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SVM Feature & Kernel Selection

eSVM Extensions
eFeature Selection (Filtering and Wrapping)
eSVM Feature Selection

eSVM Kernel Selection
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SVM Extensions
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Feature Selection & Sparsity

e[solates interesting dimensions i
of data for a given task XXX |
eReduces complexity of data S T
eAugments Sparse Vectors (SVMs) l
with Sparse Dimensions TR
«Can also Improve Generalization | ¥x
sExample: find subset of d features from o
D dims that give largest margin SVM?

L(70)=>"" 530, +b s c{0lf&y s =d
eTypically needs exponential search: 1000 choose 10
if we consider all possible subsets of dimensions

eHow to do this efficiently (and jointly) with SVM
estimation? Two classical approaches: Filtering & Wrapping
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Feature Selection: Filtering

eFiltering: find/eliminate some features before even training
your classifier (before induction) as a pre-processing.
o\Wrapping: find/eliminate some features by evaluating their
accuracy after you train your classifier (after induction).
eFisher Information Criterion: Compute score below for each
feature i=1...D. Keep, the top d features

F z'shefr(z') = M;; — > E; hA
o o) : A A ;
. ——Z (0.) = Z(m — ) ol .

-10 5 0 5 10

te+ te+

Like puttlng a Gaussian on each class in each 1 dimension

to compute their spread. The Gaussian assumption may
be wrong! Only measures how linearly separable data is.
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Feature Selection: Filtering

ePearson Correlation Coefficients: score how similar or
redundant two features are. Can then remove redunancies
or remove features that are too correlated on average.

2 ()

(T +1)o0, ...again Gaussian only
eKolmogorov-Smirnov Test: non-parametric, more general
than Gaussian but only 1 feature at a time.

Pearson (z’, j) =

For each feature, compute the cumulative density
function over both classes then over the single class.
Find KS score as follows, keep top d features.

Kolmogomvsz’rnov(i) = \/Esupq (P {:E'Z < q} - P{f@ <q|y= 1})
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Feature Selection: Filtering

eKolmogorov-Smirnov example:
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Feature Selection: Wrapping

e\Wrapping: use accuracy of resulting classifier to drive
the feature selection f Q:E) = wTd>(f o §) +0

eDot is elementwise product of x with binary vector s

eNote: more features usually improves training accuracy.

¢S0, pre-specify the maximum number (or %) of features

eQOr, optimize generalization bound (SRM vs. ERM)
eMargin & Radius Bound (like VC-bound): Expectations
1 R’ 1 over
E{Perr} < ?E W [~ ?E{R2W2 (0‘)} datasets

eBetter Span Bound: (if SV’s don't change when doing

leave-one out cross-validation, i.e. removing point p)
u() is step function

E{PTl}giE<Z L am—— Ksv is Gram matrix
- ( )pp

o T of only support
vectors
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SVM Feature Selection

eMargin & Radius Bound: optimize via gradient descent
*Assume selection vector s is given:  k(z,7,) = k(7 ¢ 5,3, o 5|
eCompute R? and betas via:

R? = max, Ztstk(@,@) _ Zt,tﬁﬁt"f(@ft') sty B,=18 >0

eCompute WTW and alphas via:

max Ztut —ZH QLYY k( ) st.ou, € [O,C], Ztoctyt =0

eAssume switches are continuous, take derivatives of RZ/M?:

(9};2W2 _p? @aWQ 7 (ZR2
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SVM Feature Selection

eUse chain rule to get gradient of kernel with respect to s.
*E.g. RBF kernel

ok(3,3,) g

= exp|—

s, 0s, 2
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SVM Feature Selection

eAssemble all calculations to get gradient vector over s

3R2 _ Z 3 8k£;1:x) Ztt 38, (9]{7(;:%)
) " ok(z.7 i
8W _Ztt Y. Y, ((;U; i )

?

-leen the old s value, s = [0 11 O}T the gradient is:

ORI oW OR? 8;1 —30.13
— R? + W —924| Y +925.4 :
(‘98i 882, 88i —3.2 3.5
2.4 2.3 |

eTake a small step to drive down the term (against gradient)
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SVM Feature Selection

eSynthesized from mixture of Gaussian data
eFeature selection improves classifier & speeds it up
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Figure 1: A comparison of feature selection methods on (a) a linear problem and (b) a
nonlinear problem both with many irrelevant features. The x-axis 1s the number of training
points, and the y-axis the test error as a fraction of test points.
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SVM Feature Selection

*Real face & pedestrian (wavelet) data (only speedup)
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Figure 2: The solid line 1s using all features, the solid line with a circle 1s our feature
selection method (minimizing R2W?2 by gradient descent) and the dotted line is the Fisher
score. (a)The top ROC curves are for 725 features and the bottom one

for 120 features for face detection. (b) ROC curves using all features and 120 features for

pedestrian detection.
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SVM Kernel Selection

e\We are given d=1...D base kernels to use in an SVM
kl(ff)kz(sz) ..... kD(m)
eHow do we pick the best ones or a combination of them?
b (2,3") = &, (2,2") + K, (2,3") + &, (2.3

FINAL
eIt we only had to use 1 kernel, try D different SVMs...
eTo pick 5 out of 10 kernels, need 10 choose 5 = 252 SVMs!
eEven worse is picking a weighted combination of kernels

where the alpha weights are positive

> > D > >
kFINAL (:L’,:L’ ') — Zi:luiki (:L’,:L’ '>
eDefine the alignment between two kernel matrices as

A(KI,K2>: <K17K2> where<Kl,K2>:ZN k (a?.,fj)kz(a?i,fj)

(1) (i, 1) ik
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SVM Kernel Selection

e\We want a kernel matrix K that aligns with the labels matrix
max . A(K,ny)
eThis can be written equivalently as the solution below:

max <K,ny> s.t. <K,K> =1K >0

eThis can all be written as a semidefinite program (SDP)

A K' 0 0
maXK<K,ny>s.t. [O( é 1—2“(A) 8 >0
0 O 0 K

eUnfortunately, this can give a trivial solution...
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SVM Kernel Selection

eInstead, force K to be a conic combination of base kernels:

max . <K : ny>
Table 1. Margin and number of test-set errors (TSE) for
T SVMs trained and tested with the initial kernel matri-
A K 0 0 ces K1,K9, K3 and with the optimal kernel matrix K™,
K 1l 0 0 learned using semi-definite programming (12) with ¢ =
S.t. ~— 0 >, trace(K;). A dash means that no hard margin clas-
0 0 L—tr (A) 0 sifier could be found.
Ky Ko K K*
0 0 0 K Breast cancer d=2 o=0.5
margin 0.010  0.136 - 0.300
D TSE 19.7 28.8 11.4
PLUS.. K=Y oK ‘ ‘.
i=1 i i Sonar d=2 oc=0.1
o ] margin 0.035  0.198  0.006 0.352
eThis is simpler than an SDP,  TsE 155 194 219 138
- T = 2 = _.r
just a second order cone . d=2 =03 N
margin - 0.159 - 0.285

program (faster code) TSE 19.2 36.6
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Feature vs. Kernel Selection

el inear feature selection can be done via kernel selection!
f(f) — o7 (f.§)+b via K=" sK

... where only a few s values are 1 and most are zero
eDefine the base kernels

k (2,35, (2,3"),....k, (2,3)
to be: k (z,2') = z(i)z"(i)
eFor example, in a linear SVM the cIaSS|f|er IS:
( ) Zt&tyt FINAL( z )+b o t?/tzisz-ki (f’ft)—i_b
yZ 8T ) (>+b—w (fcé’)—l—b



