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Abstract

We propose a new technique for direct visual matching of images for the purposes of face recognition
and image retrieval, using a probabilistic measure of similarity, based primarily on a Bayesian (MAP)
analysis of image differences. The performance advantage of this probabilistic matching technique over
standard Euclidean nearest-neighbor eigenface matching was demonstrated using results from DARPA’s
1996 “FERET” face recognition competition, in which this Bayesian matching algorithm was found to be
the top performer. In addition, we derive a simple method of replacing costly computation of nonlinear (on-
line) Bayesian similarity measures by inexpensive linear (off-line) subspace projections and simple Euclidean
norms, thus resulting in a significant computational speed-up for implementation with very large databases.

1 Introduction

In computer vision, face recognition has a distinguished lineage going as far back as the 1960s with the
work of Bledsoe [1]. This system (and many others like it) relied on the geometry of (manually extracted)
fiducial points such as eye/nose/mouth corners and their spatial relationships (angles, length ratios, etc.).
Kanade [2] was first to develop a fully automatic version of such a system. This “feature-based” paradigm
persisted (or laid dormant) for nearly 30 years, with researchers often disappointed by the low recognition
rates achieved even on small datasets. It wasn’t until the 1980s that researchers began experimenting with
visual representations, making use of the appearance or texture of facial images, often as raw 2D inputs
to their systems. This new paradigm in face recognition gained further momentum due, in part, to the
rapid advances in connectionist models in the 1980s which made possible face recognition systems such as
the layered neural network systems of O’Toole et al. [3], Flemming & Cottrell [4] as well as the associative
memory models used by Kohonen & Lehtio [5]. The debate on features vs. templates in face recognition was
mostly settled by a comparative study by Brunelli & Poggio [6], in which template-based techniques proved
significantly superior. In the 1990s, further developments in template or appearance-based techniques were
prompted by the ground-breaking work of Kirby & Sirovich [7] with Karhunen-Loéve Transform [8] of faces,
which led to the Principal Component Analysis (PCA) [9] “eigenface” technique of Turk & Pentland [10].
For a more comprehensive survey of face recognition techniques the reader is referred to Chellappa et al. [11].

The current state-of-the-art in face recognition is characterized (and to some extent dominated) by a
family of subspace methods originated by Turk & Pentland’s “eigenfaces” [10], which by now has become
a de facto standard and a common performance benchmark in the field. Extensions of this technique
include view-based and modular eigenspaces in Pentland et al [12] and probabilistic subspace learning
in Moghaddam & Pentland [13, 14]. Examples of other subspace techniques include subspace mixtures
by Frey & Huang [15], Linear Discriminant Analysis (LDA) as used by Etemad & Chellappa [16], the
“Fisherface” technique of Belhumeur et al. [17], hierarchical discriminants used by Swets & Weng [18] and
“evolutionary pursuit” of optimal subspaces by Liu & Wechsler [19] — all of which have proved equally (if



not more) powerful than standard “eigenfaces.”

Eigenspace techniques have also been applied to modeling the shape (as opposed to texture) of the face.
Eigenspace coding of shape-normalized or “shape-free” faces, as suggested by Craw & Cameron [20], is now
a standard pre-processing technique which can enhance performance when used in conjunction with shape
information [21]. Lanitis et al. [22] have developed an automatic face-processing system with subspace
models of both the shape and texture components, which can be used for recognition as well as expression,
gender and pose classification. Additionally, subspace analysis has also been used for robust face detection
[14, 12, 23], nonlinear facial interpolation [24], as well as visual learning for general object recognition

[25, 26, 13].

2 A Bayesian Approach

All of the face recognition systems cited above (indeed the majority of face recognition systems published
in the open literature) rely on similarity metrics which are invariably based on Euclidean distance or
normalized correlation, thus corresponding to standard “template-matching” — i.e., nearest-neighbour based
recognition. For example, in its simplest form, the similarity measure S(I, I3) between two facial images
I; and Ty can be set to be inversely proportional to the norm ||I; — I2||. Such a simple metric suffers from
a major drawback: it does not exploit knowledge of which types of variation are critical (as opposed to
incidental) in expressing similarity.

In this paper, we present a probabilistic similarity measure based on the Bayesian belief that the image
intensity differences, denoted by A = I; — Iy, are characteristic of typical variations in appearance of
an individual. In particular, we define two classes of facial image variations: inirapersonal variations
Qr (corresponding, for example, to different facial expressions of the same individual) and eztrapersonal
variations Qg (corresponding to variations between different individuals). Our similarity measure is then
expressed in terms of the probability

S(Ii,I3) = P(AeQr) = P(Qr|A) (1)

where P(Q27]|A) is the a posteriori probability given by Bayes rule, using estimates of the likelihoods P(A|€r)
and P(A|Qg). These likelihoods are derived from training data using an efficient subspace method for density
estimation of high-dimensional data [14], briefly reviewed in Section 3.1.

We believe that our Bayesian approach to face recognition is possibly the first instance of a non-Euclidean
similarity measure used in face recognition [27, 28, 29, 30]. Furthermore, our method can be viewed as a
generalized nonlinear extension of Linear Discriminant Analysis (LDA) [18, 16] or “FisherFace” techniques
[17] for face recognition. Moreover, the mechanics of Bayesian matching has computational and storage
advantages over most linear methods for large databases. For example, as shown in Section 3.2, one need
only store a single image of an individual in the database.

3 Probabilistic Similarity Measures

In previous work [27, 31, 32], we used Bayesian analysis of various types of facial appearance models to
characterize the observed variations. Three different inter-image representations were analyzed using the
binary formulation (2; and Qg type variation) : XYI-warp modal deformation spectra [32, 31, 27], XY-
warp optical flow fields [27, 31] and a simplified I-(intensity)-only image-based differences [29, 27]. In this
paper we focus on the latter representation only — the normalized intensity difference between two facial
images which we refer to as the A vector.

We define two distinct and mutually exclusive classes: Qj representing inirapersonal variations between
multiple images of the same individual (e.g., with different expressions and lighting conditions), and Qg
representing eztrapersonal variations in matching two different individuals. We will assume that both classes
are Gaussian-distributed and seek to obtain estimates of the likelihood functions P(A[|Qr) and P(A|Qg) for
a given intensity difference A =11 — I.



Given these likelihoods we can evaluate a similarity score S(I1, I2) between a pair of images directly in
terms of the intrapersonal a posterior: probability as given by Bayes rule:
P(A[Qr) P(Qr) 2)
P(A|Qr)P(Qr) + P(A|Qr)P(Qr)

S(Ih, I)

where the priors P(£2) can be set to reflect specific operating conditions (e.g., number of test images wvs.
the size of the database) or other sources of a priori knowledge regarding the two images being matched.
Note that this particular Bayesian formulation casts the standard face recognition task (essentially an M-
ary classification problem for M individuals) into a binary pattern classification problem with Qr and Q.
This simpler problem is then solved using the maximum a posteriori (MAP) rule — i.e., two images are
determined to belong to the same individual if P(27]A) > P(Q2g|A), or equivalently, if S(I7, I3) > %

An alternative probabilistic similarity measure can be defined in simpler form using the intrapersonal
likelihood alone,

S = P(AIQr) (3)

thus leading to mazimum likelihood (ML) recognition as opposed to the MAP recognition in Eq. 2. Our
experimental results in Section 4 indicate that this simplified ML measure can be almost as effective as its
MAP counterpart in most cases.

3.1 Subspace Density Estimation

One difficulty with this approach is that the intensity difference vector is very high-dimensional, with A € RN
with N typically of O(10%). Therefore we almost always lack sufficient independent training samples to
compute reliable 2nd-order statistics for the likelihood densities (i.e., singular covariance matrices will result).
Even if we were able to estimate these statistics, the computational cost of evaluating the likelihoods is
formidable. Furthermore, this computation would be highly inefficient since the intrinsic dimensionality or
major degrees-of-freedom of A is likely to be significantly smaller than N.

To deal with the high-dimensionality of A, we make use of the efficient density estimation method
proposed by Moghaddam & Pentland [13, 14] which divides the vector space R into two complementary
subspaces using an eigenspace decomposition. This method relies on a Principal Components Analysis (PCA)
[9] to form a low-dimensional estimate of the complete likelihood which can be evaluated using only the first
M principal components, where M << N.

This decomposition is illustrated in Figure 1 which shows an orthogonal decomposition of the vector
space RY into two mutually exclusive subspaces: the principal subspace F' containing the first M principal
components and its orthogonal complement F', which contains the residual of the expansion. The component
in the orthogonal subspace F is the so-called “distance-from-feature-space” (DFFS), a Euclidean distance
equivalent to the PCA residual error. The component of A which lies in the feature space F' is referred to
as the “distance-in-feature-space” (DIFS) and is a Mahalanobis distance for Gaussian densities.

As shown in [13, 14], the complete likelihood estimate can be written as the product of two independent
marginal Gaussian densities

M
1 y?
exp| —3 ) 3% exp (_J(M)
2p

i=1

P(AIQ) =

(2mp) (V=173

M
M/2 1/2 (4)
(2mpmrz T
i=1

= Pr(AQ) Pr(A|Q)

where Pr(A|Q) is the true marginal density in F, P#(A|Q) is the estimated marginal density in the
orthogonal complement F', y; are the principal components and e?(A) is the residual (DFFS). The optimal
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Figure 1: (a) Decomposition of RN into the principal subspace F' and its orthogonal complement F' for a Gaussian density, (b)
a typical eigenvalue spectrum and its division into the two orthogonal subspaces.

value for the weighting parameter p — found by minimizing cross-entropy — is simply the average of the F
eigenvalues'

1 N
A IR ©)
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We note that in actual practice, the majority of the F' eigenvalues are unknown but can be estimated, for
example, by fitting a nonlinear function to the available portion of the eigenvalue spectrum and estimating
the average of the eigenvalues beyond the principal subspace.

3.2 Efficient Similarity Computation

Consider a feature space of A vectors, the differences between two images (I; and I;). The two classes
of interest in this space correspond to intrapersonal and extrapersonal variations and each is modeled as a

high-dimensional Gaussian density
6—%ATEE1A
P(AIQE) = Goyprrs,re

(6)
1aTsta

The densities are zero-mean since for each A = I; — I}, there exists a A = I, — ;. Since these distributions
are known to occupy a principal subspace of image space (face-space), only the principal eigenvectors of the
Gaussian densities are relevant for modeling. These densities are used to evaluate the similarity score in
Eq. 2 in accordance with the density estimate in Eq. 4.

Computing the similarity score involves first subtracting a candidate image I; from a database entry I.
The resulting A is then projected onto the principal eigenvectors of both extrapersonal and intrapersonal
Gaussians. The exponentials are then evaluated, normalized and combined as likelihoods in Eq. 2. This
operation is iterated over all members of the database (many I images) until the maximum score is found
(i.e. the match). Thus, for large databases, this evaluation is rather expensive.

1 Tipping & Bishop [33] have since derived the same estimator for p by showing that it’s a saddle point of the likelihood for
a latent variable model.



However, these compuations can be greatly simplified by offline transformations. To compute the
likelihoods P(A[Qr) and P(A|Qg) we pre-process the I images with whitening transformations and conse-
quently every image is stored as two vectors of whitened subspace coefficients; i for intrapersonal and e for
extrapersonal

where, A and V are matrices of the largest eigenvalues and eigenvectors of X g or ¥, with subspace dimen-
sionalities of M7 and Mg, respectively. After this pre-processing and with the normalizing denominators pre-
computed, evaluating the likelithoods is reduced to computing simple Euclidean distances for the exponents

o 3le;-€rl?
P(AIQr) = Goprmsanre

. (8)
o~ -2

PAR) = goprmmrs

These likelihoods are then used to compute the MAP similarity S in Eq. 2. Since the Euclidean distances
in the exponents of Eq. 8 are of dimensions M; and Mg for the 1 and e vectors, respectively, only 2x(M;+Mg)
arithmetic operations are required for each similarity computation. In this manner, one avoids unnecessary
and repeated image differencing and online projections. The ML similarity matching based on Eq. 3 is
even simpler to implement in this framework, since only the intra-personal class is evaluated, leading to the
simplified similarity measure, computed using just the i vectors alone

e~ 5lIL-1k?

" —
S = P(AIQn) = (2m)P/2| 5 |1/2 )

4 Experiments

To test our recognition strategy we used a collection of images from the ARPA FERET face database. This
collection of images consists of hard recognition cases that have proven difficult for most face recognition
algorithms previously tested on the FERET database. The difficulty posed by this dataset appears to stem
from the fact that the images were taken at different times, at different locations, and under different imaging
conditions. The set of images consists of pairs of frontal-views (FA/FB) which are divided into two subsets:
the “gallery” (training set) and the “probes” (testing set). The gallery images consisted of 74 pairs of images
(2 per individual) and the probe set consisted of 38 pairs of images, corresponding to a subset of the gallery
members. The probe and gallery datasets were captured a week apart and exhibit differences in clothing,
hair and lighting (see Figure 2).

The front end to our system consists of an automatic face-processing module which extracts faces from the
input image and normalizes for translation, scale as well as slight rotations (both in-plane and out-of-plane).
This system is described in detail in [13, 14] and uses maximum-likelihood estimation of object location (in
this case the position and scale of a face and the location of individual facial features) to geometrically align
faces into standard normalized form as shown in Figure 3. All the faces in our experiments were geometrically
aligned and normalized in this manner prior to further analysis.

4.1 Eigenface Matching

As a baseline comparison, we first used an eigenface matching technique for recognition [10]. The normalized
images from the gallery and the probe set were projected onto eigenfaces similar to those shown in Figure 4.
A nearest-neighbor rule based on a Euclidean distance was then used to match each probe image to a gallery
image. We note that this corresponds to a generalized template-matching method which uses a Euclidean
norm restricted to the principal subspace of the data. We should also add that these eigenfaces represent
the principal components of an entirely different set of images — i.e., none of the individuals in the gallery
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Figure 3: Face alignment system.

or probe sets were used in obtaining these eigenvectors. In other words, neither the gallery nor the probe
sets were part of the “training set.” The rank-1 recognition rate obtained with this method was found to be
84% (64 correct matches out of 76), and the correct match was always in the top 10 nearest neighbors.

4.2 Bayesian Matching

For our probabilistic algorithm, we first gathered training data by computing the intensity differences for a
training subset of 74 intrapersonal differences (by matching the two views of every individual in the gallery)
and a random subset of 296 extrapersonal differences (by matching images of different individuals in the
gallery), corresponding to the classes Qr and Qp, respectively, and performed a separate PCA analysis on
each.

It is interesting to consider how these two classes are distributed, for example, are they linearly separable
or embedded distributions? One simple method of visualizing this is to plot their mutual principal compo-
nents — z.e., perform PCA on the combined dataset and project each vector onto the principal eigenvectors.
Such a visualization is shown in Figure 5-(a) which is a 3D scatter plot of the first 3 principal components.
This plot shows what appears to be two completely enmeshed distributions, both having near-zero means
and differing primarily in the amount of scatter, with Qy displaying smaller intensity differences as expected.
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Figure 5: (a) Distribution of the two classes in the first 3 principal components (circles for Q7, dots for Qz) and (b) schematic
representation of the two distributions showing orientation difference between the corresponding principal eigenvectors.

It therefore appears that one can not reliably distinguish low-amplitude extrapersonal differences (of which
there are many) from intrapersonal ones.

However, direct visual interpretation of Figure 5-(a) is misleading since we are essentially dealing with low-
dimensional (or “flattened”) hyper-ellipsoids which are intersecting near the origin of a very high-dimensional
space. The key distinguishing factor between the two distributions is their relative orientation. We can
easily determine this relative orientation by performing a separate PCA on each class and computing the dot
product of their respective first eigenvectors. This analysis yields the cosine of the angle between the major
axes of the two hyper-ellipsoids, which was found to be 124°, thus indicating that the relative orientations
of the two hyper-ellipsoids are quite different. Figure 5-(b) is a schematic illustration of the geometry of
this configuration, where the hyper-ellipsoids have been drawn to approximate scale using the corresponding
eigenvalues.

4.3 Dual Eigenfaces

We note that the two mutually exclusive classes Q5 and Qf correspond to a “dual” set of eigenfaces as shown
in Figure 6. Note that the intrapersonal variations shown in Figure 6-(a) represent subtle variations due
mostly to expression changes (and lighting) whereas the extrapersonal variations in Figure 6-(b) are more
representative of standard variations such as hair color, facial hair and glasses. In fact, these extrapersonal
eigenfaces are qualitatively similar to the standard eigenfaces shown in Figure 4. This supports the basic
intuition that intensity differences of the extrapersonal type span a larger vector space similar to the volume of
facespace spanned by standard eigenfaces, whereas the intrapersonal eigenspace corresponds to a more tightly
constrained subspace. It is the representation of this intrapersonal subspace that is the critical component
of a probabilistic measure of facial similarity. In fact our experiments with a larger set of FERET images



Figure 6: “Dual” Eigenfaces: (a) Intrapersonal, (b) Extrapersonal

have shown that this intrapersonal eigenspace alone is sufficient for a simplified mazimum likelithood measure
of similarity (see Section 4.4).

Note that since these classes are not linearly separable (they are both zero-mean), simple linear discrimi-
nant techniques (e.g., using hyperplanes) can not be used with any degree of reliability. The proper decision
surface is inherently nonlinear (hyperquadratic under the Gaussian assumption) and is best defined in terms
of the a posteriori probabilities — i.e., by the equality P(Qr|A) = P(Qg|A). Fortunately, the optimal
discriminant surface is automatically implemented when invoking a MAP classification rule.

Having computed the two sets of training A’s, we computed their likelihood estimates P(A|Qr) and
P(A|QE) using the susbspace method [13, 14] described in Section 3.1. We used principal subspace dimen-
sions of My = 10 and Mg = 30 for Q7 and Qp, respectively. These density estimates were then used with
a default setting of equal priors, P(2;) = P(Qg), to evaluate the a posteriori intrapersonal probability
P(Qr]A). This similarity was computed for each probe-gallery pair and used to rank the best matches
accordingly. This probabilistic ranking yielded an improved rank-1 recognition rate of 89.5%. Furthermore,
out of the 608 extrapersonal warps performed in this recognition experiment, only 2% (11) were misclassified
as being intrapersonal — i.e., with P(|A) > P(Qg|A).

4.4 The 1996 FERET Competition

This Bayesian approach to recognition has produced a significant improvement over the accuracy obtained
with a standard eigenface nearest-neighbor matching rule. The probabilistic similarity measure was used
in the September 1996 FERET competition (with subspace dimensionalities of M; = Mg = 125) and was
found to be the top-performing system by a typical margin of 10-20% over the other competing algorithms
[34]. Figure 7 shows the results of this test on a gallery of 21200 individuals. Note that rank-1 recognition
rate is ~95% and significantly higher than the other competitors. In fact, the next best system is our own
implementation of standard eigenfaces. Figure 8 highlights the performance difference between standard
eigenfaces and the Bayesian method from a smaller test set of 800+ individuals. Note the 10% gain in
performance afforded by the new Bayesian similarity measure which has effectively halved the error rate of
eigenface matching.

As suggested in Section 3, a simplified similarity measure using only the nirapersonal eigenfaces can be
used to obtain the mazimum likelihood (ML) similarity measure as defined in Eq. 3 and used instead of the
mazimum a posteriori (MAP) measure in Eq. 2. Although this simplified ML measure was not officially
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Figure 7: Cumulative recognitionrates for frontal FA/FB views for the competing algorithms in the FERET 1996 test. The top
curve (labeled “MIT Sep 96”) corresponds to our Bayesian matching technique. Note that second placed is standard eigenface
matching (labeled “MIT Mar 957).

FERET tested, our experiments with a database of approximately 2000 faces have shown that using S’
instead of S results in only a minor (2-3%) deficit in the recognition rate while cutting the computational
cost by a factor of 2.

4.5 Eigenface vs. Bayesian Matching

It is interesting to compare the computational protocol of standard Euclidean eigenfaces with the new
probabilistic similarity. This is shown in Figure 9 which illustrates the signal flow graphs for the two methods.
With eigenface matching, both the probe and gallery images are pre-projected onto a single “universal” set
of eigenfaces, after which their respective principal components are differenced and normed to compute a
Euclidean distance metric as the basis of a similarity score. With probabilistic matching on the other hand,
the probe and gallery images are first differenced and then projected onto two sets of eigenfaces which are
used to compute the likelihoods P(A|Qr) and P(A|Qg), from which the a posteriori probability P(Qr|A)
is computed by application of Bayes rule as in Eq. 2. Alternatively, the likelihood P(A|Q) alone can be
computed to form the simplified similarity in Eq. 3. As noted in the previous section, use of S’ instead of .S
reduces the computational requirements by a factor of two, while only compromising the overall recognition
rate by a few percentage points.?

Finally, we note that the computation of either MAP/ML similarity measures can be greatly simplified
using the derivations shown in Section 3.2. This reformulation yields an exact remapping of the probabilistic
similarity score without requiring repeated image-differencing and eigenspace projections. The most desirable

?Note that Figure 9(b) shows the conceptual architecture of Bayesian matching and not the actual implementation used as
detailed in Section 3.2.
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Figure 8: Cumulative recognition rates with standard eigenface matching (bottom) and the newer Bayesian similarity metric
(top).

aspect of this simplification is that the nonlinear matching of two images can be carried out in terms of
simple Euclidean norms of their whitened feature vectors which are pre-computed off-line. As pointed out
in Section 3.2, this is particularly appealing when working with large galleries of images and results in a
significant online computational speedup.

5 Discussion

It remains an open research question as to whether the proposed Bayesian approach can be used to model
larger variations in facial appearance other than expression or lighting. In particular, pose and facial
“decorations” (e.g., glasses and beards) are complicating factors which are commonly encountered in realistic
settings. With regards to the latter, we have been able to correctly recognize variations with/without regular
glasses (not dark sunglasses) — in fact a sizeable percentage of the intrapersonal training set used in our
experiments consisted of just such variations. Moderate recognition performance can also be achieved with
simpler techniques like eigenfaces in the case of transparent eye-ware. Naturally, most face recognition
systems can be fooled by sunglasses and significant variations in facial hair (beards).

This is not to say that one can not — in principle — incorporate such gross variations as pose and extreme
decorations into one comprehensive intrapersonal training set and hope to become invariant to them. But
in our experience, this significantly increases the dimensionality of the subspaces and in essence dilutes the
density models, rendering them ineffective. One preferred approach for dealing with large pose variations
is the view-based multiple model method described in [14] whereby variable-pose recognition is delegated
to multiple “experts” each of which is “tuned” to its own limited domain. For example, in earlier work
[35], metric eigenface matching of a small set of variable-pose FERET images, consisting of {frontal, +half,
+profile} views yielded recognition rates of {99%, 85%, 69% }, respectively. However, it was found that
cross-pose performance (train on one view, test on another) declined to =30% with a mere =22% change
in pose. Therefore, the inability of a single view to generalize to other views indicates that multiple-model
techniques [14] are a better way to tackle this problem.

10
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Figure 9: Operational signal flow diagrams for (a) Eigenface similarity and (b) Probabilistic similarity.

6 Conclusions

The performance advantage of our probabilistic matching technique was demonstrated using both a small
database (internally tested) as well as a large (1100+4) database with an independent double-blind test as
part of ARPA’s September 1996 “FERET” competition, in which Bayesian similarity out-performed all
competing algorithms (at least one of which was using an LDA /Fisher type method). We believe that these
results clearly demonstrate the superior performance of probabilistic matching over eigenface, LDA/Fisher
and other existing Fuclidean techniques.

This probabilistic framework is particularly advantageous in that the intra/extra density estimates
explicitly characterize the type of appearance variations which are critical in formulating a meaningful
measure of similarity. For example, the appearance variations corresponding to facial expression changes
or lighting (which may have large image-difference norms) are, in fact, irrelevant when the measure of
similarity is to be based on identity. The subspace density estimation method used for representing these
classes thus corresponds to a learning method for discovering the principal modes of variation important to
the recognition task. Consequently, only a single image of an individual can be used for recognition, thus

11



reducing the storage cost with large databases.

Furthermore, by equating similarity with the @ posterior: probability we obtain an optimal non-linear
decision rule for matching and recognition. This aspect of our approach differs significantly from methods
which use linear discriminant analysis for recognition (e.g., [18, 16]). This Bayesian method can be viewed
as a generalized nonlinear (quadratic) version of Linear Discriminant Analysis (LDA) [16] or “FisherFace”
techniques [17]. The computational advantage of our approach is that there is no need to compute and store
an eigenspace for each individual in the gallery (as required with pure LDA). One (or at most two) global
eigenspaces are sufficient for probabilistic matching and therefore storage and computational costs are fixed
and do not increase with the size of the training set (as is possible with LDA /Fisher methods).

The results obtained with the simplified ML similarity measure (S’ in Eq. 3) suggest a computationally
equivalent yet superior alternative to standard eigenface matching. In other words, a likelihood similarity
based on the intrapersonal density P(A|€y) alone is far superior to nearest-neighbor matching in eigenspace,
while essentially requiring the same number of projections. However, for completeness (and slightly better
performance) one should use the a posteriori similarity (S in Eq. 2) at twice the computational cost of
standard eigenfaces. Finally, in Section 3.2 we derived an efficient technique for computing (nonlinear)
MAP/ML similarity scores using simple (linear) projections and Euclidean norms, making this method
appealing in terms of computational simplicity and ease of implementation.
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