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Graphical (Structured) Models 
• From Structured Prediction to Graphical Models 

• Inference 

• From Logic Networks to Bayesian Networks 

• A Review of Graphical Models  

• Junction Tree Algorithm 

• MAP Estimation (ArgMax Junction Tree Algorithm) 

• Loopy Propagation 
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Structured Prediction 
• The key of structured prediction is fast computation of: 

• Usually, the space Y is too huge to enumerate 
• But, if it has independencies, we can quickly find the max 
• This is equivalent to finding the max of a graphical model 

• The argmax of p(y) is the same as the argmax of above 
• If y splits into many conditionally independent terms 
  finding the max (Decoding) may be efficient 
• Graphical models have three canonical problems to solve: 
 1) Marginal inference, 2) Decoding and 3) Learning 

    
arg max

y∈Y
wTφ x,y( )

    
p y( ) = 1

Z
exp wTφ x,y( )( )
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Structured Prediction & HMMs 
• Recall Hidden Markov Model (now y is observed, q hidden): 

• Here, space of q’s is huge just like in structure prediction 
• Would like to do 3 basic things with graphical models: 
  1) Evaluate: given y1,…,yT compute likelihood p(y1,…,yT) 
  2) Decode: given y1,…,yT compute best q1,…,qT or p(qt) 
  3) Learn: given y1,…,yT learn parameters θ 

• Typically, HMMs use Baum-Welch, α-β or Viterbi algorithm 
• More general graphical models use Junction Tree Algorithm 
• The JTA is a way of performing efficient inference 

space of q’s 
is O(MT)  
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Inference 
• Inference: goal is to predict some variables given others 
  x1: flu 
  x2: fever 
  x3: sinus infection   Patient claims headache 
  x4: temperature   and high temperature. 
  x5: sinus swelling   Does he have a flu? 
  x6: headache 

  Given findings variables Xf and unknown variables Xu  
  predict queried variables Xq 

• Classical approach: truth tables (slow) or logic networks 

• Modern approach: probability tables (slow) or Bayesian 
networks (fast belief propagation, junction tree algorithm)  
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Logic Nets to Bayesian Nets 
• 1980’s expert systems & logic networks became popular 

• Problem: inconsistency, 2 paths can give different answers 

• Problem: rules are hard, instead use soft probability tables 

x3 = x1 ^ x2   p(x3|x1,x2) 

• These directed graphs are called Bayesian Networks 
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Directed Graphical Models 
• Factorize a large (how big?) probability over several vars 

• Interpretation 
  1: flu 
  2: fever 
  3: sinus infection 
  4: temperature 
  5: sinus swelling 
  6: headache 

    
p x
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,…,x
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i
| pa

i( )i=1
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Aka Bayesian Networks 
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• Probability for undirected is defined via Potential Functions 
  which are more flexible than conditionals or marginals 

• Just a factorization of p(X), Z just normalizes the pdf 
• Potential functions are positive functions of 
  (not mutually exclusive) sub-groups of variables 
• Potential functions are over complete sub-graphs or cliques 
  C in the graph, clique is a set of fully-interconnected nodes 
• Use maximal cliques, absorb cliques contained in larger ψ 

Undirected Graphical Models 

    
p X( ) = p x
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Moralization 
• Converts directed graph into undirected graph 
• By moralization, marrying the parents: 
   1) Connect nodes that have common children 
   2) Drop the arrow heads to get undirected 

• Note: moralization resolves coupling due to marginalizing 
• moral graph is more general (loses some independencies) 

 →

most 
specific 

most 
general … … 
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Junction Trees 
• Given moral graph want to build Junction Tree: 
 each node is a clique (ψ) of variables in moral graph 
 edges connect cliques of the potential functions  
 unique path between nodes & root node (tree) 
 between connected clique nodes, have separators (φ) 
 separator nodes contain intersection of variables 

   
p X( ) = 1

Z
ψ A,B,D( )ψ B,C,D( )ψ C,D,E( )

undirected cliques clique tree junction tree 

   
ψ A,B,D( )
   
φ B,D( )

   
ψ B,C,D( )

   
ψ C,D,E( )
   
φ C,D( )
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• Problem: imagine the following undirected graph 

• Not a Tree! 
• To ensure Junction Tree is a tree (no loops, etc.)  
    before forming it must first Triangulate moral graph 
    before finding the cliques… 
• Triangulating gives more general graph (like moralization) 
• Adds links to get rid of cycles or loops 
• Triangulation: Connect nodes in moral graph such that 
    no cycle of 4 or more nodes remains in the graph 

Triangulation 
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Triangulation 
• Triangulation: Connect nodes in moral graph such that no 
  chordless cycles (no cycle of 4+ nodes remains) 

• So, add links, but many possible choices… 
• HINT: keep largest clique size small (for efficient JTA) 
• Chordless: no edges between successor nodes in cycle 
• Sub-optimal triangulations of moral graph are Polynomial 
• Triangulation that minimizes largest clique size is NP 
• But, OK to use a suboptimal triangulation (slower JTA…) 

1-cycle 
OK 

2-cycle 
OK 

3-cycle 
OK 

4-cycle 
BAD 

5-cycle 
BAD 
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Triangulation 

1-cycle 
OK 

2-cycle 
OK 

3-cycle 
OK 

3-cycle 
OK 

3-cycle 
OK 

• Triangulation: Connect nodes in moral graph such that no 
  chordless cycles (no cycle of 4+ nodes remains) 

• So, add links, but many possible choices… 
• HINT: keep largest clique size small (for efficient JTA) 
• Chordless: no edges between successor nodes in cycle 
• Sub-optimal triangulations of moral graph are Polynomial 
• Triangulation that minimizes largest clique size is NP 
• But, OK to use a suboptimal triangulation (slower JTA…) 
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Running Intersection Property 
• Junction Tree must satisfy Running Intersection Property 
• RIP: On unique path connecting clique    to clique   , all 
 other cliques share nodes in   V ∩W
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Running Intersection Property 
• Junction Tree must satisfy Running Intersection Property 
• RIP: On unique path connecting clique    to clique   , all 
 other cliques share nodes in 

HINT: Junction 
Tree has largest 
total separator 
cardinality 

  V ∩W

B-here 

B-here 

Missing 
More B’s 
on path! 

   

Φ = φ B,C( ) + φ C,D( )
= 2 + 2    

Φ = φ C,D( ) + φ D( )
= 2 +1
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Forming the Junction Tree 
• Now need to connect the cliques into a Junction Tree 
• But, must ensure Running Intersection Property 
• Theorem: a valid (RIP) Junction Tree connection is one 
  that maximizes the cardinality of the separators 

• Use Kruskal’s algorithm: 
 1) Init Tree with all cliques unconnected (no edges) 
 2) Compute size of separators between all pairs 
 3) Connect the two cliques with the biggest separator 
  cardinality which doesn’t create a loop 
  in current Tree (maintains Tree structure) 
 4) Stop when all nodes are connected, else goto 3  

   

JT * = max
TREE STRUCTURES

Φ

= max
TREE STRUCTURES

φ X
S( )S∑



Tony Jebara, Columbia University 

Kruskal Example 
• Start with unconnected cliques (after triangulation) 

ACD BDE CDF DEH DFGH FGHI 

ACD - 1 2 1 1 0 

BDE - 1 2 1 0 

CDF - 1 2 1 

DEH - 2 1 

DFGH - 3 

FGHI - 

1 

2 3 

4 5 

 A  B

 C  D  E

 F  G  H

 I
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Junction Tree Probabilities 
• We now have a valid Junction Tree! 
• What does that mean? 
• Recall probability for undirected graphs: 

• Can write junction tree as potentials of its cliques: 

• Alternatively: clique potentials over separator potentials: 

• This doesn’t change/do anything! Just less compact… 
• Like de-absorbing smaller cliques from maximal cliques: 

    
p X( ) = p x

1
,…,x

M( ) = 1
Z

ψ X
C( )C∏

    
p X( ) = 1

Z
ψ X

C( )C∏

   

p X( ) =
1
Z

ψ X
C( )C∏

φ X
S( )S∏

    

ψ A,B,D( ) =
ψ A,B,D( )
φ B,D( )

…gives back 
original 

formula if     
φ B,D( ) 1
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Junction Tree Algorithm 
• Send message from each clique to its separators of 
  what it thinks the submarginal on the separator is. 
• Normalize each clique by incoming message 
  from its separators so it agrees with them 

   
V = A,B{ } S = B{ } W = B,C{ }

If agree: 
   

ψ
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S
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…Done! 

Now they 
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Junction Tree Algorithm 
• When “Done”, all clique potentials are marginals and 
    all separator potentials are submarginals! 
• Note that p(X) is unchanged by message passing step: 

• Example: if potentials are poorly initialized… get corrected! 
   

φ
S
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Junction Tree Algorithm 
• Example: if evidence is observed… i.e. random var A:=1 

  Initialize as before, cliques get underlying conditionals… 

  Update with slice… 

  To get conditionals… 

• Problem: if send message to neighbor & he changes, 
   we must re-update! Could keep looping for a long time. 

   
ψ

AB
= p A,B( ) ψ

BC
= p C | B( ) φ

B
= 1

   

φ
B
* = ψ

ABA∑ δ A = 1( ) = p A,B( )δ A = 1( )A∑ = p A = 1,B( )

ψ
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φ
S
*

φ
S

ψ
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=
p A = 1,B( )

1
p C | B( ) = p A = 1,B,C( )

ψ
AB
* = ψ

AB
= p A = 1,B( )

   

p B,C | A = 1( ) =
ψ

BC
*

ψ
BC
*

B,C∑
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JTA: Collect & Distribute 
• Trees: recursive, no need to reiterate messages mindlessly! 
• Send a message only after hearing from all neighbors… 
initialize(DAG){  Pick root 
    Set all variables as: 

                                               

collectEvidence(node) { 
    for each child of node  { 
        update(node,collectEvidence(child)); } 
    return(node); } 

distributeEvidence(node) { 
    for each child of node  { 
        update(child,node); 
        distributeEvidence(child); } } 

update(node,evidence) { 

      } 

   φS
= 1 ∀S   

ψ
Ci

= p x
i
| π

i( ) ∀ i

   

ψ
C
* =

φ
S
*

ψ
CC \S∑
ψ

C

   Z = 1 } 
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Junction Tree Algorithm 
• JTA:    1)Initialize   2)Collect    3)Distribute 
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ArgMax Junction Tree Algorithm 
• We can also use JTA for finding the max not the sum 
   over the joint to get argmax of marginals & conditionals 
• Say have some evidence: 

• Most likely (highest p) XF? 

• What is most likely state of patient with fever & headache? 

• Solution: update in JTA uses max instead of sum: 

• Final potentials aren’t marginals: 
• Highest value in potential is most likely: 
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Loopy Belief Propagation 
• We could run junction tree algorithm on non-trees… but… 
 a) no guaranteed convergence 
 b) might get inexact marginals 
 c) might iterate indefinitely (not polynomial time) 
• Called Loopy Propagation since messages loop indefinitely 
• Example: Markov random field for images… 

  x11
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12   x12
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  x12
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24Just find cliques 

Don’t triangulate 
Keep iterating JTA… 
Sometimes Guaranteed! 


