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Data as graphs

Want to perform inference on large networks...
Junction tree algorithm becomes inefficient...

Figure: Social network



Outline

Goals: perform inference on large networks

(]

Approach: set up tasks as finding maxima and marginals of
probability distribution p(x, ..., x,)

Limitation: for cyclic p(xi, ..., xn) these are intractable

Methodology: graphical modeling and efficient solvers

Verification: perfect graph theory and bounds



Graphical models

@ We depict a graphical model G as a bipartite factor graph
with round variable vertices X = {x1,...,xn} and square
factor vertices {11,...,1}. Assume x; are discrete variables.

o This represents p(x1,...,xn) = Zexp (X ey ¥e(Xc)) where
X are variables that neighbor factor ¢

Figure: ,D(X) — %ewl,z(xl,xz)ewzj(xbxs)ew3,4,5(X37X4,X5)ew4,5,6(><4,x5,)<6)



Graphical models

@ Use marginal or maximum a posteriori (MAP) inference
 Marginal inference: p(x;) = > x\,, P(X)
s MAP inference: x* where p(X*) > p(X)
@ In general:
o Both are NP-hard [Cooper 1990, Shimony 1994]
s Both are hard to approximate [Dagum 1993, Abdelbar 1998]
@ On acyclic graphical models both are easy [Pearl 1988]

@ But most models (e.g. Medical Diagnostics) are not acyclic



Belief propagation for tree inference

@ Acyclic models are efficiently solvable by belief propagation
@ Marginal inference via the sum-product:
@ Send messages from variable v to factor u

NVHU(XV) = H /‘U*HV(XV)
ureN(v)\{u}
@ Send messages from factor u to variable v

px) = S @ T e ()

X/ :xl=x, v¥eN(u)\{v}

o Efficiently converges to p(X,) o< e TT, iy fiv—u(xu)

@ MAP inference via max-product: swap )y, with maxx;



How to handle cyclic (loopy) graphical models?

@ To make loopy models non-loopy, we triangulate into a
junction tree. This can make big cliques...

@ Messages are exponential in the size of the clique

@ Tree-width of a graph: size of the largest clique after
triangulation

Figure: Triangulating cyclic model p(X)  ¢12¢23¢3ada5¢51 makes a less
efficient acyclic model p(X) x ¢145¢p124%234.

@ So... what if we skip triangulation?
@ JTA messages may not converge and may give wrong answers



Loopy sum-product belief propagation
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Alarm Network and Results



Loopy sum-product belief propagation
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Medical Diagnostics Network and Results



Loopy max-product belief propagation
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Bipartite Matching Network and Results



Bipartite matching

‘ Motorola, ‘ Apple ‘ Dell

- = 010
”laptop” 0% 2% 2% c-lo 01

server 0% 2% 3% 10 0
" phone” 2% 39 0%

o Given W, maxcepnxn _; WGy such that), Gy =3, G =1
@ Can be written as a very loopy graphical model
@ But... max-product finds MAP solution in O(n®) [HJ 2007]



Bipartite b-matching

‘ Motorola, ‘ Apple ‘ Dell

" ” 0 1 1
Japtop™ | 0% 28 12 1101

server 0% 2% 3% 110
" phone” 2% 3% 0%

o Given W, maxcepnxn > _; W;;Cj such that), Gy = >, G = b
@ Also creates a very loopy graphical model
@ Max-product also finds MAP solution in O(n3) [HJ 2007]



Bipartite generalized matching

@ Graph G = (U, V,E) with U = {u1,...,u,} and
V ={vi,...,vn} and M(.), a set of neighbors of node u; or v;
@ Define x; € X and y; € Y where x; = M(u;) and y; = M(v;)
o Then p(X,Y) = Z IT; IT; #(x, y7) Tk #(xi)é(vk) where
P(yj) = exp(Lyey, Wij) and 9(xi, ) = ~(vj € X & uj € ;)



So... why does loopy max-product work for matching?

Theorem (HJ 2007)
Max product finds generalized bipartite matching MAP in O(n3).

Proof.

Using unwrapped tree T of depth Q(n), we show that maximizing
belief at root of T is equivalent to maximizing belief at
corresponding node in original graphical model.

So some loopy graphical models are tractable...



Generalized matching

BP median running time Median Running time when B=5

GOBLIN median running time Median Running time when B=Cn/2 O
4

Empirically, max product belief propagation needs O(|E|) messages
Code at http://www.cs.columbia.edu/~jebara/code



Generalized matching

Applications:

)

)

e © ¢ ¢ ¢ ¢

alternative to k-nearest neighbors [JWC 2009]

clustering [JS 2006]

classification [HJ 2007]
collaborative filtering [HJ 2008]
semisupervised learning [JWC 2009]
visualization [SJ 2009]

metric learning [SHJ 2012]
privacy-preservation [CJT 2013]



Generalized matching vs. k-nearest neighbors

Figure: k-nearest neighbors with k = 2 (a.k.a. kissing number)



Generalized matching vs. k-nearest neighbors

Figure: b-matching with b =2



Generalized matching for link prediction

@ Linking websites according to traffic similarity
o Left is k-nearest neighbors, right is b-matching



What is a perfect graph?

Figure: Claude Berge

@ In 1960, Berge introduced perfect graphs as
o G perfect iff Vinduced subgraphs H, the coloring number of H
equals the clique number of H.
@ Stated Strong Perfect Graph Conjecture, open for 50 years

@ Many NP-hard problems become polynomial time for perfect
graphs [Grotschel Lovasz Schrijver 1984]
o Graph coloring
@ Maximum clique
@ Maximum stable set



Efficient problems on perfect graphs

Coloring Max Clique Max Stable Set

@ Coloring: color nodes with fewest colors such that no adjacent
nodes have the same color

@ Max Clique: largest set of nodes, all pairwise adjacent

@ Max Stable Set: largest set of nodes, none pairwise adjacent



Efficient problems on weighted perfect graphs

ef'oe og%o og%o

Stable set MWSS MMWSS

@ Stable set: no two vertices adjacent

@ Max Weight Stable Set (MWSS): stable set with max weight

@ Maximal MWSS (MMWSS): MWSS with max cardinality
(includes as many 0 weight nodes as possible)

MWSS solvable in polynomial time via linear programming,
semidefinite programming or message passing (O(n®) and faster).



MWSS via linear programming

max f'x s.t. Ax <1
xER" x>0

C-Ce)(xs)x)
@"@

110000
011000
A_001110
000111

@ A € R™*" is vertex versus maximal cliques incidence matrix
o f € R" is vector of weights

@ For perfect graphs, LP is binary and finds MWSS in O(y/mn?)
@ Note m is number of cliques in graph (may be exponential)



MWSS via message-passing

Input: G = (V,€), cliques C = {c1,...,cm} and weights f; for i € V

Y fl B
Initialize Zj = maXiecj m for_/ S {1, ey m}

Until converged do
Randomly choose a # b € {1,...,m}

Compute h; = max (0, (f; - Zj:,-aj#&sz-)) fori €c,Ucy
Compute s; = maxec,\c, hi
Compute sp = maxjcc,\c, hi
Compute s,p = maxjec,ne, hi
Update z, = max [sa, 1(sy —sp+ sab)]
Update z, = max [sb, 5(sp — 52+ sab)]
Output: z* = [z1,...,2m] "




MWSS via semi-definite programming

9

— R’J?&Z VIEM; st ZM,-,- =1, M; =0Y(i,j) € E
17 i

This is known as the Lovdsz theta-function

Let M € R"*" be the maximizer of ¥ £(G)

Let 9 be the recovered total weight of the MWSS.
Under mild assumptions, get x* = round(YM1)
For perfect graphs, find MWSS in O(n®)



Perfect graph theory

Theorem (Strong Perfect Graph Theorem, Chudnovsky et al 2006)
G perfect < G contains no odd hole or antihole

@ Hole: an induced subgraph which is a (chordless) cycle of length
at least 4. An odd hole has odd cycle length.
@ Antihole: the complement of a hole

Ricial e lteset

Perfect Not Perfect Perfect



Other perfect graph theorems

Lemma (Replication, Lovész 1972)

Let G be a perfect graph and let v € (G). Define a graph G' by
adding a new vertex v/ and joining it to v and all the neighbors of
v. Then G’ is perfect.




Other perfect graph theorems

Lemma (Pasting on a Clique, Gallai 1962)

Let G be a perfect graph and let G' be a perfect graph. IfGN G is
a clique (clique cutset), then GU G’ is a perfect graph.

Fobbobtobos




Our plan: reduce NP-hard inference to MWSS

Reduce MAP to MWSS on weighted graph

If reduction produces a perfect graph, inference is efficient

Proves efficiency of MAP on
@ Acyclic models
@ Bipartite matching models
¢ Attractive models
Slightly frustrated models (new)

[+
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Reduce Bethe marginal inference to MWSS on weighted graph

Proves efficiency of Bethe marginals on
@ Acyclic models
o Attractive models (new)
o Frustrated models (new)



Reduction: graphical model M — NMRF N

Given an graphical model M, construct a nand Markov random
field (NMRF) N:
@ Weighted graph N(Vy, En, w) with vertices V), edges Ey
and weight function w : Viy — Rx>¢
@ Each ¢ € C from M maps to a clique group of N with one
node for each configuration x., all pairwise adjacent
@ Nodes are adjacent iff inconsistent settings for any variable X;
@ Weights of each node in N set as ¥.(xc) — min,_ 1¥c(xc)

Figure: MRF M with binary variables (left) and NMRF N (right).



Reduction: graphical model M — NMRF N

MAP inference:  identify x* = argmax, > . ¥c(Xc)

Lemma (J 2009)
A MMWSS of the NMRF finds a MAP solution

Sketch: MAP selects, for each 1), one configuration of x. which
must be globally consistent with all other choices, so as to max the
total weight. This is exactly what MMWSS does. O




Reparameterization and pruning

Lemma (WJ 2013)

To find a MMWSS, it is sufficient to prune any 0 weight nodes,
solve MWSS on the remaining graph, then greedily reintroduce 0
weight nodes while maintaining stability.

A reparameterization is a transformation

{¥e} — {be} st Vx, Z ?ﬁc(Xc):Z Y’ (xc) + constant.

ceC ceC
Does not change the MAP solution but can simplify the NMRF
Lemma (WJ 2013)

MAP inference is tractable provided 3 an efficient
reparameterization s.t. we obtain a perfect pruned NMRF




Reparameterization and pruning

Figure: Graphical model’s 1) values and final weights in pruned NMRF



NMREF for tree models is perfect
o
N

e o

@4&)\:{@%%‘ Ia§@
KR LADFR

‘\@&‘vﬂw’
\ AR

@ . @ . @ v'/'\\‘v/
: 620

(a) Graphical model (b) NMRF

Figure: Reducing a tree model



NMREF for tree models is perfect

Theorem (J 2009)
Let G be a tree, the NMRF G obtained from G is a perfect graph.

Proof.

First prove perfection for a star graph with internal node v with |v|
configurations. First obtain G for the star graph by only creating
one configuration for non internal nodes. The resulting graph is a
complete |v|-partite graph which is perfect. Introduce additional
configurations for non-internal nodes one at a time using the
replication lemma. The resulting G, is perfect. Obtain a tree by
induction. Add two stars Ggiar and Geparr. The intersection is a fully
connected clique (clique cutset) so by [Gallai 1962], the resulting
graph is perfect. Continue gluing stars to form full tree G. O

-



NMRF for matching models is perfect

(a) Graphical model  (b) pruned NMRF

Figure: Reducing a matching model



NMREF for attractive models is perfect

(a) Graphical model (b) pruned NMRF

Figure: Reducing an attractive binary pairwise model

@ Attractive edges (solid red) have potential functions which
satisfy ¥c(0,0) + ¥c(1,1) > ¥(0,1) + ¥(1,0)

@ In fact, since this makes a bipartite graph, we can use an
ultra-fast max-flow linear programming solver for MWSS



NMREF for attractive models is perfect

Image segmentation via Kolomogorov's Graph-Cuts code

H exp(¥(xi, ) ] exp(vi(x)

ueE(G) icV(G)

Here, all ¥(xi,x;) = [ ;3 a] where a > 3
Each v;(x;) = [(1 — z;) (z;)] where z; is the grayscale of pixel i



Signed graphical models

@ More generally, a binary model can have edges with either
attractive or repulsive signs

Figure: A signed graph, solid (dashed) edges are attractive (repulsive)

@ Attractive edges (red) (0, 0) + ¥(1,

1) > 9(0,1) +4(1,0)
@ Repulsive edges (blue) ¥(0,0) +v(1,1)

$(0,1) +4(1,0)



Which signed models give perfect NMRFs?

Definition
A frustrated cycle contains an odd number of repulsive edges.

Consider the cycles in the graphical model:

@ Non-frustrated cycle: what we call a Bg structure, no odd holes

@ Frustrated cycle with > 3 edges: creates odd holes

@ Frustrated cycle with exactly 3 edges

o 1 repulsive edge: to avoid odd holes must have U, structure
@ 3 repulsive edges: to avoid odd holes must have T, , structure

Theorem (WJ 2013)

A graphical model maps to a perfect pruned NMRF for all valid ).
iff it decomposes into blocks of the form Br, T, or U,.




Example of a Bgr structure

Figure: A Bg structure is 2-connected and contains no frustrated cycle.
Solid (dashed) edges are attractive (repulsive). Deleting any edges
maintains the Bg property



Examples of T,,, and U, structures

Figure: A Tp, , structure with m =2 and n = 3. Note triangle with 3
repulsive edges. Solid (dashed) edges are attractive (repulsive).

Figure: A U, structure with n = 5. Note triangle with 1 repulsive edge.
Solid (dashed) edges are attractive (repulsive).



NMRF for slightly frustrated models is perfect

Figure: Binary pairwise graphical model, provably tractable with perfect
pruned NMRF due to decomposition into B,, Tn, , and U, structures.



Our plan: reduce NP-hard inference to MWSS

Reduce MAP to MWSS on weighted graph

If reduction produces a perfect graph, inference is efficient

Proves efficiency of MAP on
@ Acyclic models
@ Bipartite matching models
¢ Attractive models
Slightly frustrated models (new)

[+
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Reduce Bethe marginal inference to MWSS on weighted graph

Proves efficiency of Bethe marginals on
@ Acyclic models
o Attractive models (new)
o Frustrated models (new)



Reduce marginal inference p(x;) = >y, p(X) to MWSS

@ Our plan to solve marginal inference
@ 1) reduce summation to a continuous minimization problem
@ 2) discretize the continuous minimization on a mesh
s 3) find the optimal discrete solution using MWSS
@ Loosely speaking, given graphical model M, construct nand
Markov random field N where each node is a setting of a
marginal. Rather than 1 node per configuration of v,
enumerate all possible marginals on 1. that are within ¢ away
from each other. Then connect pairwise inconsistent nodes.




Reduce marginal inference p(x;) = >y, p(X) to MWSS

@ Marginal inference involves large summation problems like
1
P(X;) = Z ?exp ch(xc)
X\X,' ceC

@ Finding p(x;) is equivalent to computing partition function Z

@ Minimize the Gibbs free energy over all possible distributions g

log Z = —(rlr%ll\qlfg = ?G%chezgwc(xc)JrS(q(X))



Approximating marginals with the Bethe free energy

@OMe@L

Bethe (1935) gave alternative to minimizing Gibbs free energy by
finding the partition function as the minimum of Bethe free
energy! over local polytope L rather than marginal polytope M

ogZ = — — maxE,
og (zgﬁfG max Cez;d}c Xc)+5( (X))
~ |ogZB = —gqéﬂf = r;']eaﬁ(Eq;Qpc(Xc)‘i‘SB(q(X))
(o}

In many cases, the Bethe partition function Zg bounds the true Z.

!The Bethe entropy is Sg = Diinee Si+ 2 icp(1=di)Si.



Approximating marginals with the Bethe free energy

@ Remarkable result: [YFWO01] showed that any fixed point of
loopy belief propagation (LBP) corresponds to a stationary
point of the Bethe free energy F

@ But LBP can fail to converge or may converge to bad
stationary points

@ No previous method could find the global Bethe solution

@ We will derive the first polynomial time approximation scheme
(PTAS) that finds the global optimum of the Bethe free
energy F to within € accuracy [WJ 2013, WJ 2014] for
attractive models

@ The PTAS recovers the Bethe partition Zg and the
corresponding optimal marginal probabilities g(x)



Approximating marginals with the Bethe free energy

We will recover the distribution g(x) that minimizes F.
It is defined by the following

@ Singleton marginals g; for all vertices i € V(G)
o Pairwise marginals p;; for all edges (i, /) € £(G)

g = p(Xi=1)
P p(X;i=0,X; =0) p(Xi=0,X;=1)
ij p(Xi=1,X;=0) p(Xi=1,X;=1)

_ [1+§ij_qi—qj Qj_fij}
qi — &jj &ij

Fortunately minimizing F over & is analytic via [WTO01]
Only numerical optimization over (g1, ...,q,) € [0,1]" remains



A mesh over Bethe pseudo-marginals

We discretize the space (q1,-..,qn) € [0,1]" with a mesh M(e)
that is sufficiently fine that the discrete solution § we obtain has
F(§) < ming F(q) + ¢

09.‘
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02
0.1+



A mesh over Bethe pseudo-marginals

Example showing Bethe Free Energy over Two Variables

Bethe free energy

2
Pseudo-marginal qj

Pseudo-marginal gi



A mesh over Bethe pseudo-marginals

Given a model with n vertices, m edges, and max edge weight W

@ If original model is attractive (submodular costs), then the
discretized minimization problem is a perfect graph MWSS
@ Solve via graph cuts [SF06] in O((>";cy, N;i)*) where N; is the
number of discretized values in dimension /
@ Two ways to make the mesh M(e) sufficiently fine:
s Bounding curvature of F [WJ13] achieves slow polynomial
s Bounding gradients of F [WJ14] achieves O(@)

@ Both algorithms find e-close global solution for Zg



Bethe pseudo-marginals

Left figures € = 1, right € = 0.1, when fixed W =5, n =10
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Marginal inference for attractive ranking

\l ﬂ

@ Electric transformers network xi, ..., x, where x; € {fail,stable }

@ Rank transformers by marginal probability of failure p(xx) via
p(x1,...,Xp) = % exp (ZijeE wU(Xiv XJ) + ZZ:I w(Xk))
@ Each has known probability exp 1)(x) of failing in isolation

@ Attractive edges between transformers couple their failures
¥(xi, %) = [o B 8 7] with o+ > 28
@ PTAS improves AUC to 0.625 from independent ranking 0.59



Marginal inference for frustrated ranking

!

Epinions users network xi, ..., x, where x; € {suspect,trusted }

@ Rank users trustworthiness using marginal p(xx) from

p(X17 s 7X") = % exp (ZeGE 1/}6(Xi’)<j))

Attractive edges (red) (0,0) + ¥(1,1) > 9(0,1) 4+ (1,0)
Repulsive edges (blue) ¥(0,0) + v (1,1) < 1(0,1) 4 ¢(1,0)
Can we use the PTAS on this frustrated graphical model??



Marginal inference for frustrated ranking

Given frustrated graph G, we form attractive double-cover G:
FOR each i € V(G), create two copies denoted /4 and i» in V(G)
FOR each edge (i,j) € E(G)
IF 9j; is log-supermodular: add edges (i1,/1) and (i2, j2) to E(G)
ELSE: add edges (i1,/2) and (i2,/1) to E(G)
Flip nodes on one side of the double-cover



Marginal inference for frustrated ranking

We prove that our PTAS on this gives 23 > Zp
Nodes shaded with p(x; = 1) to reflect trustworthiness



Loopy belief propagation is convergent on double-cover

5 2,000 - Bp 2-cdver

o

2 BP

1,000
g TRBP
= I\
5 /
0 0.5 1 15 2 0 0.5 1 15 2

—J i

Figure 3: Plots of the log partition function and the number of iterations for the different algorithms
to converge for a complete graph on four nodes with no external field as the strength of the negative
edges goes from 0 to -2. For TRBP, p;; = .5 for all (4, j) € E. The dashed black line is the ground

truth.
a BP TRBP | BP 2-cover | BP Iter. | TRBP Iter | BP 2-cover Iter.
1]100% | 100% 95% 44.62 11041 222,99
Grid 2| 15% 30% 100% 210 8153 44.14
4 1% 0% 100% | 219 - 29.59
1| 47% 0% 100% 63.53 - 21.12
EPIN1 2| 37% 0% 100% 90.1 - 16.19
4 | 38% 0% 100% | 93.63 - 159
1| 41% 0% 100% | 518 | - 15.12
EPIN1 2| 50% 0% 99% 42.46 - 14.84
4| 53% 0% 100% 86.66 - 14.93
1| 61% 0% 100% | 89.2 - 16.67
Deep Networks | 2 | 61% 0% 100% 30.66 - 16.82
4 | 60% 0% 100% 24.88 - 18.17

Figure 4: Percent of samples on which each algorithm converged within 1000 iterations and the
average number of iterations for convergence for 100 samples of edges weights in [—a, a] for the
designated graphs. For TRBP, performance was poor independent of the spanning trees selected.



Conclusions

@ Goal: perform inference on large networks

e © ¢ ¢

Approach: set up tasks as finding maxima and marginals of
probability distribution p(xi, ..., x,)

Limitation: for big p(x1, ..., x,) these are intractable
Methodology: graphical modeling and efficient solvers
Verification: perfect graph theory and bounds

Efficient MAP on

o Bipartite matching models

o Attractive models

@ Slightly frustrated models (new)
Efficient Bethe marginals on

s Attractive models (new)
o Frustrated models (new)
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