Tony Jebara, Columbia University

Advanced Machine Learning & Perception

Instructor: Tony Jebara

Graphical (Structured) Models

- From Structured Prediction to Graphical Models
- •Inference
- From Logic Networks to Bayesian Networks
- •A Review of Graphical Models
- •Junction Tree Algorithm
- •MAP Estimation (ArgMax Junction Tree Algorithm)
- Loopy Propagation

Structured Prediction

•The key of structured prediction is fast computation of:

$$\arg\max_{y\in Y} \mathbf{w}^T \phi(\mathbf{x}, y)$$

Usually, the space Y is too huge to enumerate
But, if it has independencies, we can quickly find the max
This is equivalent to finding the max of a graphical model

$$p(y) = \frac{1}{Z} \exp\left(\mathbf{w}^T \phi(\mathbf{x}, y)\right)$$

The argmax of p(y) is the same as the argmax of above
If y splits into many conditionally independent terms

finding the max (Decoding) may be efficient

Graphical models have three canonical problems to solve:

1) Marginal inference, 2) Decoding and 3) Learning

Structured Prediction & HMMs

•Recall Hidden Markov Model (now y is observed, q hidden):

space of q's is $O(M^T)$

Here, space of q's is *huge* just like in structure prediction
Would like to do 3 basic things with graphical models:

- 1) Evaluate: given $y_1, ..., y_T$ compute likelihood $p(y_1, ..., y_T)$
- 2) Decode: given $y_1, ..., y_T$ compute best $q_1, ..., q_T$ or $p(q_t)$
- 3) Learn: given $y_1, ..., y_T$ learn parameters θ

•Typically, HMMs use Baum-Welch, α - β or Viterbi algorithm •More general graphical models use Junction Tree Algorithm •The JTA is a way of performing efficient inference

Inference

•Inference: goal is to predict some variables given others x1: flu

- x2: fever
- x3: sinus infection
- x4: temperature
- x5: sinus swelling
- x6: headache

Patient claims headache and high temperature. Does he have a flu?

Given findings variables X_f and unknown variables X_u predict queried variables X_q

•Classical approach: truth tables (slow) or logic networks

•Modern approach: probability tables (slow) or Bayesian networks (fast belief propagation, junction tree algorithm)

Logic Nets to Bayesian Nets

•1980's expert systems & logic networks became popular

x1	x2	x1 v x2	x1^x2	x1 -> x2
Т	Т	Т	Т	Т
т	F	Т	F	F
F	Т	Т	F	т
F	F	F	F	т

- Problem: inconsistency, 2 paths can give different answers
- Problem: rules are hard, instead use soft probability tables

•These directed graphs are called Bayesian Networks

Aka Bayesian Networks Directed Graphical Models

Undirected Graphical Models

•Probability for undirected is defined via Potential Functions which are more flexible than conditionals or marginals

 $p(X) = p(x_1, \dots, x_M) = \frac{1}{Z} \prod_C \psi(X_C) \qquad Z = \sum_X \prod_C \psi(X_C)$

•Just a factorization of p(X), Z just normalizes the pdf

Potential functions are positive functions of

(not mutually exclusive) sub-groups of variables l

0.1	0.2		
0.05	0.3		

Potential functions are over complete sub-graphs or cliques
C in the graph, clique is a set of fully-interconnected nodes
Use maximal cliques, absorb cliques contained in larger ψ

$$\begin{aligned} & \psi(x_2, x_3) \psi(x_2) \psi(x_3) \\ & \to \psi(x_2, x_3) \end{aligned}$$

 $p\left(x_{1}\right)p\left(x_{2} \mid x_{1}\right)$

most

general

 $\psi(x_1, x_2)$

Moralization

most

specific

Converts directed graph into undirected graphBy moralization, marrying the parents:

1) Connect nodes that have common children

2) Drop the arrow heads to get undirected

Note: moralization resolves *coupling* due to marginalizing
moral graph is more general (loses some independencies)

 x_{2}

Junction Trees

 Given moral graph want to build Junction Tree: each node is a clique (ψ) of variables in moral graph edges connect cliques of the potential functions unique path between nodes & root node (tree) between connected clique nodes, have separators (φ) separator nodes contain intersection of variables

undirected cliques clique tree junction tree $p(X) = \frac{1}{Z} \psi(A, B, D) \psi(B, C, D) \psi(C, D, E)$

Triangulation

• Problem: imaging the following undirected graph

•To ensure Junction Tree is a tree (no loops, etc.) before forming it must first Triangulate moral graph before finding the cliques...

•Triangulating gives more general graph (like moralization)

- •Adds links to get rid of cycles or loops
- •Triangulation: Connect nodes in moral graph such that no cycle of 4 or more nodes remains in the graph

Triangulation

•Triangulation: Connect nodes in moral graph such that no chordless cycles (no cycle of 4+ nodes remains)

•So, add links, but many possible choices...

HINT: keep largest clique size small (for efficient JTA)
Chordless: no edges between successor nodes in cycle
Sub-optimal triangulations of moral graph are Polynomial
Triangulation that minimizes largest clique size is NP
But, OK to use a suboptimal triangulation (slower JTA...)

Triangulation

•Triangulation: Connect nodes in moral graph such that no chordless cycles (no cycle of 4+ nodes remains)

•So, add links, but many possible choices...

HINT: keep largest clique size small (for efficient JTA)
Chordless: no edges between successor nodes in cycle
Sub-optimal triangulations of moral graph are Polynomial
Triangulation that minimizes largest clique size is NP
But, OK to use a suboptimal triangulation (slower JTA...)

Running Intersection Property

Junction Tree must satisfy Running Intersection Property
RIP: On unique path connecting clique V to clique W, all other cliques share nodes in V ∩ W

Running Intersection Property

Junction Tree must satisfy Running Intersection Property
RIP: On unique path connecting clique V to clique W, all other cliques share nodes in V ∩ W

Forming the Junction Tree

- Now need to connect the cliques into a Junction Tree
 But, must ensure Running Intersection Property
- •Theorem: a valid (RIP) Junction Tree connection is one that maximizes the cardinality of the separators

$$JT^* = \max_{TREE STRUCTURES} |\Phi|$$
$$= \max_{TREE STRUCTURES} \sum_{S} |\phi(X_S)|$$

- •Use Kruskal's algorithm:
 - 1) Init Tree with all cliques unconnected (no edges)
 - 2) Compute size of separators between all pairs
 - 3) Connect the two cliques with the biggest separator cardinality which doesn't create a loop
 - in current Tree (maintains Tree structure)
 - 4) Stop when all nodes are connected, else goto 3

Kruskal Example

•Start with unconnected cliques (after triangulation)

	ACD	BDE	CDF	DEH	DFGH	FGHI
ACD	-	1	2	1	1	0
BDE		-	1	2	1	0
CDF			-	1	2	1
DEH				-	2	1
DFGH					-	3
FGHI						-

Junction Tree Probabilities

•We now have a valid Junction Tree! •What does that mean? •Recall probability for undirected graphs: $p(X) = p(x_1,...,x_M) = \frac{1}{Z} \prod_C \psi(X_C)$ •Can write junction tree as potentials of its cliques: $p(X) = \frac{1}{Z} \prod_C \tilde{\psi}(X_C)$ •Alternatively: clique potentials over separator potentials: $p(X) = \frac{1}{Z} \frac{\prod_C \psi(X_C)}{\prod_S \phi(X_S)}$

This doesn't change/do anything! Just less compact...
Like *de-absorbing* smaller cliques from maximal cliques:

$$\tilde{\psi}(A, B, D) = \frac{\psi(A, B, D)}{\phi(B, D)} \quad \checkmark$$

...gives back original formula if

$$\phi \Big(B, D \Big) \triangleq 1$$

- Send message from each clique *to* its separators of what it thinks the submarginal on the separator is.
 Normalize each clique by incoming message
 - from its separators so it agrees with them

$$AB = BC \qquad V = \{A, B\} \qquad S = \{B\} \qquad W = \{B, C\}$$

If agree:
$$\sum_{V\setminus S}\psi_V= \phi_S=pig(Sig)= \phi_S=\sum_{W\setminus S}\psi_W$$
 …Done!

Else: Send message From V to W...

 $\phi^*_S = \sum_{V \setminus S} \psi_V$

Send message From W to V...

From W to V...Agree..
$$\phi_s^{**} = \sum_{W \setminus S} \psi_W^*$$
 $\sum_{V \setminus S} \psi_V^{**} = \sum_{W \setminus S} \psi_W^*$

$$egin{aligned} & egin{aligned} & egi$$

.Done

Now they

When "Done", all clique potentials are marginals and all separator potentials are submarginals!
Note that p(X) is unchanged by message passing step:

•Example: if potentials are poorly initialized... get corrected! $\psi_{AB} = p(B | A) p(A)$ $= p(A,B) \longrightarrow \qquad \varphi_{B}^{*} = \sum_{A} \psi_{AB} = \sum_{A} p(A,B) = p(B)$ $\psi_{BC} = p(C | B) \longrightarrow \qquad \psi_{BC}^{*} = \frac{\varphi_{S}^{*}}{\varphi_{S}} \psi_{BC} = \frac{p(B)}{1} p(C | B) = p(B,C)$

•Example: if *evidence* is observed... i.e. random var A:=1

Initialize as before, cliques get underlying conditionals...

 $\psi_{AB} = p(A, B)$ $\psi_{BC} = p(C | B)$ $\phi_B = 1$ Update with slice...

$$\begin{split} \boldsymbol{\varphi}_{B}^{*} &= \sum_{A} \boldsymbol{\psi}_{AB} \delta \left(A = 1 \right) = \sum_{A} p \left(A, B \right) \delta \left(A = 1 \right) = p \left(A = 1, B \right) \\ \boldsymbol{\psi}_{BC}^{*} &= \frac{\boldsymbol{\varphi}_{S}^{*}}{\boldsymbol{\varphi}_{S}} \boldsymbol{\psi}_{BC} = \frac{p \left(A = 1, B \right)}{1} p \left(C \mid B \right) = p \left(A = 1, B, C \right) \\ \boldsymbol{\psi}_{AB}^{*} &= \boldsymbol{\psi}_{AB} = p \left(A = 1, B \right) \end{split}$$

To get conditionals... $p(B,C \mid A = 1) = \frac{\psi_{BC}^*}{\sum_{B,C} \psi_{BC}^*}$

•Problem: if send message to neighbor & he changes, we must re-update! Could keep looping for a long time.

JTA: Collect & Distribute

Trees: recursive, no need to reiterate messages mindlessly!
Send a message only after hearing from all neighbors...

initialize(DAG){ Pick root

Set all variables as: $\psi_{C_i} = p(x_i \mid \pi_i) \forall i$ $\phi_{S} = 1 \quad \forall S$ Z = 1

collectEvidence(node) {
 for each child of node {
 update(node,collectEvidence(child)); }
 return(node); }

distributeEvidence(node) {
 for each child of node {
 update(child,node);
 distributeEvidence(child); } }

update(node,evidence) {

$$\psi_{C}^{*} = \frac{\phi_{S}^{*}}{\sum_{C \setminus S} \psi_{C}} \psi_{C} \qquad$$

 \star

ArgMax Junction Tree Algorithm

- We can also use JTA for finding the max not the sum over the joint to get argmax of marginals & conditionals
 Say have some evidence: p(X_F, X
 _E) = p(x₁,...,x_n, x
 _{n+1},..., x_N)
- •Most likely (highest p) X_{F} ? $X_{F}^{*} = \arg \max_{X_{F}} p(X_{F}, \overline{X}_{E})$
- •What is most likely state of patient with fever & headache? $p_F^* = \max_{x_2, x_3, x_4, x_5} p(x_1 = 1, x_2, x_3, x_4, x_5, x_6 = 1)$ $= \max_{x_2} p(x_2 \mid x_1 = 1) p(x_1 = 1) \max_{x_3} p(x_3 \mid x_1 = 1)$ $\max_{x_4} p(x_4 \mid x_2) \max_{x_5} p(x_5 \mid x_3) p(x_6 = 1 \mid x_2, x_5)$

•Solution: update in JTA uses max instead of sum:

$$\phi_{S}^{*} = \max_{V \setminus S} \psi_{V} \qquad \psi_{W}^{*} = \frac{\phi_{S}}{\phi_{S}} \psi_{W} \qquad \psi_{V}^{*} = \psi_{V}$$

•Final potentials aren't marginals: $\psi(X_C) = \max_{U \setminus C} p(X)$ •Highest value in potential is most likely: $X_C^* = \arg \max_C \psi(X_C)$

Loopy Belief Propagation

•We *could* run junction tree algorithm on non-trees... but...

a) no guaranteed convergence

b) might get inexact marginals

c) might iterate indefinitely (not polynomial time)
•Called Loopy Propagation since messages loop indefinitely
•Example: Markov random field for images...

