks of the MV200
for storing the matrix A as a “memory surface.” During
indexing, an input response vector is loaded into the 8 � 8
convolution kernel and convolved with the memory surface
A; the closest vectors can be selected by simply thresholding
the results of the convolution.

6 Experimental Results
We first describe the results of varying viewing condi-

tions on the iconic feature vectors of arbitrary objects. These
experiments give an indication of the robustness of the in-
dexing algorithm by showing that the response vectors often
change only slightly (correlation with the model vector re-
mains above 0 � 8) when subjected to different variations in
viewing condition. The SDM uses thresholds in the range
0 � 80-0 � 95 as motivated by Figure 3 where only 0 � 26% of the
points have correlations greater than 0 � 8. Ambiguities left
unresolved by single vectors are countered by using more
than one feature vector per object as described in Section 5.2.

For the first experiment, we extracted the response vector
from a region near the centroid of an initially unoccluded
model object and plotted the distance (correlation) between
the model response vector and those for the same point in
scenarios with increasing degrees of occlusion as shown in
Figure 5 (a). Despite the distortions caused by the occluders,
the new iconic feature vectors remain correlated with the
original vector.

To test insensitivity to modest changes in view, we ex-
amined the effect of gradual clockwise 5 � changes in pose
on the response vectors for a fixed point for a simple 3D
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object. As shown in Figure 5 (b), the correlation remains
above 0 � 8 for pose changes of upto 40 � .

The iconic object representations are tolerant to minor
scale variations ( � 10%). This fact is illustrated in Fig-
ure 5 (c) which depicts the experimental results obtained by
increasing scale in steps of 2%. Larger changes in scale are
handled by a scale interpolation strategy which accounts for
scale changes by interpolating with responses across scales
as illustrated in Figure 5 (d) (see [18] for further details).

In the experiment shown in Figure 5 (e), we exposed a
model object separately to illumination from a 60 � bulb
at a radial distance of 2 feet from four different directions
(labeled 0, 1, 2, and 3). There is a noticeable decrease in
correlation between the model vector and the new vectors,
though it remains relatively high ( � 0 � 8). Larger changes
in illumination can be countered by using brightness nor-
malization techniques in addition to possible active control
of camera aperture.

The experiment in Figure 5 (f) shows the graceful degra-
dation caused by incrementally adding (1) an occlusion, (2)
an illumination change followed by (3) a view variation and
finally, (4) a reduction in scale (brightness normalization
and scale interpolation strategies were not used for this ex-
periment). Despite the large distortions caused by these
transformations, the new iconic feature vectors all have a
correlation of 0 � 5 or more, which is still far from the indif-
ference distance of 0 � 0 where the vast majority of the other
vectors lie (Figure 3).

Finally, the 3D recognition performance of the indexing
technique was tested on the Columbia object database that
was originally used in [15] by Murase and Nayar. Fig-
ure 6 (a) shows the segmented images of 20 3D objects in
the database for a given pose. During the training phase,
36 images of each object at 10 � increments in pose were
used to extract response vectors for storage in the SDM. For
testing the indexing scheme, we randomly selected images
of objects corresponding to poses that lie exactly in between
the training poses. As indicated by Figure 6 (e), even when
only one point was used per object, 70% of the test cases
were still successfully recognized. Addition of more points
within the fovea per object increased the recognition rate
until 100% accuracy was achieved when 25 foveal points
were used for indexing into the SDM.

7 Discussion and Conclusions
This paper presents a new approach to the object indexing

problem: using multiscale iconic feature vectors as compo-
nents of a sparse distributed memory. This combination has
a number of salient features which can be summarized as
follows:

� PCA-based Generalized Basis Functions: The
derivative-of-Gaussian basis functions used in our ap-
proach arise as a result of unsupervised learning in a
neural network performing PCA on arbitrary images of
natural scenes; they are thus well-suited for indexing in
a wide variety of domains. The high-dimensionalityof
the response vectors derived from the basis functions
further improves recognition accuracy.

� Rotation and Scale Invariance: The steerability of
Gaussian derivative filters allows an efficient normal-
ization procedure for rotations about the viewing axis.
The incorporation of filter responses at different scales
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Figure 6: Recognition Results. (a) The 20 objects used in the exper-
iment. (b) 9 of the 36 images of an object extracted at 10

�
rotational

increments in pose to represent the entire pose space. (c) For storage in
the SDM, response vectors from the points at the intersections of radial
lines with concentric circles centered on the approximate object centroid
were used. (d) summarizes the experimental parameters. (e) Recognition
rate (fraction of test images correctly recognized) plotted as a function of
number of vectors used per object in a given pose.

allows the use of simple interpolation strategies for
achieving invariance in the presence of drastic changes
in scale [18].

� Tolerance to Changes in Viewing Conditions: Mi-
nor occlusions3 or modest perspective changes and in-
terference caused by varying background lying in the
receptive fields of the largest scale filters are tolerated
because a large number of measurements are used per
point; distortions in a few components act as noise to
which the high-dimensional representation remains ro-
bust. Illumination changes are handled in two ways.
First, none of the filters used have a DC response. Sec-
ond, the use of normalized dot product as a distance
metric additionally makes the matching process robust
to global contrast changes.

� Sparse Distributed Memory: An associative model
of visual memory based on Kanerva’s sparse dis-
tributed memory is used for storage and retrieval of
object identity. This form of memory facilitates vi-
sual learning and allows interpolation between views
besides offering the additional advantages of constant
indexing time ( � � � � 
 � �

1 � where � is the num-
ber of address/storage locations) and the possibility of
greater storage capacity over sequential memory due to

3A more sophisticated strategy for handling partial occlusions is de-
scribed in [3].



the multiplexing inherent in the SDM combined with
the use of more than one response vector per object.

� Real-Time Recognition: Iconic techniques such as the
one proposed in this paper have been greeted with con-
siderable skepticism in the past since they have been
computation-intensive. However, the recent availabil-
ity of pipeline image processors significantly amelio-
rates this drawback. In particular, the frame-rate con-
volution capability of these processors can be effec-
tively exploited to make iconic techniques practical
and efficient as demonstrated in this paper.

A possible cause for concern is the use of upto 25 vectors per
object. A little reflection however reveals that this choice
still results in considerable savings over the alternative of
pixelwise storage of images (25 � 45 versus 128 � 128). Our
view-based approach raises the question of scalability: will
the method fail when extremely large model bases of objects
are used with arbitrary 3 � pose? It is however not hard to
see that the use of more than one vector per object potentially
allows an extremely large number of objects to be handled.
Kanerva [11] estimates the capacity of the SDM to be about
5% of the number of storage locations; thus, with only 1000
storage locations, the number of potentially distinguishable
objects is still / 50

25
2 which is an extremely large number,

even after factoring out the number of different views for
an object. The accuracy of the above naive estimate clearly
depends on the extent to which response vectors are shared
between different objects; while we have found noticeable
overlap in general, we believe that the possible use of self-
organization within the address space will significantly help
in extending the capacity of the memory by allowing the
stored response vectors to essentially act as higher-level
basis functions for describing objects.

Ongoing work includes motion-based segmentation,
saliency-based selection of object points, and augmenta-
tion of the feature vector with responses from a variety
of color-opponent Gaussian center-surround filters derived
from unsupervised learning along the RGB planes.
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