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Data as graphs

Want to perform inference on large networks...
Junction tree algorithm becomes inefficient...

Figure: Social network



Outline

Goals: perform inference on large networks

Approach: set up tasks as finding maxima and marginals of
probability distribution p(x1, . . . , xn)

Limitation: for cyclic p(x1, . . . , xn) these are intractable

Methodology: graphical modeling and efficient solvers

Verification: perfect graph theory and bounds



Graphical models

We depict a graphical model G as a bipartite factor graph
with round variable vertices X = {x1, . . . , xn} and square
factor vertices {ψ1, . . . , ψl}. Assume xi are discrete variables.

This represents p(x1, . . . , xn) = 1
Z

exp
(
∑

c∈W ψc(Xc)
)

where
Xc are variables that neighbor factor c

x1 x2 x3 x4

x5

x6

Figure: p(X ) = 1
Z
eψ1,2(x1,x2)eψ2,3(x2,x3)eψ3,4,5(x3,x4,x5)eψ4,5,6(x4,x5,x6)



Graphical models

x1 x2 x3 x4

x5

x6

Use marginal or maximum a posteriori (MAP) inference

Marginal inference: p(xi ) =
∑

X\xi
p(X )

MAP inference: x∗
i where p(X ∗) ≥ p(X )

In general:

Both are NP-hard [Cooper 1990, Shimony 1994]
Both are hard to approximate [Dagum 1993, Abdelbar 1998]

On acyclic graphical models both are easy [Pearl 1988]

But most models (e.g. Medical Diagnostics) are not acyclic



Belief propagation for tree inference

Acyclic models are efficiently solvable by belief propagation

Marginal inference via the sum-product:

Send messages from variable v to factor u

µv→u(xv ) =
∏

u∗∈N(v)\{u}

µu∗→v (xv )

Send messages from factor u to variable v

µu→v (xv ) =
∑

X ′

u :x′

v=xv

eψu(X
′

u )
∏

v∗∈N(u)\{v}

µv∗→u(x
′
v∗)

Efficiently converges to p(Xu) ∝ eψu(Xu)
∏

v∈N(u) µv→u(xu)

MAP inference via max-product: swap
∑

X ′
u

with maxX ′
u



How to handle cyclic (loopy) graphical models?

To make loopy models non-loopy, we triangulate into a
junction tree. This can make big cliques...
Messages are exponential in the size of the clique

Tree-width of a graph: size of the largest clique after
triangulation

x1 x2

x3

x4x5

x1 x2

x3

x4x5

x1 x2

x3

x4x5

Figure: Triangulating cyclic model p(X ) ∝ φ12φ23φ34φ45φ51 makes a less
efficient acyclic model p(X ) ∝ φ145φ124φ234.

So... what if we skip triangulation?

JTA messages may not converge and may give wrong answers



Loopy sum-product belief propagation

Alarm Network and Results



Loopy sum-product belief propagation

Medical Diagnostics Network and Results



Loopy max-product belief propagation

x1 x2 x3 x4

x̃1 x̃2 x̃3 x̃4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correct Max Marginals

Lo
op

y 
M

ax
 P

ro
du

ct

Bipartite Matching Network and Results



Bipartite matching

Motorola Apple Dell

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ C =





0 1 0
0 0 1
1 0 0





GivenW , maxC∈Bn×n

∑

ij WijCij such that
∑

i Cij =
∑

j Cij = 1

Can be written as a very loopy graphical model

But... max-product finds MAP solution in O(n3) [HJ 2007]



Bipartite b-matching

Motorola Apple Dell

”laptop” 0$ 2$ 2$
”server” 0$ 2$ 3$
”phone” 2$ 3$ 0$

→ C =





0 1 1
1 0 1
1 1 0





GivenW , maxC∈Bn×n

∑

ij WijCij such that
∑

i Cij =
∑

j Cij = b

Also creates a very loopy graphical model

Max-product also finds MAP solution in O(n3) [HJ 2007]



Bipartite generalized matching

u1 u2 u3 u4

v1 v2 v3 v4

Graph G = (U,V ,E ) with U = {u1, . . . , un} and
V = {v1, . . . , vn} and M(.), a set of neighbors of node ui or vj

Define xi ∈ X and yi ∈ Y where xi = M(ui ) and yi = M(vj)

Then p(X ,Y ) = 1
Z

∏

i

∏

j ϕ(xi , yj )
∏

k φ(xk)φ(yk) where
φ(yj ) = exp(

∑

ui∈yj
Wij) and ϕ(xi , yj ) = ¬(vj ∈ xi ⊕ ui ∈ yj)



So... why does loopy max-product work for matching?

Theorem (HJ 2007)

Max product finds generalized bipartite matching MAP in O(n3).

Proof.

Using unwrapped tree T of depth Ω(n), we show that maximizing
belief at root of T is equivalent to maximizing belief at
corresponding node in original graphical model.

u1

v1 v2 v3 v4

u2 u2 u2 u2u3 u3 u3 u3u4 u4 u4 u4

So some loopy graphical models are tractable...



Generalized matching
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Empirically, max product belief propagation needs O(|E |) messages
Code at http://www.cs.columbia.edu/∼jebara/code



Generalized matching

Applications:

alternative to k-nearest neighbors [JWC 2009]

clustering [JS 2006]

classification [HJ 2007]

collaborative filtering [HJ 2008]

semisupervised learning [JWC 2009]

visualization [SJ 2009]

metric learning [SHJ 2012]

privacy-preservation [CJT 2013]



Generalized matching vs. k-nearest neighbors

Figure: k-nearest neighbors with k = 2 (a.k.a. kissing number)



Generalized matching vs. k-nearest neighbors

Figure: b-matching with b = 2



Generalized matching for link prediction

Linking websites according to traffic similarity

Left is k-nearest neighbors, right is b-matching



What is a perfect graph?

Figure: Claude Berge

In 1960, Berge introduced perfect graphs as

G perfect iff ∀induced subgraphs H , the coloring number of H
equals the clique number of H .

Stated Strong Perfect Graph Conjecture, open for 50 years

Many NP-hard problems become polynomial time for perfect
graphs [Grötschel Lovász Schrijver 1984]

Graph coloring
Maximum clique
Maximum stable set



Efficient problems on perfect graphs

Coloring Max Clique Max Stable Set

Coloring: color nodes with fewest colors such that no adjacent
nodes have the same color

Max Clique: largest set of nodes, all pairwise adjacent

Max Stable Set: largest set of nodes, none pairwise adjacent



Efficient problems on weighted perfect graphs
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Stable set MWSS MMWSS

Stable set: no two vertices adjacent

Max Weight Stable Set (MWSS): stable set with max weight

Maximal MWSS (MMWSS): MWSS with max cardinality
(includes as many 0 weight nodes as possible)

MWSS solvable in polynomial time via linear programming,
semidefinite programming or message passing (Õ(n5) and faster).



MWSS via linear programming

max
x∈Rn

,x≥0
f⊤x s.t. Ax ≤ 1

x1 x2 x3 x4

x5 x6

A =









1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 1 0
0 0 0 1 1 1









A ∈ R
m×n is vertex versus maximal cliques incidence matrix

f ∈ R
n is vector of weights

For perfect graphs, LP is binary and finds MWSS in O(
√

mn3)

Note m is number of cliques in graph (may be exponential)



MWSS via message-passing

Input: G = (V, E), cliques C = {c1, . . . , cm} and weights fi for i ∈ V
Initialize zj = maxi∈cj

fi
P

c∈C
[i∈c] for j ∈ {1, . . . ,m}

Until converged do
Randomly choose a 6= b ∈ {1, . . . ,m}
Compute hi = max

(

0,
(

fi −
∑

j :i∈cj ,j 6=a,b zj

))

for i ∈ ca ∪ cb

Compute sa = maxi∈ca\cb
hi

Compute sb = maxi∈cb\ca
hi

Compute sab = maxi∈ca∩cb
hi

Update za = max
[

sa,
1
2 (sa − sb + sab)

]

Update zb = max
[

sb,
1
2(sb − sa + sab)

]

Output: z∗ = [z1, . . . , zm]⊤



MWSS via semi-definite programming

ϑ = max
M�0

∑

ij

√

fi fjMij s.t.
∑

i

Mii = 1, Mij = 0 ∀(i , j) ∈ E

This is known as the Lovász theta-function

Let M ∈ R
n×n be the maximizer of ϑF (G)

Let ϑ be the recovered total weight of the MWSS.

Under mild assumptions, get x∗ = round(ϑM1)

For perfect graphs, find MWSS in Õ(n5)



Perfect graph theory

Theorem (Strong Perfect Graph Theorem, Chudnovsky et al 2006)

G perfect ⇔ G contains no odd hole or antihole

Hole: an induced subgraph which is a (chordless) cycle of length
at least 4. An odd hole has odd cycle length.

Antihole: the complement of a hole

Perfect Not Perfect Perfect



Other perfect graph theorems

Lemma (Replication, Lovász 1972)

Let G be a perfect graph and let v ∈ V(G). Define a graph G′ by
adding a new vertex v ′ and joining it to v and all the neighbors of
v . Then G′ is perfect.

x1 x2 x3

x4x5x6

x1 x2 x3

x4x5x6

x7 x1 x2 x3

x4x5x6

x7



Other perfect graph theorems

Lemma (Pasting on a Clique, Gallai 1962)

Let G be a perfect graph and let G′ be a perfect graph. If G ∩ G′ is
a clique (clique cutset), then G ∪ G′ is a perfect graph.

x1 x2 x3

x4x5x6

∪
x3 x7 x8

x9x0x4

=

x1 x2 x3

x4x5x6

x7 x8

x9x0



Our plan: reduce NP-hard inference to MWSS

Reduce MAP to MWSS on weighted graph

If reduction produces a perfect graph, inference is efficient

Proves efficiency of MAP on

Acyclic models
Bipartite matching models
Attractive models
Slightly frustrated models (new)

Reduce Bethe marginal inference to MWSS on weighted graph

Proves efficiency of Bethe marginals on

Acyclic models
Attractive models (new)
Frustrated models (new)



Reduction: graphical model M → NMRF N

Given an graphical model M, construct a nand Markov random
field (NMRF) N:

Weighted graph N(VN ,EN ,w) with vertices VN , edges EN

and weight function w : VN → R≥0

Each c ∈ C from M maps to a clique group of N with one
node for each configuration xc , all pairwise adjacent
Nodes are adjacent iff inconsistent settings for any variable Xi

Weights of each node in N set as ψc(xc ) − minxc ψc(xc)

x1 x2 x3

v00
21

v01
21

v10
21

v11
21

v00
23

v01
23

v10
23

v11
23

Figure: MRF M with binary variables (left) and NMRF N (right).



Reduction: graphical model M → NMRF N

x1 x2 x3

v00
21

v01
21

v10
21

v11
21

v00
23

v01
23

v10
23

v11
23

MAP inference: identify x∗ = arg maxx

∑

c∈C ψc(xc)

Lemma (J 2009)

A MMWSS of the NMRF finds a MAP solution

Proof.

Sketch: MAP selects, for each ψc , one configuration of xc which
must be globally consistent with all other choices, so as to max the
total weight. This is exactly what MMWSS does.



Reparameterization and pruning

Lemma (WJ 2013)

To find a MMWSS, it is sufficient to prune any 0 weight nodes,
solve MWSS on the remaining graph, then greedily reintroduce 0
weight nodes while maintaining stability.

A reparameterization is a transformation

{ψc} → {ψ′
c} s.t. ∀x ,

∑

c∈C

ψc(xc)=
∑

c∈C

ψ′
c(xc ) + constant.

Does not change the MAP solution but can simplify the NMRF

Lemma (WJ 2013)

MAP inference is tractable provided ∃ an efficient
reparameterization s.t. we obtain a perfect pruned NMRF



Reparameterization and pruning
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Figure: Graphical model’s ψ values and final weights in pruned NMRF



NMRF for tree models is perfect

x1 x2 x3

x4

v00
21

v01
21

v10
21

v11
21

v00
23

v01
23

v10
23

v11
23

v00
24 v01

24

v10
24 v11

24

(a) Graphical model (b) NMRF

Figure: Reducing a tree model



NMRF for tree models is perfect

Theorem (J 2009)

Let G be a tree, the NMRF G obtained from G is a perfect graph.

Proof.

First prove perfection for a star graph with internal node v with |v |
configurations. First obtain G for the star graph by only creating
one configuration for non internal nodes. The resulting graph is a
complete |v |-partite graph which is perfect. Introduce additional
configurations for non-internal nodes one at a time using the
replication lemma. The resulting Gstar is perfect. Obtain a tree by
induction. Add two stars Gstar and Gstar ′ . The intersection is a fully
connected clique (clique cutset) so by [Gallai 1962], the resulting
graph is perfect. Continue gluing stars to form full tree G .



NMRF for matching models is perfect

x1 x2 x3

x̃1 x̃2 x̃3 v31
31 v32

32 v33
33

v21
21 v22

22 v23
23

v11
11 v12

12 v13
13

(a) Graphical model (b) pruned NMRF

Figure: Reducing a matching model



NMRF for attractive models is perfect

x1 x2

x3 x4

v00
12 v00

13 v00
14 v00

23 v00
24 v00

34

v0
1 v0

2 v0
3 v0

4

v1
1 v1

2 v1
3 v1

4

(a) Graphical model (b) pruned NMRF

Figure: Reducing an attractive binary pairwise model

Attractive edges (solid red) have potential functions which
satisfy ψc(0, 0) + ψc (1, 1) ≥ ψc(0, 1) + ψc(1, 0)

In fact, since this makes a bipartite graph, we can use an
ultra-fast max-flow linear programming solver for MWSS



NMRF for attractive models is perfect

Image segmentation via Kolomogorov’s Graph-Cuts code

p(x) =
1

Z

∏

ij∈E(G)

exp(ψ(xi , xj))
∏

i∈V (G)

exp(ψi (xi ))

Here, all ψ(xi , xj) = [α β;β α] where α > β

Each ψi (xi) = [(1 − zi) (zi)] where zi is the grayscale of pixel i



Signed graphical models

More generally, a binary model can have edges with either
attractive or repulsive signs

x1

x2

x3

x4

x5

x6

Figure: A signed graph, solid (dashed) edges are attractive (repulsive)

Attractive edges (red) ψ(0, 0) + ψ(1, 1) ≥ ψ(0, 1) + ψ(1, 0)

Repulsive edges (blue) ψ(0, 0) + ψ(1, 1) ≤ ψ(0, 1) + ψ(1, 0)



Which signed models give perfect NMRFs?

Definition

A frustrated cycle contains an odd number of repulsive edges.

Consider the cycles in the graphical model:

Non-frustrated cycle: what we call a BR structure, no odd holes

Frustrated cycle with > 3 edges: creates odd holes

Frustrated cycle with exactly 3 edges

1 repulsive edge: to avoid odd holes must have Un structure
3 repulsive edges: to avoid odd holes must have Tm,n structure

Theorem (WJ 2013)

A graphical model maps to a perfect pruned NMRF for all valid ψc

iff it decomposes into blocks of the form BR , Tm,n or Un.



Example of a BR structure

x1

x2

x3

x4

x5

x6

Figure: A BR structure is 2-connected and contains no frustrated cycle.
Solid (dashed) edges are attractive (repulsive). Deleting any edges
maintains the BR property



Examples of Tm,n and Un structures

s

t

r1r2 a1 a2 a3

Figure: A Tm,n structure with m = 2 and n = 3. Note triangle with 3
repulsive edges. Solid (dashed) edges are attractive (repulsive).

s

t

v1 v2 v3 v4 v5

Figure: A Un structure with n = 5. Note triangle with 1 repulsive edge.
Solid (dashed) edges are attractive (repulsive).



NMRF for slightly frustrated models is perfect

Figure: Binary pairwise graphical model, provably tractable with perfect
pruned NMRF due to decomposition into Br , Tm,n and Un structures.



Our plan: reduce NP-hard inference to MWSS

Reduce MAP to MWSS on weighted graph

If reduction produces a perfect graph, inference is efficient

Proves efficiency of MAP on

Acyclic models
Bipartite matching models
Attractive models
Slightly frustrated models (new)

Reduce Bethe marginal inference to MWSS on weighted graph

Proves efficiency of Bethe marginals on

Acyclic models
Attractive models (new)
Frustrated models (new)



Reduce marginal inference p(xi) =
∑

X\xi
p(X ) to MWSS

Our plan to solve marginal inference
1) reduce summation to a continuous minimization problem
2) discretize the continuous minimization on a mesh
3) find the optimal discrete solution using MWSS

Loosely speaking, given graphical model M, construct nand
Markov random field N where each node is a setting of a
marginal. Rather than 1 node per configuration of ψc ,
enumerate all possible marginals on ψc that are within ǫ away
from each other. Then connect pairwise inconsistent nodes.

x1 x2

[1000] [0100]

[0010] [0001]

[.5 .5
0 0 ] [.5 0

.5 0] [.5 0
0 .5]

[0 .5
.5 0] [0 .5

0 .5] [0 0
.5 .5]



Reduce marginal inference p(xi) =
∑

X\xi
p(X ) to MWSS

Marginal inference involves large summation problems like

p(xi ) =
∑

X\xi

1

Z
exp

(

∑

c∈C

ψc(xc )

)

Finding p(xi) is equivalent to computing partition function Z

Minimize the Gibbs free energy over all possible distributions q

log Z = − min
q∈M

FG = max
q∈M

Eq

∑

c∈C

ψc(xc ) + S(q(x))



Approximating marginals with the Bethe free energy

M → L

Bethe (1935) gave alternative to minimizing Gibbs free energy by
finding the partition function as the minimum of Bethe free
energy1 over local polytope L rather than marginal polytope M

log Z = − min
q∈M

FG = max
q∈M

Eq

∑

c∈C

ψc(xc ) + S(q(x))

≈ log ZB = −min
q∈L

F = max
q∈L

Eq

∑

c∈C

ψc(xc ) + SB(q(x))

In many cases, the Bethe partition function ZB bounds the true Z .

1The Bethe entropy is SB =
P

(i,j)∈E
Sij +

P

i∈V
(1 − di )Si .



Approximating marginals with the Bethe free energy

Remarkable result: [YFW01] showed that any fixed point of
loopy belief propagation (LBP) corresponds to a stationary
point of the Bethe free energy F
But LBP can fail to converge or may converge to bad
stationary points

No previous method could find the global Bethe solution

We will derive the first polynomial time approximation scheme
(PTAS) that finds the global optimum of the Bethe free
energy F to within ǫ accuracy [WJ 2013, WJ 2014] for
attractive models

The PTAS recovers the Bethe partition ZB and the
corresponding optimal marginal probabilities q(x)



Approximating marginals with the Bethe free energy

We will recover the distribution q(x) that minimizes F .
It is defined by the following

Singleton marginals qi for all vertices i ∈ V(G )

Pairwise marginals µij for all edges (i , j) ∈ E(G )

qi = p(Xi = 1)

µij =

[

p(Xi = 0,Xj = 0) p(Xi = 0,Xj = 1)
p(Xi = 1,Xj = 0) p(Xi = 1,Xj = 1)

]

=

[

1 + ξij − qi − qj qj − ξij
qi − ξij ξij

]

Fortunately minimizing F over ξij is analytic via [WT01]
Only numerical optimization over (q1, . . . , qn) ∈ [0, 1]n remains



A mesh over Bethe pseudo-marginals

We discretize the space (q1, . . . , qn) ∈ [0, 1]n with a mesh M(ǫ)
that is sufficiently fine that the discrete solution q̂ we obtain has
F(q̂) ≤ minq F(q) + ǫ



A mesh over Bethe pseudo-marginals



A mesh over Bethe pseudo-marginals

Given a model with n vertices, m edges, and max edge weight W

If original model is attractive (submodular costs), then the
discretized minimization problem is a perfect graph MWSS

Solve via graph cuts [SF06] in O((
∑

i∈V Ni )
3) where Ni is the

number of discretized values in dimension i

Two ways to make the mesh M(ǫ) sufficiently fine:

Bounding curvature of F [WJ13] achieves slow polynomial

Bounding gradients of F [WJ14] achieves O( n3m3W 3

ǫ3
)

Both algorithms find ǫ-close global solution for ZB



Bethe pseudo-marginals

Left figures ǫ = 1, right ǫ = 0.1, when fixed W = 5, n = 10



Marginal inference for attractive ranking

b

dv

AUC
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Electric transformers network x1, . . . , xn where xi ∈ {fail ,stable}
Rank transformers by marginal probability of failure p(xk) via

p(x1, . . . , xn) = 1
Z

exp
(

∑

ij∈E ψij (xi , xj ) +
∑n

k=1 ψ(xk)
)

Each has known probability expψ(xk) of failing in isolation

Attractive edges between transformers couple their failures
ψ(xi , xj ) = [α β;β γ] with α+ γ ≥ 2β

PTAS improves AUC to 0.625 from independent ranking 0.59



Marginal inference for frustrated ranking

Epinions users network x1, . . . , xn where xi ∈ {suspect,trusted}
Rank users trustworthiness using marginal p(xk) from
p(x1, . . . , xn) = 1

Z
exp

(
∑

e∈E ψe(xi , xj )
)

Attractive edges (red) ψ(0, 0) + ψ(1, 1) ≥ ψ(0, 1) + ψ(1, 0)

Repulsive edges (blue) ψ(0, 0) + ψ(1, 1) ≤ ψ(0, 1) + ψ(1, 0)

Can we use the PTAS on this frustrated graphical model??



Marginal inference for frustrated ranking

Given frustrated graph G , we form attractive double-cover G:
FOR each i ∈ V (G ), create two copies denoted i1 and i2 in V (G)
FOR each edge (i , j) ∈ E (G )

IF ψij is log-supermodular: add edges (i1, j1) and (i2, j2) to E (G)
ELSE: add edges (i1, j2) and (i2, j1) to E (G)

Flip nodes on one side of the double-cover



Marginal inference for frustrated ranking

We prove that our PTAS on this gives ẐB ≥ ZB

Nodes shaded with p(xi = 1) to reflect trustworthiness



Loopy belief propagation is convergent on double-cover



Conclusions

Goal: perform inference on large networks

Approach: set up tasks as finding maxima and marginals of
probability distribution p(x1, . . . , xn)

Limitation: for big p(x1, . . . , xn) these are intractable

Methodology: graphical modeling and efficient solvers

Verification: perfect graph theory and bounds

Efficient MAP on

Bipartite matching models
Attractive models
Slightly frustrated models (new)

Efficient Bethe marginals on

Attractive models (new)
Frustrated models (new)
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