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Graphical (Structured) Models

eFrom Structured Prediction to Graphical Models
eInference

eFrom Logic Networks to Bayesian Networks

oA Review of Graphical Models

eJunction Tree Algorithm

*MAP Estimation (ArgMax Junction Tree Algorithm)
eLoopy Propagation
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Structured Prediction

eThe key of structured prediction is fast computation of:
argmax . w o (X, y)

eUsually, the space Y is too huge to enumerate
eBut, if it has independencies, we can quickly find the max
eThis is equivalent to finding the max of a graphical model

p(y) = éeXp(W%(X,y))
eThe argmax of p(y) is the same as the argmax of above
oIf y splits into many conditionally independent terms
- finding the max (Decoding) may be efficient

eGraphical models have three canonical problems to solve:
1) Marginal inference, 2) Decoding and 3) Learning
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Structured Prediction & HMMs

eRecall Hidden Markov Model (now v is observed, g hidden):

@ @ @ @ @ space of g’s
[OROROARORO 's O(M')

eHere, space of q’s is huge just like in structure prediction
e\Would like to do 3 basic things with graphical models:
1) Evaluate: given vy;,...,y; compute likelihood p(y;,...,Y7)
2) Decode: given yj,...,y+ compute best q,...,47 or p(q,)
3) Learn: given y;,...,y1 learn parameters 6

eTypically, HMMs use Baum-Welch, o-p or Viterbi algorithm
eMore general graphical models use Junction Tree Algorithm
eThe JTA is a way of performing efficient inference
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Inference

eInference: goal is to predict some variables given others
x1: flu
x2: fever
x3: sinus infection Patient claims headache
x4: temperature and high temperature.
x5: sinus swelling Does he have a flu?
x6: headache

Given findings variables X: and unknown variables X,
predict queried variables X,

eClassical approach: truth tables (slow) or logic networks

eModern approach: probability tables (slow) or Bayesian
networks (fast belief propagation, junction tree algorithm)
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Logic Nets to Bayesian Nets

¢1980’s expert systems & logic networks became popular

x1 x2 | x1vx2 x1/~x2 x1 -> x2
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T F F @ @
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eProblem: inconsistency, 2 paths can give different answers

m(m |- |-
M= |m |-

eProblem: rules are hard, instead use soft probability tables

X3 =x1 ™ x2 p(x3|x1,x2)
x3=0 x3=1 x3=0 x3=1
x2=0x2=1 x2=0x2=1 x2=0 x2=1 x2=0x2=1
x1=0] 1.0 1.0 x1=0] 0.0 | 0.0 x1=0]| 0.8 | 0.7 x1=0] 0.2 | 0.3
x1=1| 1.0 0.0 x1=1] 0.0 1.0 x1=1] 0.7 0.1 x1=1] 0.3 0.9

eThese directed graphs are called Bayesian Networks
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Aka Bayesian Networks

Directed Graphical Models

eFactorize a large (how big?) probability over several vars

p(:vl ..... azn) = H;p(aci | pai> — szlp(azi | T(Z,) X4
eInterpretation :

1: flu

2: fever
3: sinus infection
4. temperature
5: sinus swelling
6: headache
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Undirected Graphical Models

eProbability for undirected is defined via Potential Functions
which are more flexible than conditionals or marginals

p(X):p(xl"”’xM):%HClb(X(,*) Z:ZXHclb(Xc)

o]Just a factorization of p(X), Z just normalizes the pdf

ePotential functions are positive functions of 01 | 0.2

(not mutually exclusive) sub-groups of variables [ %% | 03

ePotential functions are over complete sub-graphs or cliques
C in the graph, clique is a set of fully-interconnected nodes
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Moralization

eConverts directed graph into undirected graph
eBy moralization, marrying the parents:
1) Connect nodes that have common children

2) Drop the arrow heads to get undlrected

O p(xJp(w%

NS R @“@ p@i;x“%)

p(a)p(z, |2 )p(z 12)p(z, |2,)p(z, 3) ( pr) | T Y

— %1\)(371, 2)1P<$1,$3)1\)<$2,$4)1b($3,x5)1])(332,51;57336) Z —1

eNote: moralization resolves coupling due to marginalizing
emoral graph |s more general ( Ioses some independencies)

most most
specific . general
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Junction Trees

eGiven moral graph want to build Junction Tree:
each node is a clique () of variables in moral graph
edges connect cliques of the potential functions
unique path between nodes & root node (tree)
between connected clique nodes, have separators (0)
separator nodes contain intersection of variables

\ ABD (A, B,D)
£ D ¢(B,D)
) B> o(B.0.D)
D o) (C, D)
CCDE D CDE ) (C,D,E)
undirected cliques clique tree junction tree

p(X):%w(A,B,D)mb(B,C,D)w(C,D,E)
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Triangulation

eProblem: imagine the following undirected graph
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eNot a Tree!

eTo ensure Junction Tree is a tree (no loops, etc.)
before forming it must first Triangulate moral graph
before finding the cliques...

eTriangulating gives more general graph (like moralization)

eAdds links to get rid of cycles or loops

eTriangulation: Connect nodes in moral graph such that
no cycle of 4 or more nodes remains in the graph
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Triangulation

e Triangulation: Connect nodes in moral graph such that no

chordless cycles (no cycle of 4+ nodes remains) @
© © & &

1-cycle 2-cycle 3-cycle 4-cycle 5-cycle
OK OK OK BAD BAD

eS0, add links, but many possible choices...

oHINT: keep largest clique size small (for efficient JTA)
eChordless: no edges between successor nodes in cycle
eSub-optimal triangulations of moral graph are Polynomial
eTriangulation that minimizes largest clique size is NP
eBut, OK to use a suboptimal triangulation (slower JTA...)
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Triangulation

e Triangulation: Connect nodes in moral graph such that no

chordless cycles (no cycle of 4+ nodes remains) @
© © o8& &
OK OK

1-cycle 2-cycle 3-cycle 3-cycle 3-cycle
OK OK OK

eS0, add links, but many possible choices...

oHINT: keep largest clique size small (for efficient JTA)
eChordless: no edges between successor nodes in cycle
eSub-optimal triangulations of moral graph are Polynomial
eTriangulation that minimizes largest clique size is NP
eBut, OK to use a suboptimal triangulation (slower JTA...)
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Running Intersection Property

oJunction Tree must satisfy Running Intersection Property
eRIP: On unique path connecting clique V to clique W all
other cliques share nodes in VnW

ABD ABD

CD CD
CDE CopE>




Tony Jebara, Columbia University

Running Intersection Property

oJunction Tree must satisfy Running Intersection Property
eRIP: On unique path connecting clique V to clique W all
other cliques share nodes in VnW

ABD B-here
BD

CD B-here* 0D \
CDE \‘
. Mi.%ing
HINT: Junction ! More B's
Tree has largest on path!
total separator “I" = ‘4)(3’0 ‘Jr MC’ D )‘ ‘q)‘ - MC’D )‘* MD )‘

cardinality _ 9219 _ 9241
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Forming the Junction Tree

eNow need to connect the cliques into a Junction Tree

eBut, must ensure Running Intersection Property

eTheorem: a valid (RIP) Junction Tree connection is one
that maximizes the cardinality of the separators

&

k
JT = maXTREESTRUOTURES

— MAX ppp sTRUCTURES Zs ‘d) (X S )‘
eUse Kruskal’s algorithm:
1) Init Tree with all cligues unconnected (no edges)
2) Compute size of separators between all pairs
3) Connect the two cliques with the biggest separator
cardinality which doesn't create a loop
in current Tree (maintains Tree structure)
4) Stop when all nodes are connected, else goto 3
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Kruskal Example
eStart with unconnected cliques (after triangulation)
b

2 : : 3

ACD | BDE | CDF | DEH | DFGH | FGHI
ACD - 1 2 1 1 0
BDE - 1 2 1 0
CDF - 1 2 1
DEH 2 1
DFGH 3
FGHI -
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Junction Tree Probabilities

o\We now have a valid Junction Tree!
e\What does that mean?
eRecall probability for undirected graphs:
p(XS): p(xl,...,:cM) = %Holl)(Xj
eCan write junction tree as potentials of its cliques:

p<X) — %HO@(XO) _ .
eAlternatively: clique potentials over separator potentials:

X
p(X) _ l 1 01‘)< 0)
Z [T,0(X,)
eThis doesn’t change/do anything! Just less compact...

oLike de-absorbing smaller cliques from maximal cliques:

$(4B.D) . “ignal - o(B.D)21
¢(B,D) formula if

fp(A,B,D) —
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Junction Tree Algorithm

eSend message from each clique to its separators of
what it thinks the submarginal on the separator is.

eNormalize each cligue by incoming message
from its separators so it agrees with them

CAB (51 CBCD v={as} s={5} w-{pc}

If agree: ZV\SmpV = ¢, = p(S) = ¢, = ZW\Sq@W ...Done!

Else: Send message Send message Now they

FromVto W... FromWto V... Agree...Done!

3 sk % *ok . ﬁ *
d)s - Zv\s wv (bs — ZW\S ww ZV\S lL)V B ZV\S o qJ)V

Y b b .
by ==, b, ==, :—SZ ¥

* * V\S TV
o} b o \

Py, =V, Py, = by, = ¢y = ZW\SwW
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Junction Tree Algorithm

e\When "Done”, all clique potentials are marginals and
all separator potentials are submarginals!
eNote that p(X) is unchanged by message passing step:

oy =30 oy B
: W D

\P*:O—Sﬂﬁ @S
Coe AL Ot b
by =y e A

eExample: if potentials are poorly initialized... get corrected!

v, =p|BlA|pl4 )
— (A, B)) ( ) — d)B — E*:A l\)AB — ZAP(A’ B) :p(B)
v =lel8) =, - o p)yae)
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Junction Tree Algorithm

eExample: if evidence is observed... i.e. random var A:=1

Initialize as before, cliques get underlying conditionals...
b,, = p(A B b, = p(C| B 6, =1

Update with slice...
o= ,0,,04=1)=>" p(AB)s(4=1)=p(4A=1B)

\\);C — j;jjl\)Bc — p(A T LB)p(C | B) = p(A = ]-7B)C)
Py =, = p(4=1B)

To get conditionals... ,
p(peia=)= g

eProblem: if send message to neighbor & he changes,
we must re-update! Could keep looping for a long time.
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JTA: Collect & Distribute

eTrees: recursive, no need to reiterate messages mindlessly!
eSend a message only after hearing from all neighbors...

initialize(DAG){ Pick root
Set all variables as: ¢, = p(% | TYZ.) Vi
=1 VS
%: 1 }

collectEvidence(node) {

for each child of node {

update(node,collectEvidence(child)); }
return(node); }

distributeEvidence(node) {
for each child of node {
update(child,node);
distributeEvidence(child); } }

update(node,evidence) { 0
S

), = UV,
20\5 L bs
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Junction Tree Algorithm
oJTA: 1)Initialize 2)Collect 3)Distribute

/
VN

NN
7N\
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ArgMax Junction Tree Algorithm

e\We can also use JTA for finding the max not the sum
over the joint to get argmax of marginals & conditionals
Say have some evidence:  p(X,.X,)=p(s,....7,,7,,,,...7,]

Most likely (highest p) Xg? X, = argmax, p(x,.X,)
e\What is most likely state of patient with fever & headache?

p, = max_ p(a:l =lLz,r,z,2 0, = 1)

= maxx: ;(;:| T, = 1)p(a¢1 = 1) max, p(a:3 |z, = 1)
max p<x4 | xz)max% p<x5 | x3)p(a:6 =1 £E2,CE5)
eSolution: update in JTA uses max instead of sum:
&

Oy =max, b, U=, 6=

eFinal potentials aren't margingls: w(XC) = maXU\oP(X)
eHighest value in potential is most likely: X’ = argmaxclb(Xc)
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Loopy Belief Propagation

o\We could run junction tree algorithm on non-trees... but...
a) no guaranteed convergence
b) might get inexact marginals
c) might iterate indefinitely (not polynomial time)

eCalled Loopy Propagation since messages loop indefinitely
eExample: Markov random field for images...

Just find cliques

Don’t triangulate
Keep iterating JTA...
Sometimes Guaranteed!



