
Graph-Based Semi-Supervised Learning

April 4, 2013

Semi-Supervised Learning

Graph Sparsification
Neighborhood Graphs
k-Nearest Neighbor Graphs
b-Matching Graphs

Graph Weighting

Graph Labeling
Gaussian Random Fields
Local and Global Consistency
Graph Transduction via Alternating Minimization

Experiments

Conclusions

Semi-Supervised Learning

◮ Semi-supervised learning (SSL) learns from both
◮ labeled data (expensive and scarce)
◮ unlabeled data (cheap and abundant)

◮ Given iid samples from an unknown distribution p(x, y) over
x ∈ Ω and y ∈ Z organized as

◮ a labeled set: Xl ∪ Yl = {(x1, y1), . . . , (xl , yl)}
◮ an unlabeled set: Xu = {xl+1, . . . , xl+u}

◮ Output missing labels Ŷu = {ŷl+1, . . . , ŷl+u} that largely
agree with true missing labels Yu = {yl+1, . . . , yl+u}

Graph Based SSL

◮ Graph based semi-supervised learning first constructs a graph
G = (V ,E) from Xl ∪ Xu which is usually

◮ a sparse graph (using k-nearest neighbors)
◮ and a weighted graph (radial basis function weighting)

◮ Subsequently, G and Yl yield Ŷu via a labeling algorithm:
◮ Laplacian regularization (Belkin & Niyogi 02)
◮ Gaussian fields and harmonic functions (Zhu et al. 03)
◮ Local and global consistency (Zhou et al. 04)
◮ Laplacian support vector machines (Belkin et al. 06)
◮ Transduction via alternating minimization (Wang et al. 08)

Graph Construction

x1 x2

x3

x4x5

x6

x1 x2

x3

x4x5

x6

x1 x2

x3

x4x5

x6

A B C

A Given the full dataset Xl ∪ Xu of n = l + u samples

B Form full weighted graph G with adjacency matrix A ∈ R
n×n

using any kernel k(., .) elementwise as Aij = k(xi , xj)
◮ Kernel choice is application dependent and only locally reliable
◮ Equivalent to use distances and matrix D ∈ R

n×n defined as
Dij =

√

k(xi , xi) + k(xj , xj) − 2k(xi , xj)

C Sparsify graph with pruning matrix P ∈ B
n×n

Neighborhood Graphs

◮ ǫ-neighborhood Set P ∈ B
n×n as Pij = δ(Dij ≤ ǫ)

◮ The ǫ-neighborhood often forms disconnected graphs
◮ Better to make ǫ adaptive using k-nearest neighbors algorithm

◮ k-nearest neighbors Set P = max(P̂ , P̂⊤) where

P̂ = arg min
P∈Bn×n

∑

ij
PijDij s.t.

∑

j
Pij = k,Pii = 0

◮ Despite its name, this algorithm doesn’t give k neighbors
◮ Due to symmetrization of P̂ ,

∑

i Pij ≥ k neighbors
◮ Alternatively, can take P = min(P̂ , P̂⊤), then

∑

i Pij ≤ k

k-Nearest Neighbor Graphs

◮ Above is k-nearest neighbors with k = 2

◮ Related to the so-called Kissing Number (see Wikipedia)

b-Matching Graphs

◮ Above is unipartite b-matching with b = 2

◮ Fixes the so-called Kissing Number issue

b-Matching Graphs

◮ b-matching is k-nearest neighbors with explicit symmetry

P = arg min
P∈Bn×n

∑

ij
PijDij s.t.

∑

j
Pij = b,Pii = 0,Pij = Pji

◮ Known as unipartite generalized matching

◮ Efficient combinatorial solver known (Edmonds 1965)

◮ Like an LP with exponentially many blossom inequalities

◮ Fastest solvers now use max product belief propagation
◮ Exact for bipartite b-matching in O(bn3) (Huang & J 2007)
◮ Under mild assumptions get O(n2) (Salez & Shah 2009)
◮ Exact for integral unipartite b-matching (Sanghavi et al. 2008)
◮ Exact for unipartite perfect graph b-matching (J 2009)

Bipartite 1-Matching

Motorola Apple IBM

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ P =





0 1 0
0 0 1
1 0 0





◮ GivenC , maxP∈Bn×n

∑

ij CijPij such that
∑

i Pij =
∑

j Pij = 1

◮ Classical Hungarian marriage problem O(n3)

◮ Creates a very loopy graphical model

◮ Max product takes O(n3) for exact MAP (Bayati et al. 2005)

◮ Use C = −D to mimic minimization of distances

Bipartite b-Matching

Motorola Apple IBM

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ P =





0 1 1
1 0 1
1 1 0





◮ GivenC , maxP∈Bn×n

∑

ij CijPij such that
∑

i Pij =
∑

j Pij = b

◮ Combinatorial b-matching problem O(bn3), (Google Adwords)

◮ Creates a very loopy graphical model

◮ Max product takes O(bn3) for exact MAP (Huang & J 2007)

◮ Use C = −D to mimic minimization of distances

◮ Code also applies to unipartite b-matching problems

Bipartite b-Matching

u1 u2 u3 u4

v1 v2 v3 v4

◮ Graph G = (U,V ,E) with U = {u1, . . . , un} and
V = {v1, . . . , vn} and M(.), a set of neighbors of node ui or vj

◮ Define xi ∈ X and yi ∈ Y where xi = M(ui) and yi = M(vj)

◮ Then p(X ,Y) = 1
Z

∏

i

∏

j ψ(xi , yj)
∏

k φ(xk)φ(yk) where
φ(yj) = exp(

∑

ui∈yj
Cij) and ψ(xi , yj) = ¬(vj ∈ xi ⊕ ui ∈ yj)

b-Matching

◮ Code at http://www.cs.columbia.edu/∼jebara/code

◮ Also applies to unipartite b-matching

b-Matching

20
40

50
100

0

0.05

0.1

0.15

b

BP median running time

n

t

20
40

50
100

0

50

100

150

b

GOBLIN median running time

n

t

20 40 60 80 100
0

1

2

3

n

t1/
3

Median Running time when B=5

20 40 60 80 100
0

1

2

3

4

n

t1/
4

Median Running time when B= n/2 

BP
GOBLIN

BP
GOBLIN

Applications:
clustering (J & S 2006)
classification (H & J 2007)
collaborative filtering (H & J 2008)
visualization (S & J 2009)

Max product is O(n2), beats other solvers (Salez & Shah 2009)

b-Matching

◮ Left is k-nearest neighbors, right is unipartite b-matching.

Graph Weighting

Given sparsification matrix P , obtain final adjacency matrix W

graph for G using any of the following weighting schemes

BN Binary Set W = P

GK Gaussian Kernel Set Wij = Pij exp(−d(xi , xj)/2σ
2) where

d(., .) is any distance function (ℓp distance, chi squared
distance, cosine distance, etc.)

LLR Locally Linear Reconstruction Set W to reconstruct
each point with its neighborhood (Roweis & Saul 00)

W = arg min
W∈Rn×n

∑

i

‖xi −
∑

j

PijWijxj‖
2 s.t.

∑

j

Wij = 1,Wij ≥ 0

Graph Labeling

◮ Given known labels Yl and sparse weighted graph G with W

◮ Output Ŷu by diffusion or propagation

◮ Define the following intermediate matrices
◮ Degree D ∈ R

n×n where Dii =
∑

i Wij , Dij = 0 for i 6= j
◮ Laplacian ∆ = D − W
◮ Normalized Laplacian L = D−1/2∆D−1/2

◮ Classification function F ∈ R
n×c where F =

[

Fl

Fu

]

◮ Label matrix Y ∈ B
n×c , Yij = δ(yi = j) and Y =

[

Yl

Yu

]

◮ Consider these algorithms for producing F and Y
◮ Gaussian Random Fields (GRF)
◮ Local and Global Consistency (LGC)
◮ Graph Transduction via Alternating Minimization (GTAM)

Gaussian Random Fields

x1 x2

x3

x4x5

x6

x1 x2

x3

x4x5

x6

Yl Yl ∪ Ŷu

◮ Gaussian Random Fields smooth classification function
over Laplacian while clamping known labels

min
F∈Rn×c

tr(F⊤∆F) s.t.∆Fu = 0,Fl = Yl

and then obtain Y from F by rounding

Local and Global Consistency

x1 x2

x3

x4x5

x6

x1 x2

x3

x4x5

x6

Yl Yl ∪ Ŷu

◮ Local and Global Consistency smooth using
normalized Laplacian and softly constrain Fl to Yl

min
F∈Rn×c

tr
(

(F⊤LF) + µ(F − Y)⊤(F − Y)
)

and then obtain Y from F by rounding

Graph Transduction via Alternating Minimization

x1 x2

x3

x4x5

x6

x1 x2

x3

x4x5

x6

Yl Yl ∪ Ŷu

◮ Graph Transduction via Alternating Minimization

make the optimization bivariate jointly over F and Y

min
F∈R

n×c

Y∈B
n×c

tr
(

F⊤LF + µ(F − VY)⊤(F − VY)
)

s.t.
∑

j

Yij = 1

where V is a diagonal matrix containing class proportions

◮ Given current F , Y is updated greedily one entry at at time

Synthetic Experiments

(a) (d)(c)(b)

Figure: Synthetic dataset (a) two sampled rings (b) ǫ-neighborhood
graph (c) k-nearest graph with k = 10 (d) b-matching with b = 10.

(a) (b)

Figure: 50-fold error rate varying σ in Gaussian kernel for (a) LGC and
(b) GRF. GTAM (not shown) does best. One point per class labeled.

Synthetic Experiments

(a) (d)(c)(b)

Figure: Synthetic dataset (a) two sampled rings (b) ǫ-neighborhood
graph (c) k-nearest graph with k = 10 (d) b-matching with b = 10.

(b)(a) (c)

Figure: 50-fold error rate under varying b or k and weighting schemes for
(a) LGC, (b) GRF and (c) GTAM. One point per class labeled.

Real Experiment Error Rates

Data set USPS COIL BCI TEXT

QC + CMN 13.61 59.63 50.36 40.79

LDS 25.2 67.5 49.15 31.21

Laplacian 17.57 61.9 49.27 27.15

Laplacian RLS 18.99 54.54 48.97 33.68

CHM (normed) 20.53 - 46.9 -

GRF-KNN-BN 19.11 64.45 48.77 47.65

GRF-KNN-GK 12.94 61.31 48.98 47.65

GRF-KNN-LLR 19.20 61.19 48.46 47.14

GRF-BM-BN 18.98 60.63 48.44 43.16

GRF-BM-GR 12.82 60.87 48.77 42.88

GRF-BM-LLR 18.95 60.84 48.25 42.94

Data set USPS COIL BCI TEXT

LGC-KNN-BN 14.7 59.18 48.94 48.79

LGC-KNN-GK 12.42 57.3 48.42 48.09

LGC-KNN-LLR 15.8 56.75 48.65 40.28

LGC-BM-BN 14.4 59.31 48.34 40.44

LGC-BM-GR 11.89 58.17 48.17 37.39

LGC-BM-LLR 14.44 58.69 48.08 39.83

GTAM-KNN-BN 6.42 29.70 47.56 49.36

GTAM-KNN-GK 4.77 16.69 47.29 49.13

GTAM-KNN-LLR 6.69 15.35 45.54 41.48

GTAM-BM-BN 5.2 25.83 47.92 17.81

GTAM-BM-GR 4.31 13.65 47.48 28.74

GTAM-BM-LLR 5.45 12.57 43.73 16.35

Real Experiment Error Rates with More Labeling

Data set USPS TEXT

of labels 10 100 10 100

QC + CMN 13.61 6.36 40.79 25.71

TSVM 25.2 9.77 31.21 24.52

LDS 17.57 4.96 27.15 23.15

Laplacian RLS 18.99 4.68 33.68 23.57

CHM (normed) 20.53 - 7.65 -

GRF-KNN-BN 19.11 9.07 47.65 41.56

GRF-KNN-GK 13.01 5.58 48.2 41.57

GRF-KNN-LLR 19.20 11.17 47.14 35.17

GRF-BM-BN 18.98 9.06 43.16 25.27

GRF-BM-GK 12.92 5.34 41.24 22.28

GRF-BM-LLR 18.95 10.08 42.95 24.54

Data set USPS TEXT

of labels 10 100 10 100

LGC-KNN-BN 14.99 12.34 48.63 43.44

LGC-KNN-GK 12.34 5.49 49.06 41.51

LGC-KNN-LLR 15.88 13.63 44.86 37.53

LGC-BM-BN 14.62 11.71 40.88 26.19

LGC-BM-GK 11.92 5.21 38.14 23.17

LGC-BM-LLR 14.69 12.19 40.29 24.91

GTAM-KNN-BN 6.59 5.98 49.36 46.67

GTAM-KNN-GK 4.86 2.56 49.07 46.06

GTAM-KNN-LLR 6.77 6.19 41.46 39.59

GTAM-BM-BN 6.00 5.08 17.44 16.78

GTAM-BM-GR 4.62 3.08 16.85 15.91

GTAM-BM-LLR 5.59 5.16 16.01 14.88

Conclusions

◮ Graph-based SSL has top performance

◮ Investigated 3 sparsifications × 3 weightings × 3 algorithms

◮ GTAM method has better accuracy than other algorithms

◮ On real data, k-nearest neighbors creates irregular graphs

◮ Regularity from b-matching ensures balanced manifolds

◮ b-matching consistently improves k-nearest neighbors

◮ Fast and exact b-matching code available using max-product

◮ The runtime of b-matching is not a bottleneck for SSL

◮ Theoretical guarantees forthcoming

	Semi-Supervised Learning
	Graph Sparsification
	Neighborhood Graphs
	k-Nearest Neighbor Graphs
	b-Matching Graphs

	Graph Weighting
	Graph Labeling
	Gaussian Random Fields
	Local and Global Consistency
	Graph Transduction via Alternating Minimization

	Experiments
	Conclusions

