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Topic 6

eStandard Kernels

eUnusual Input Spaces for Kernels

eString Kernels

eProbabilistic Kernels

eFisher Kernels

eProbability Product Kernels

eMixture Model Probability Product Kernels

eJunction Tree Algorithm for Kernels
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SVMs and Kernels

eRecall the SVM dual optimization:
L : max iocl,—%Zi,jaiujyiyjk@i,xj)

subjectto o € [O, C’] and Ziyioci =0
*Solve a QP by using the Gram matrix K where &, = k(z,,z,)

klz,z | klz,z,] kl{z,z,
K =| klz,z,] klz,z,| kl(z,z,
kle.,x,| klx,x,|] klx,x

17773 2773 37773

eThen KKT conditions give us b. The SVM prediction is then:
f :1:) = sign(ziociyik (SL‘, :132) + b)

eKernels replace vector dot products for nonlinear boundary
eKernels also allow arbitrary large structured input spaces!
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Standard Kernels on Vectors

eKernels usually take two input vectors and output a scalar:

ePolynomial Kernel (gives p twists in SVM decision boundary)
k(z,2,) = (o(z),0(,)) = (o2, +1]
*RBF Kernel (phi is infinite dimensional)
k(xi’xj) - <¢(xi)’¢(xj)> B eXp[_%G2
eHyperbolic Tangent Kernel
k(z,2,) = (0(2,),0(z,)) = tanh ka2, )
eBut why just deal with vector inputs?

o\We can apply kernels between any type of input:
graphs, strings, probabilities, structured spaces, etc.!

2
r —X.
t J
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String Kernels

eInputs are two strings: X = “aardvark”
X' = “accent”
eWant k(X,X") = scalar value = ¢(X)"o(X")

eOne choice for features ¢(X) is the number of times each
substrings of length 1, 2 and 3 appears in X

O(X) = [#a #b #c #d #e #f ... #y #z #aa #ab #ac ...]
=30 0 1 00..00 1 O O..]

oX) =[1 0 2 01 0..00 0 0 1..]

eCan do this efficiently via dynamic programming
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String Kernels
eWant k(X,X") = scalar value = ¢(X)To(X")

oExplicit Kernel can be slow because of many substrings s
in our final vocabulary

o0 (X) = number of times substring s appears in X
o( (aardvark) = 3 o,(aardvark) = 2
eImplicit Kernel is more efficient

k(X,X"): for each substring s of X, count how often s
appears in X’

...via dynamic programming in time proportional to the
product of the lengths of X and X'. This computes the dot
product much more quickly!
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Probability Kernels

eInputs are two probabilities: p = p(x|0)
p' = p(x[6)

1
DEL
0
05 0 5
15
1
05 /o
0

eWant k(p,p’) = scalar value
eHow to design this?
eRecall that a kernel can be converted into a distance:

D(pi’pj) - \/k(pi’pi) B Zk(pi’pj) T k(pj’pj)
e\What is a natural distance between two probabilities?

eKullback-Leibler Divergence!

Do) - [ s i

...caveats?
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Fisher Kernels

oKL isn't symmetric distance, probabilities lie on a manifold!
S0 we must approximate it...

eTry quadratic distance measure o’
like Mahalanobis distance ;
D(p"|p') ~ \/(Up,, ~U ) 10, - UpA,)/ 0 | .

eLinearize manifold at 6* (some maximum likelihood point)

oGet distance between p and p’ via a distance from 6 to ©’
eThe right kernel to go with the Mahalanobis distance is:

bp"p') =U,10,
where Up,, — Ve,, logp<:1: | 9) and Up, — Ve, logp<x | 9)

eMatrix I is the N : alogp(x\e)alogp(xm)
Fisher informationle* (Z’]) B f p(:l:|9) 0 00 b

? J
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Other Possible Divergences

The Kullback-Leibler Divergence is asymmetric and tricky...
All divergences have: D(p,q) > o,D(p, q) —0iffp =g

Consider KL, Jensen-Shannon and Symmetrized KL...

KL(p,q —fp 1ogp da:
sqrt(JS) is a true distance metric
7S (p.q) = 1KL< p+q)+ 1KL< p+q) (Endres & Schindelin, 2003)
SKL(p,q) = ;KL(p,q)—l— ;KL(%Z?>

Hellinger divergence is symmetric & can be written as kernel!

- i\/f(m_\/@f dx = \/k(p,p)—Zk(pyq)Jrk(%Q)

...what kernel is this?
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Bhattacharyya Kernel

A kernel between distributions that gives Hellinger divergence

o) = [rleale)es fe) Tl

A slight generalization is the Probability Product Kernel

o) = ol (o) o

Setting p=1/2 gives the Bhattacharyya Kernel
Hpa) = [ ple)ale)ds

Setting p=1 gives the Expected Likelihood Kernel

a(2)| = B, o[z

b(p.a) =B,
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Probability Product Kernel

Imagine we are given inputs which are probabilities and labels
Dataset = {(P1,Y1): (P2:Y2)s---r (Pns¥n)J

1.5
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E.g. eachinputiis a brand of car

Ll

p. is its brakepad failure probability over time
y. is binary, did government approve it for US roads?

Build SVM with Probability Product Kernels to predict if a
brakepad failure distribution will be approved/rejected by gov't
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Probability Product Kernel

Imagine we are given input data vectors with labels
Dataset = {(X]_IYI)I (XZIYZ)I"'I (XnIYn)}

E.g. eachinputiis a brand of car
X; is time when one car of brand i failed
y. is binary, did government approve it for US roads?

1.5

For each i, estimate from ;
X; = probability p,=p(x|6;) |
00—ésg—m

Dataset = {(pl,yl), (pZIYZ)I"'I (pHIYI’])}

Build SVM with Probability Product Kernels to predict if a
brakepad failure distribution will be approved/rejected by gov't
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Probability Product Kernel

Imagine we are given input data vector-sets with labels
Dataset = {(XIIYI)I (XZIYZ)I"'I (XnIYn)}

E.g. eachinputiis a brand of car
y; IS a set of times when several cars of brand i failed
y. is binary, did government approve it for US roads?

1.5

For each i, estimate from 1

Xi={xill"'lxit} 9 prObablhty p|=p(X|e|) 0.5 ,
0o‘msh——m

Dataset = {(pl,yl), (pZIYZ)I"'I (pHIYI’])}

Build SVM with Probability Product Kernels to predict if a
brakepad failure distribution will be approved/rejected by gov't
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Gaussian Product Kernels
For Gaussians: k(p,p')zpr(azm)Np(azm')dx

2
ol -u /5

(if u=x and u'=x’, get back RBF kernel ©)
(Fisher kernel here is just a linear kernel ®)

For Gaussians with variable covariance:
k( ' —pr |M,Z)Np(x\u',2')da:

p/2 —p/2 ‘1/2

\2 5

eXp(——uTZ p—Lpt N 1u'+1uTEu)
1

where ¥ = (pZ -+ pE”) and [t =pX ‘n+pX' ' p'
(Fisher kernel here is just a quadratic kernel ®)
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Multinomial Product Kernels
Bernoulli: p(ﬂ? | 9) = HdDzl YV, (1 ~ “{d)l_xd
(binary x) p p
box) = [ {p(e)) (p'(z)) s
=TT + - -]
Multi ial: z|0)= o
o "1 = Mhee
box!) = 00 e, )

For multinomial counts (for N words per document):

E(xox ') = [Zfl(%% ')WIN

(Fisher for Multinomial is linear ®)
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Multinomial Product Kernels

WebKB dataset: Faculty vs. student web page SVM classifier
20-Fold Cross-Validation, 1641 student & 1124 faculty, ...
Use Bhattacharyya Kernel on multinomial (word frequency)

P
° [TTTTITIITIIITL CTTTTTTITIIITT
WJ B

Training Set Size = 77 Training Set Size = 622
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Exponential Family Kernels

Exponential Family: Gaussian, Multinomial, Binomial, Poisson,
Inverse Wishart, Gamma, Bernoulli, Dirichlet, ...

plo16) = exp[ (o) + 7(s) 0~ K (o)
Maximum likelihood is straightforward: %K(e) = lZnT(:cn)

n

All have above form but different A(x), T(x), convex K(q)
Family A(X) K(8)
Gaussian (mean) |[—2X' X — Zlog(27) 106
Gaussian (variance) —= log(27) —= log(6)
Multinomial log(I'(n + 1)) — log(v)[n log(1+ 327, exp(64))
Exponential 0 —log(—0)
Gamma —exp(X)— X log I'(0)
Poisson log (X!) exp(f)
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Exponential Family Kernels

Compute the Bhattacharyya Kernel for the e-family:
T
plo16) = exp[ (o) + 7(s) 0~ K (o)
Analytic solution for e-family:
k(o) = [ o[z 10)" s(e10) "
= exp(K(L0+10') 1 K(20)— LK (0")

Only depends on convex cumulant-generating function K(q)

Meanwhile, Fisher Kernel is always linear in sufficient stats...
U =V, log p(x | e) :TT(X) - VO*K(G)
U= (T () =) 1T (x) 9]
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Gaussian Product Kernels

Instead of a single x & x’

Construct p & p’ from many x & x’ samples 9
0.y

Use bag of vectors el
J A

D Dot =ole) = Naln)
z‘i “:ﬁziXiaEZ%Zi(Xi—M)(Xi—M)T

1/2

5 exp (— I TIPIRR T T MRS éETEE)

p/2 —p/2

Zl

o) =[5
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Kernelized Gaussian Product

Bhattacharyya affinity on Gaussians on bags {x,...} & {X,...}
Invariant to order of tuples in each bag
But too simple, just overlap of Gaussians on images

3

Need more detail than mean and covariance of pixels...
Use another Kernel to find Gaussian in Hilbert space

T
ﬁ(X»X') = d>(x) d>(x')
Never compute outerproducts, use kernel, i.e. infinite RBF:
2
50 x) = eXpL—%Gz X=X l
Compute mini-kernel between each pixel in a given image...
Gives kernelized or augmented Gaussian p and X via Gram
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Kernelized Gaussian Product
Previously: b = E{X} 2L=F (X — LL)(X — M)T

ow w=E{o() 5= Elfo() -)le(x) ) |

Compute Hilbert Gaussian’s mean & covariance of each image
bag or image is N x N pixel Gram matrix using kappa kernel
Use kernel PCA to regularize infinite dimensional RBF Gaussian

: “\ ﬁ(xl,:vl) I‘L(:Ul,LUN) %(:Ul,xl) %(:Ul,xM)
{:“\* s s s s s
‘3 IQ(:UN,ZUl) IQ(.CL’N,LI?N> H(ZIZM,Q?l) H(ZUM,a?M) a1

1/2

o0l )< BT IE exp (TS - s E e 4R
Puts all dimensions (X,Y,I) on an equal footing

—p/2 —p/2
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Kernelized Gaussian Product

A2 0

Letter 'R" with 3 KPCA Components of RBF Kernel

Reconstructlon of Letter ‘R" with 1- 4 KPCA with RBF Kernel

PR R

Reconstruction of Letter 'R” with 3 KPCA with RBF Kernel + Smoothing
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Kernelized Gaussian Product

100 40x40 monochromatic
images of crosses & squares ' ﬂ ﬂ H ! H - -

translating & scaling

—— %=1

SVM: Train 50, Test 50 o I s
_ _ —— 5’=16
Fisher for Gaussian 04l o T

is Quadratic Kernel :
%03
RBFKerne|(red) §02— DEEDDDDDDDDDDDD—
4_\u—*—¢—«—«—*—ﬁ—ﬁ—*—¢—¢—*—*
67% accuracy

Bhattacharyya (blue) N
900/0 accuracy 10 " RegularizationC10 "
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Kernelized Gaussian Product

SVM Classification of NIST digit images 0,1,...,9 i &
Sample each image to get bag of 30 (X,Y) pixels  :
Train on random 120, test on random 80

0.7 - —r—rr
~—— dot product
—&— RBF sigma=1 ¥
" RBF slgmanto
bag-of-vectors e N B e
A ~+— Bhattach sigma=10
Bhattacharyya ] :
outperforms i -
standard RBF A T it le—
due to built-in S
invariance \i\\,”\ e
— 4"'\/\-~
Fisher Kernel for sl — ]

GaUSSian is quadratic Regularization C
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Mixture Product Kernels

Beyond Exponential Family: Mixtures and Hidden Variables
Need p=1 Expected Likelihood kernel...

x = p(z)=>"" p(mlp(z|m) m—(x)
X'=pz) =2 ek (zln) @@
kox!) = [ pla)p'(a)ds

=2 p(m)p'(n) [ (e m) (] n)do

L ZM N | /

o m=1 nzlp\m p\n Cm,n
Use M*N subkernel evaluations
from our previous repertoire
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HMM Product Kernels

Hidden Markov Models: (sequences)

pla) = 32,p(s)p( | ) ITL p(s o )p(s 1)

# of hidden configurations large

00 Q@ #eovis=|
@ @ @ @ @

Kernel: k(x,x'>:fp(a:)p'(x)dx
= S 0(8)0(0) [ ol 8)0'(a | 0}
=322, 2(8)p'(U)e,

® computes cross-product of all hidden variables O[W X MT]
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HMM Product Kernels

k(o) = 30,20 T o s [ ) (w ) f o (e 15) 0 (2, 1w )
—zwnpm H> ( lu )ct
=3, 0(s ) Jos.u,)

Take advantage of

structure in HMMs
via Bayesian network @

Only compute subkernels for common parents
Evaluate total of O TszUu‘ subkernels
Form cligue potential fn’s, sum via junction tree algorithm

R
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Sampling Product Kernels

Can approximate probability product kernel via sampling

By definition, generative models can:
1) Generate a Sample
2) Compute Likelihood of a Sample

Thus, approximate probability product via sampling:
E(xx') = k(m') -/ p(x)p'(w)dfv
v 2 ) 3 ela)

xwp x'wp'(x)
1=1.. N 1=1...N'

Beta controls how much sampling from each distribution...



