Tony Jebara, Columbia University

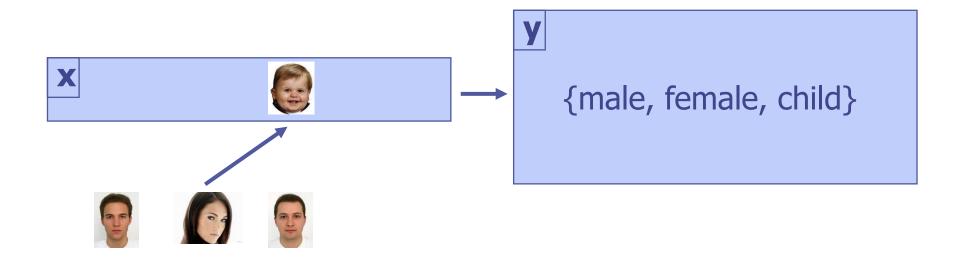
Advanced Machine Learning & Perception

Instructor: Tony Jebara

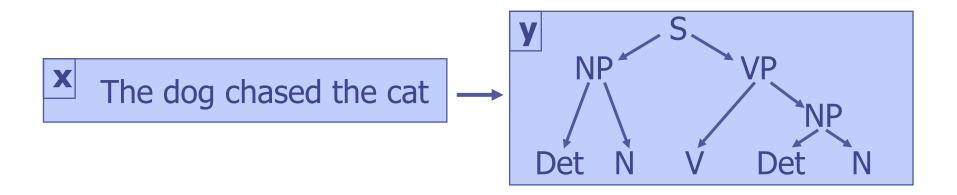
Graphical Models

- Conditional Multi-Class and Structured Prediction
- •Review: Graphical Models
- •Review: Junction Tree Algorithm
- MAP Estimation
- Discriminative Multi-Class SVM and Structured SVM
- •Cutting Plane Algorithms
- •Large Margin versus Large Relative Margin

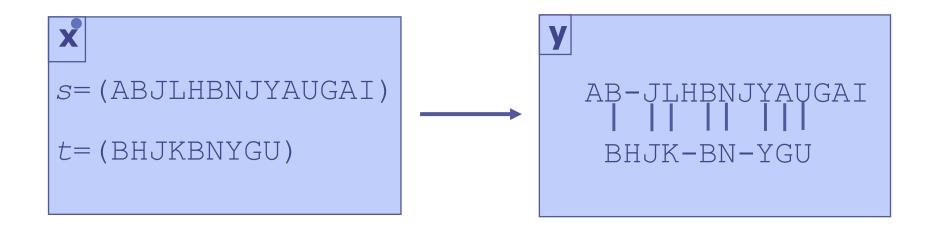
Logistic regression initially only handled binary outputs It can easily also handle multi-class labels



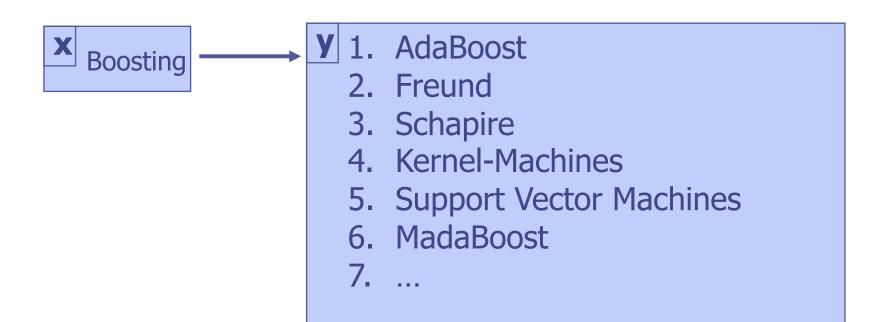
Can logistic regression or CRF handle structured output? For example: Natural Language Parsing Given a sequence of words *x*, predict the parse tree *y*. Dependencies from structural constraints, since *y* has to be a tree.



For example: Protein Sequence Alignment Given two sequences x=(s,t), predict an alignment y. Structural dependencies, since prediction has to be a valid global/local alignment.

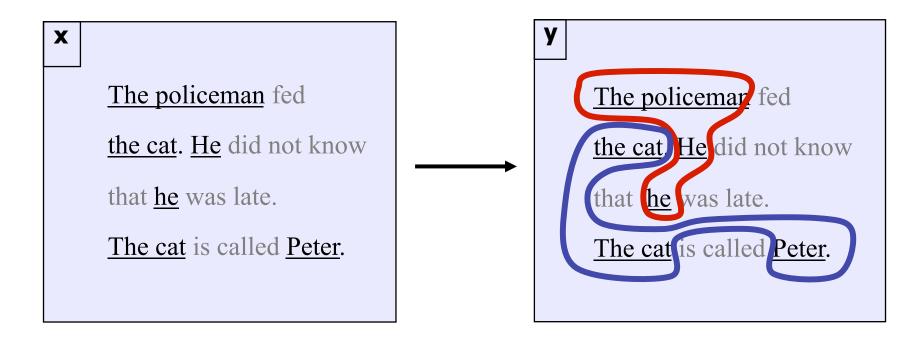


For example: Information Retrieval Given a query x, predict a ranking y. Dependencies between results (e.g. avoid redundant hits) Loss function over rankings (e.g. AvgPrec)

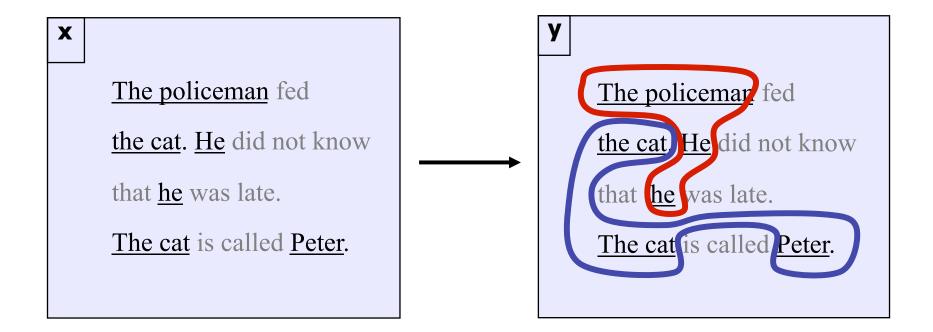


For Example, Noun-Phrase Co-reference Given a set of noun phrases *x*, predict a clustering *y*. Structural dependencies, since prediction has to be an equivalence relation.

Correlation dependencies from interactions.



These problems are usually solved via maximum likelihood
Or via Bayesian Networks and Graphical Models
Problem: these methods are not discriminative!
They learn p(x,y), we want a p(y|x) like a CRF...
We will adapt the CRF approach to these domains...



CRFs for Structured Prediction

•Recall CRF or log-linear model:

$$p\left(y\left|\mathbf{x}\right) = \frac{1}{Z_{\mathbf{x}}\left(\theta\right)} \exp\left(\theta^{T}\mathbf{f}\left(\mathbf{x},y\right)\right)$$

•The key of structured prediction is fast computation of:

 $rg\max_{y} \mathbf{ heta}^T \mathbf{f}ig(\mathbf{x},yig)$

and fast calculation of:

$$\sum_{y} p(y \mid \mathbf{x}) \mathbf{f}(\mathbf{x}, y)$$

•Usually, the space y is too huge to enumerate
•If y splits into many conditionally independent terms

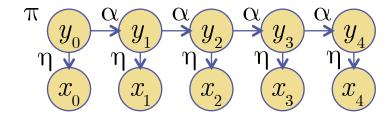
→ finding the max (Decoding) may be efficient
→ computing sums (Inference) may be efficient
→ computing the gradient may be efficient

•Graphical models have three canonical problems to solve:

1) Marginal inference, 2) Decoding and 3) Learning

Structured Prediction & HMMs

•Recall Hidden Markov Model (now x is observed, y hidden):



space of y's is $O(M^T)$

Here, space of y's is *huge* just like in structured prediction
Would like to do 3 basic things with graphical models:
1) Evaluate: given y compute likelihood p(y = y)

- 1) Evaluate: given $x_1, ..., x_T$ compute likelihood $p(x_1, ..., x_T)$
- 2) Decode: given $x_1, ..., x_T$ compute best $y_1, ..., y_T$ or $p(y_t)$
- 3) Learn: given $x_1, ..., x_T$ learn parameters θ

•Typically, HMMs use Baum-Welch, α - β or Viterbi algorithm •More general graphical models use Junction Tree Algorithm •The JTA is a way of performing efficient inference

Inference

•Inference: goal is to predict some variables given others y1: flu

- y2: fever
- y3: sinus infection
- y4: temperature
- y5: sinus swelling
- y6: headache

Patient claims headache and high temperature. Does he have a flu?

Given findings variables Y_f and unknown variables Y_u predict queried variables Y_q

•Classical approach: truth tables (slow) or logic networks

•Modern approach: probability tables (slow) or Bayesian networks (fast belief propagation, junction tree algorithm)

Aka Bayesian Networks Directed Graphical Models

 Factorize a large (how big?) probability over several vars $p(y_{1},...,y_{n}) = \prod_{i=1}^{n} p(y_{i} \mid pa_{i}) = \prod_{i=1}^{n} p(y_{i} \mid \pi_{i})$ Interpretation \mathcal{Y} 1: flu y_2 2: fever y_6 y_1 3: sinus infection 4: temperature y_5 y_{i} 5: sinus swelling 6: headache $p\left(y_{1},...,y_{6}\right) = p\left(y_{1}\right)p\left(y_{2} \mid y_{1}\right)p\left(y_{3} \mid y_{1}\right)p\left(y_{4} \mid y_{2}\right)p\left(y_{5} \mid y_{3}\right)p\left(y_{6} \mid y_{2}, y_{5}\right)$ 2^2 2^2 2^2 2^2 2^{3} 9^{6} 9^{1}

Undirected Graphical Models

•Probability for undirected is defined via Potential Functions which are more flexible than conditionals or marginals

 $p(Y) = p(y_1, \dots, y_M) = \frac{1}{Z} \prod_C \psi(Y_C)$ $Z = \sum_Y \prod_C \psi(Y_C)$

•Just a factorization of p(Y), Z just normalizes the pdf

Potential functions are positive functions of

(not mutually exclusive) sub-groups of variables

0.1	0.2
0.05	0.3

Potential functions are over complete sub-graphs or cliques
C in the graph, clique is a set of fully-interconnected nodes
Use maximal cliques, absorb cliques contained in larger ψ

$$\begin{array}{c} y_{1} \\ y_{2} \\ y_{5} \\ y_{5} \\ y_{6} \\ y_{6} \\ y_{6} \\ y_{6} \\ y_{7} \\ y_{7} \\ y_{7} \\ y_{6} \\ y_{7} \\ y_{7}$$

$$\begin{split} & \psi \Big(\boldsymbol{y}_2, \boldsymbol{y}_3 \Big) \psi \Big(\boldsymbol{y}_2 \Big) \psi \Big(\boldsymbol{y}_3 \Big) \\ & \rightarrow \psi \Big(\boldsymbol{y}_2, \boldsymbol{y}_3 \Big) \end{split}$$

•Involves 5 steps, the first 4 build the Junction Tree:

most

general

Moralization

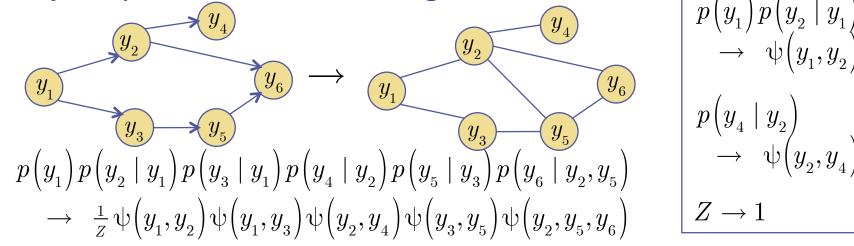
most

specific

Converts directed graph into undirected graphBy moralization, marrying the parents:

1) Connect nodes that have common children

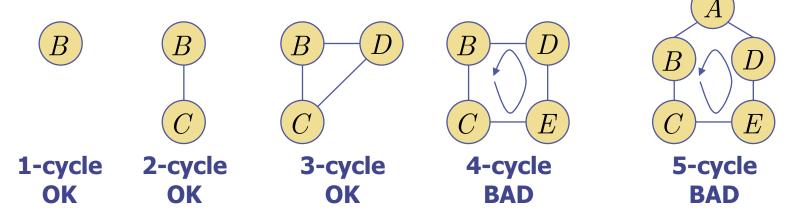
2) Drop the arrow heads to get undirected



Note: moralization resolves *coupling* due to marginalizing
moral graph is more general (loses some independencies)

Triangulation

•Triangulation: Connect nodes in moral graph such that no chordless cycles (no cycle of 4+ nodes remains)

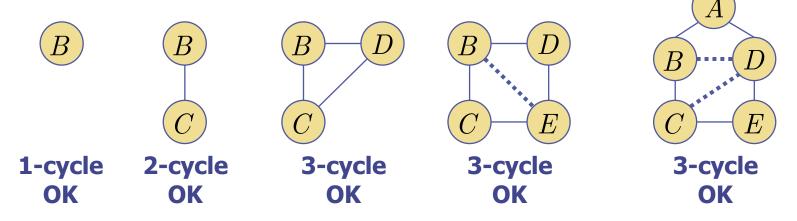


•So, add links, but many possible choices...

HINT: keep largest clique size small (for efficient JTA)
Chordless: no edges between successor nodes in cycle
Sub-optimal triangulations of moral graph are Polynomial
Triangulation that minimizes largest clique size is NP
But, OK to use a suboptimal triangulation (slower JTA...)

Triangulation

•Triangulation: Connect nodes in moral graph such that no chordless cycles (no cycle of 4+ nodes remains)

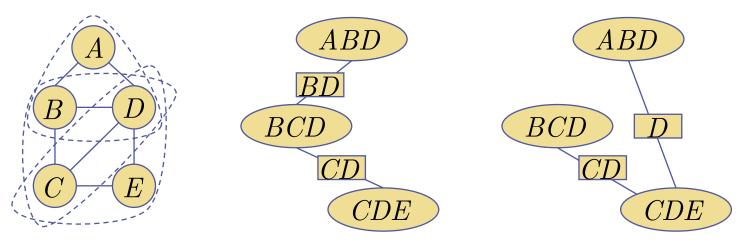


•So, add links, but many possible choices...

HINT: keep largest clique size small (for efficient JTA)
Chordless: no edges between successor nodes in cycle
Sub-optimal triangulations of moral graph are Polynomial
Triangulation that minimizes largest clique size is NP
But, OK to use a suboptimal triangulation (slower JTA...)

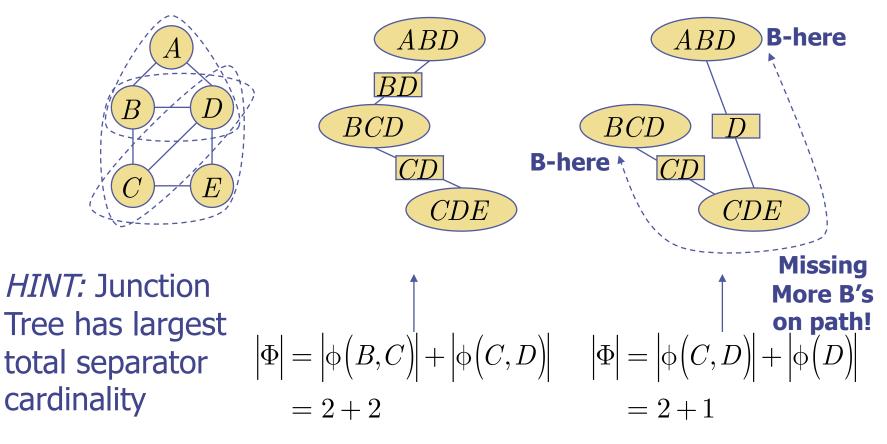
Running Intersection Property

Junction Tree must satisfy Running Intersection Property
RIP: On unique path connecting clique V to clique W, all other cliques share nodes in V ∩ W



Running Intersection Property

Junction Tree must satisfy Running Intersection Property
RIP: On unique path connecting clique V to clique W, all other cliques share nodes in V ∩ W



Forming the Junction Tree

- Now need to connect the cliques into a Junction Tree
 But, must ensure Running Intersection Property
- •Theorem: a valid (RIP) Junction Tree connection is one that maximizes the cardinality of the separators

$$JT^{*} = \max_{TREE \, STRUCTURES} \left| \Phi \right|$$
$$= \max_{TREE \, STRUCTURES} \left| \sum_{S} \left| \phi \left(Y_{S} \right) \right|$$

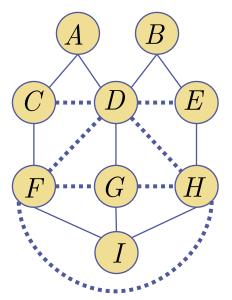
•Use Kruskal's algorithm:

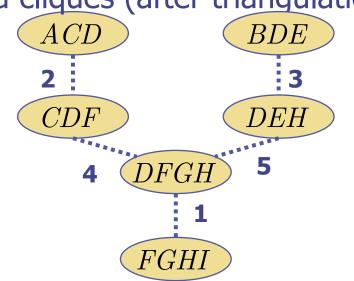
- 1) Init Tree with all cliques unconnected (no edges)
- 2) Compute size of separators between all pairs
- 3) Connect the two cliques with the biggest separator cardinality which doesn't create a loop
 - in current Tree (maintains Tree structure)

4) Stop when all nodes are connected, else goto 3

Kruskal Example

•Start with unconnected cliques (after triangulation)





	ACD	BDE	CDF	DEH	DFGH	FGHI
ACD	-	1	2	1	1	0
BDE		-	1	2	1	0
CDF			-	1	2	1
DEH				-	2	1
DFGH					-	3
FGHI						-

Junction Tree Probabilities

We now have a valid Junction Tree!
What does that mean?
Recall probability for undirected graphs:

$$p(Y) = p(y_1, \dots, y_M) = \frac{1}{Z} \prod_C \psi(Y_C)$$

•Can write junction tree as potentials of its cliques:

 $p(Y) = \frac{1}{Z} \prod_{C} \tilde{\psi}(Y_{C})$ •Alternatively: clique potentials over separator potentials:

$$p(Y) = \frac{1}{Z} \frac{\prod_{C} \psi(Y_{C})}{\prod_{S} \phi(Y_{S})}$$

This doesn't change/do anything! Just less compact...
Like *de-absorbing* smaller cliques from maximal cliques:

$$\tilde{\psi}(A, B, D) = \frac{\psi(A, B, D)}{\phi(B, D)}$$

...gives back original formula if

$$\phi(B,D) \triangleq 1$$

- •Send message from each clique *to* its separators of what it thinks the submarginal on the separator is.
- •Normalize each clique by incoming message *from* its separators so it agrees with them

$$AB \longrightarrow B \longrightarrow BC \qquad V = \{A, B\} \qquad S = \{B\} \qquad W = \{B, C\}$$

If agree:
$$\sum_{V\setminus S}\psi_V= \phi_S=pig(Sig)= \phi_S=\sum_{W\setminus S}\psi_W$$
 …Done!

Else: Send message From V to W...

 $\Phi_S^{+} = \sum_{V \setminus S} \psi_V$

Send message From W to V...

$$egin{aligned} & \phi^{**}_S = \sum_{W \setminus S} \psi^*_W \ & \psi^{**}_V = rac{ \phi^{**}_S }{ \phi^*_S } \psi^*_V \ & \psi^{**}_W = \psi^*_W \end{aligned}$$

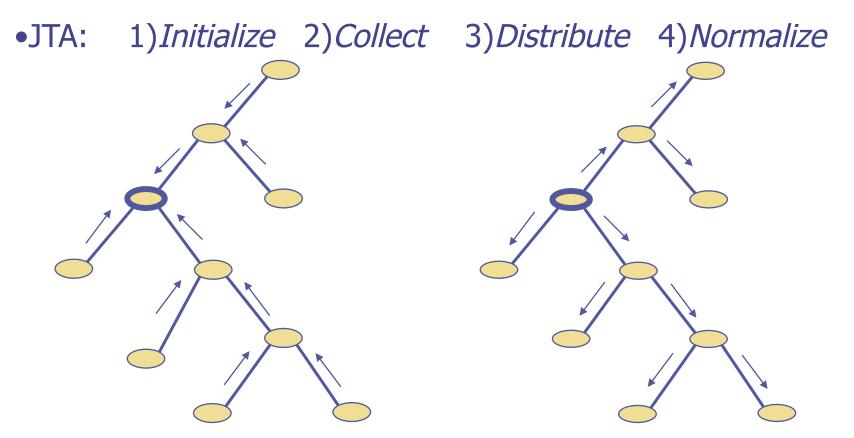
Now they Agree...Done!

$$egin{aligned} &\sum_{V\setminus S} \psi_V^{**} = \sum_{V\setminus S} rac{ \phi_S^{**}}{ \phi_S^*} \psi_V^* \ &= rac{ \phi_S^{**}}{ \phi_S^*} \sum_{V\setminus S} \psi_V^* \ &= \phi_S^{**} = \sum_{W\setminus S} \psi_W^{**} \end{aligned}$$

When "Done", all clique potentials are marginals and all separator potentials are submarginals!
Note that p(X) is unchanged by message passing step:

•Example: if potentials are poorly initialized... get corrected! $\psi_{AB} = p(B | A) p(A) \longrightarrow \qquad \varphi_{B}^{*} = \sum_{A} \psi_{AB} = \sum_{A} p(A, B) = p(B)$ $= p(A, B) \longrightarrow \qquad \psi_{BC}^{*} = \frac{\varphi_{S}^{*}}{\varphi_{S}} \psi_{BC} = \frac{p(B)}{1} p(C | B) = p(B, C)$ $\varphi_{BC} = \frac{p(C | B)}{1} \longrightarrow \qquad \psi_{BC}^{*} = \frac{\varphi_{S}^{*}}{\varphi_{S}} \psi_{BC} = \frac{p(B)}{1} p(C | B) = p(B, C)$

```
•Use tree recursion rather than iterate messages mindlessly!
initialize(DAG){ Pick root
                         Set all variables as: \psi_{_{C}} = p(y_{_i} \mid \pi_{_i}), \phi_{_S} = 1 }
collectEvidence(node) {
   for each child of node {
       update1(node,collectEvidence(child)); }
   return(node); }
distributeEvidence(node) {
   for each child of node {
       update2(child,node);
      distributeEvidence(child); } }
update1(node w,node v) { \phi_{V \cap W}^* = \sum_{V \setminus (V \cap W)} \psi_V, \ \psi_W = \frac{\phi_{V \cap W}}{\phi_{V \cap W}} \psi_W
                                                                                              }
update2(node w,node v) { \phi_{V \cap W}^{**} = \sum_{V \setminus (V \cap W)} \psi_V, \ \psi_W = \frac{\phi_{V \cap W}^{--}}{\phi_{V \cap W}} \psi_W
                                                                                              }
normalize() { p(Y_C) = \frac{1}{\sum_{c} \psi_C^{**}} \psi_C^{**} \forall C, p(Y_S) = \frac{1}{\sum_{c} \phi_S^{**}} \phi_S^{**} \forall S }
```



•Note: leaves do not change their ψ during *collect*

•Note: the first cliques *collect* changes are parents of leaves

•Note: root does not change its ψ during *distribute*

ArgMax Junction Tree Algorithm

- We can also use JTA for finding the max (not the sum) over the joint to get argmax of marginals & conditionals
 Say have some evidence: p(Y_E, Y
 E) = p(y₁,..., y_n, y
 E)
- •Most likely (highest p) Y_F ? $Y_F^* = \arg \max_{Y_F} p(Y_F, \overline{Y}_E)$
- •What is most likely state of patient with fever & headache? $p_{T}^{*} = \max$ $p(y_{1} = 1, y_{2}, y_{3}, y_{4}, y_{5}, y_{6} = 1)$

$$= \max_{y_2} p(y_2 \mid y_1 = 1) p(y_1 = 1) \max_{y_3} p(y_3 \mid y_1 = 1)$$
$$\max_{y_4} p(y_4 \mid y_2) \max_{y_5} p(y_5 \mid y_3) p(y_6 = 1 \mid y_2, y_5)$$

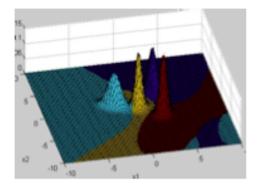
•Solution: update in JTA uses max instead of sum:

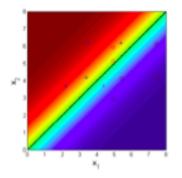
$$\phi_{S}^{*} = \max_{V \setminus S} \psi_{V} \quad \psi_{W}^{*} = \frac{\phi_{S}}{\phi_{S}} \psi_{W} \quad \psi_{V}^{*} = \psi_{V}$$
Final potentials aren't marginals: $\psi(X_{C}) = \max_{U \setminus C} p(Y)$
Highest value in potential is most likely: $Y_{C}^{*} = \arg \max_{C} \psi(Y_{C})$

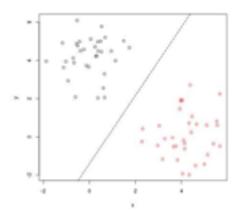
Generative, Conditional and Discriminative Prediction

Generative: hidden Markov model learns p(x,y)
Conditional: conditional random field learns p(y|x)
Discriminative: structured SVM learns y=f(x) where y is big

Generate & Conditional Need JTA & ArgMax JTADiscriminative only needs ArgMax JTA







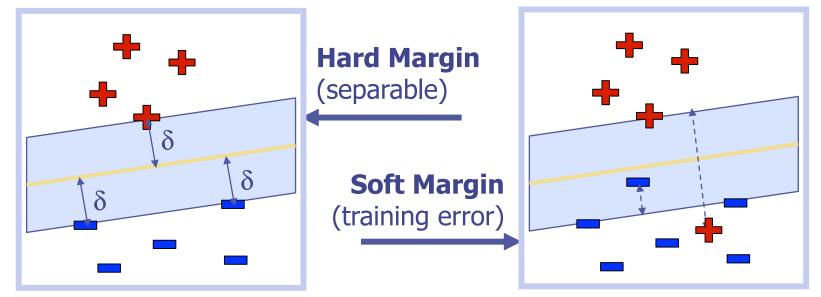
Generative

Conditional

Discriminative

Large-Margin SVM

•Binary classification: $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \rightarrow f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$



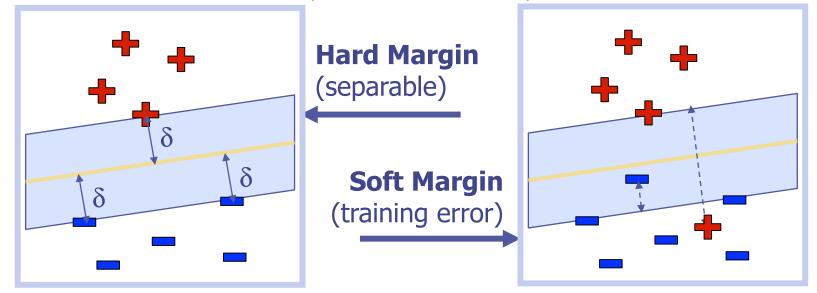
•P: $\min_{w,b,\xi\geq 0} \frac{1}{2} \left\| \mathbf{w} \right\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i \quad s.t. \quad y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) \geq 1 - \xi_i$

•D: $\max_{\lambda} \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{n} \lambda_i \lambda_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j \quad s.t. \\ 0 \le \lambda_i \le \frac{C}{n}, \sum_{i=1}^{n} \lambda_i y_i = 0$

•Primal (P) and dual (D) give same solution $\mathbf{w}^* = \sum_{i=1}^n \lambda_i^* y_i \mathbf{x}_i$

Large-Margin SVM with b=0

•Binary classification: $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \rightarrow f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$



•P:
$$\min_{w,b,\xi\geq 0} \frac{1}{2} \left\| \mathbf{w} \right\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i \quad s.t. \quad y_i \left(\mathbf{w}^T \mathbf{x}_i \right) \geq 1 - \xi_i$$

•D:
$$\max_{\lambda} \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \ s.t.0 \le \lambda_{i} \le \frac{C}{n}$$

•Solution through origin $\mathbf{w}^* = \sum_{i=1}^n \lambda_i^* y_i \mathbf{x}_i$ (or just pad x with 1)

•View the problem as a list of all possible answers
•Approach: view as multi-class classification task
•Every complex output y_i ∈ Y is one class
•Problems: Exponentially many classes! How to predict efficiently? How to learn efficiently? Potentially huge model! Manageable number of features?

The dog chased the cat $\xrightarrow{y^1}_{VP}$ $\xrightarrow{y^2}_{Det}$ \xrightarrow{VP}_{NP} \xrightarrow{NP}_{Det} \xrightarrow{VP}_{NP} \xrightarrow{NP}_{Det} \xrightarrow{NP}_{NP} \xrightarrow

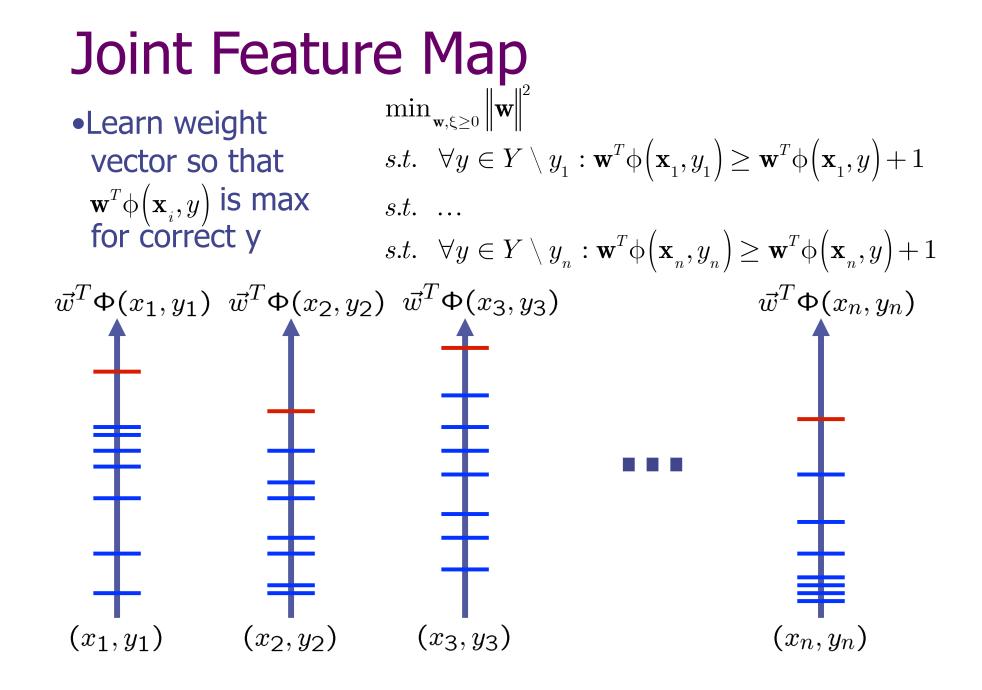
Multi-Class Output

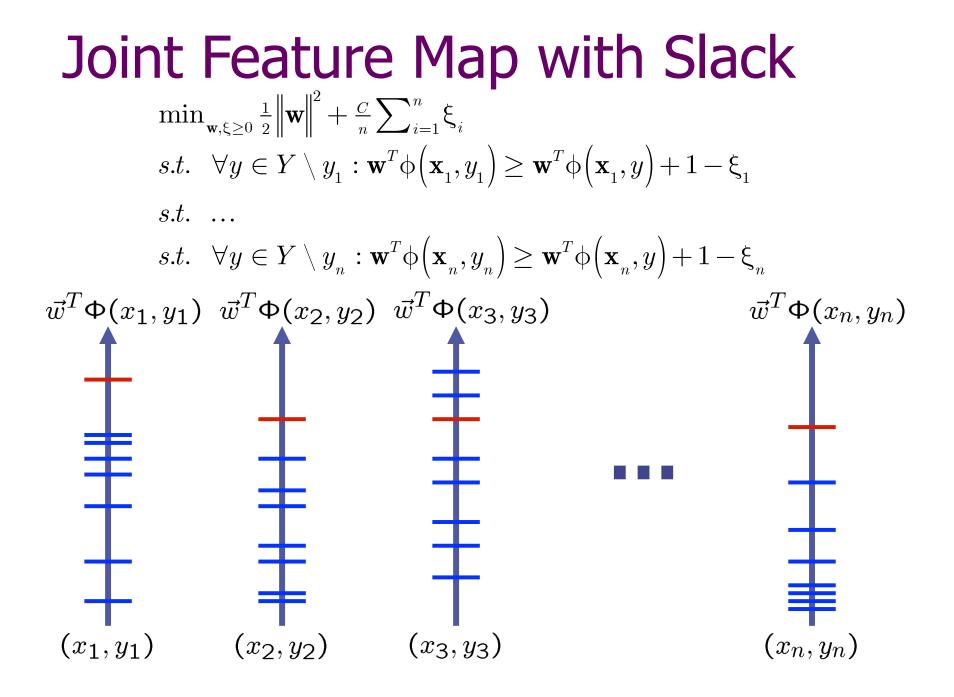
•View the problem as a list of all possible answers
•Approach: view as multi-class classification task
•Every complex output y_i ∈ {1,...,k} is one of K classes
•Enumerate many constraints (slow)...

$$\begin{split} \left\{ \begin{pmatrix} \mathbf{x}_{1}, y_{1} \end{pmatrix}, \dots, \begin{pmatrix} \mathbf{x}_{n}, y_{n} \end{pmatrix} \right\} &\to f\left(\mathbf{x}\right) = \arg \max_{i \in \{1, \dots, k\}} \mathbf{w}_{i}^{T} \mathbf{x} \\ \min_{\mathbf{w}_{1}, \dots, \mathbf{w}_{k}, \xi \geq 0} \sum_{i=1}^{k} \left\| \mathbf{w}_{i} \right\|^{2} + \frac{c}{n} \sum_{i=1}^{n} \xi_{i} \\ s.t. \quad \forall j \neq y_{1} : \left(\mathbf{w}_{y_{1}}^{T} \mathbf{x}_{1} \right) \geq \left(\mathbf{w}_{j}^{T} \mathbf{x}_{1} \right) + 1 - \xi_{1} \\ s.t. \quad \dots \\ s.t. \quad \forall j \neq y_{n} : \left(\mathbf{w}_{y_{n}}^{T} \mathbf{x}_{n} \right) \geq \left(\mathbf{w}_{j}^{T} \mathbf{x}_{n} \right) + 1 - \xi_{n} \\ \end{split}$$

Joint Feature Map

 Instead of solving for K different w's, make 1 long w $\phi(\mathbf{x}, y = i) = \begin{bmatrix} 0^T \ 0^T \ \dots \ 0^T \ \mathbf{x}^T \ 0^T \ \dots \ 0^T \end{bmatrix}^T$ •Replace each x with Put the x vector in the i'th position The feature vector is DK dimensional $y_i \in \{1, \dots, k\}$ • $\mathbf{w}^T \phi(\mathbf{x}, y_2)$ • $\mathbf{w}^T \phi(\mathbf{x}, y_1)$ $\left\{\!\left(\mathbf{x}_{_{1}}, y_{_{1}}\right), \ldots, \!\left(\mathbf{x}_{_{n}}, y_{_{n}}\right)\!\right\} \to f\!\left(\mathbf{x}\right) = \arg\max_{_{y \in Y}} \mathbf{w}^{\scriptscriptstyle T} \boldsymbol{\varphi}\!\left(\mathbf{x}, y\right)$ $\min_{\mathbf{w}, \varepsilon > 0} \left\| \mathbf{w} \right\|^2$ s.t. $\forall y \in Y \setminus y_1 : \mathbf{w}^T \phi(\mathbf{x}_1, y_1) \ge \mathbf{w}^T \phi(\mathbf{x}_1, y) + 1$ $\mathbf{w}^{T} \phi \left(\mathbf{x}, y_{4}
ight)$ $\mathbf{w}^{T} \phi \left(\mathbf{x}, y_{58}
ight)$ *s.t.* . . . s.t. $\forall y \in Y \setminus y_n : \mathbf{w}^T \phi(\mathbf{x}_n, y_n) \ge \mathbf{w}^T \phi(\mathbf{x}_n, y) + 1$

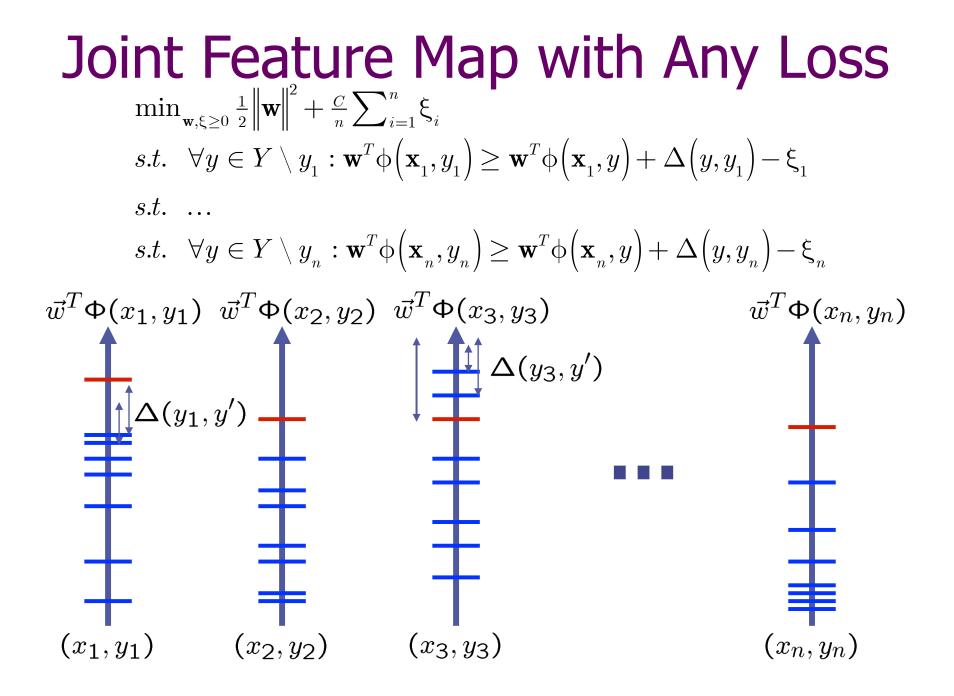




The label loss function

Not all classes are created equal, why clear each by 1? min_{w,ξ≥0} ¹/₂ ||w||² + ^C/_n ∑ⁿ_{i=1}ξ_i Δ(y,y₁) s.t. ∀y ∈ Y \ y₁ : w^Tφ(x₁, y₁) ≥ w^Tφ(x₁, y) + 1 - ξ₁ s.t. ... s.t. ∀y ∈ Y \ y_n : w^Tφ(x_n, y_n) ≥ w^Tφ(x_n, y) + 1 - ξ_n
Instead of a constant 1 value, clear some classes more Δ(y, y₁) = Loss for predicting y instead of y₁
For example, if y can be {lion, tiger, cat}

$$\begin{split} &\Delta \left(tiger, lion \right) = \Delta \left(lion, tiger \right) = 1 \\ &\Delta \left(cat, lion \right) = \Delta \left(lion, cat \right) = 999 \\ &\Delta \left(tiger, tiger \right) = \Delta \left(cat, cat \right) = \Delta \left(lion, lion \right) = 0 \end{split}$$



Joint Feature Map with Slack

Loss function ∆ measures match between target & prediction

$$\begin{split} \min_{\mathbf{w}, \xi \ge 0} \frac{1}{2} \left\| \mathbf{w} \right\|^2 &+ \frac{C}{n} \sum_{i=1}^n \xi_i \\ s.t. \quad \forall y \in Y \setminus y_1 : \mathbf{w}^T \phi \left(\mathbf{x}_1, y_1 \right) \ge \mathbf{w}^T \phi \left(\mathbf{x}_1, y \right) + \Delta \left(y, y_1 \right) - \xi_1 \\ s.t. \quad \dots \\ s.t. \quad \forall y \in Y \setminus y_n : \mathbf{w}^T \phi \left(\mathbf{x}_n, y_n \right) \ge \mathbf{w}^T \phi \left(\mathbf{x}_n, y \right) + \Delta \left(y, y_n \right) - \xi_n \end{split}$$

Lemma: The training loss is upper bounded by $Err_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} \Delta(y_{i}, h(\vec{x}_{i})) \leq \frac{1}{n} \sum_{i=1}^{n} \xi_{i}$

Generic Structural SVM (slow!)

- Application Specific Design of Model
 - Loss function $\Delta(y_i, y)$
 - Representation $\Phi(x, y)$

→ Markov Random Fields [Lafferty et al. 01, Taskar et al. 04]

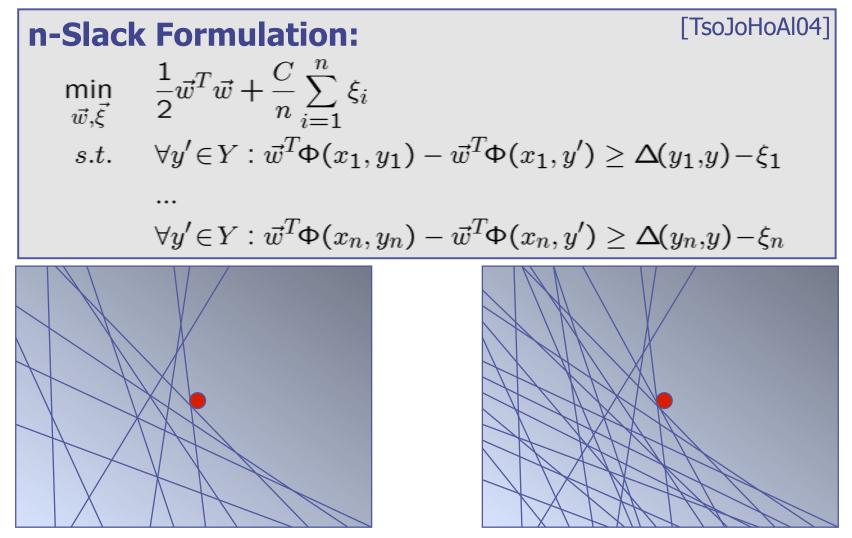
Prediction:

$$\hat{y} = argmax_{y \in Y} \{ \vec{w}^T \Phi(x, y) \}$$

Training:

$$\begin{array}{ll} \min_{\vec{w},\vec{\xi}\geq 0} & \frac{1}{2}\vec{w}^T\vec{w} + \frac{C}{n}\sum_{i=1}^n \xi_i \\ s.t. & \forall y \in Y \setminus y_1 : \vec{w}^T \Phi(x_1,y_1) \geq \vec{w}^T \Phi(x_1,y) + \Delta(y_1,y) - \xi_1 \\ & \dots \\ & \forall y \in Y \setminus y_n : \vec{w}^T \Phi(x_n,y_n) \geq \vec{w}^T \Phi(x_n,y) + \Delta(y_n,y) - \xi_n \end{array}$$
Applications: Parsing, Sequence Alignment, Clustering, etc.

Reformulating the QP



Reformulating the QP

[TsoJoHoAl04] **n-Slack Formulation:** $\min_{\vec{w},\vec{\xi}} \quad \frac{1}{2}\vec{w}^T\vec{w} + \frac{C}{n}\sum_{i=1}^n \xi_i$ s.t. $\forall y' \in Y : \vec{w}^T \Phi(x_1, y_1) - \vec{w}^T \Phi(x_1, y') > \Delta(y_1, y) - \xi_1$ $\forall y' \in Y : \vec{w}^T \Phi(x_n, y_n) - \vec{w}^T \Phi(x_n, y') \geq \Delta(y_n, y) - \xi_n$ [JoFinYu08] **1-Slack Formulation:** $\min_{\vec{w},\xi} \ \frac{1}{2} \vec{w}^T \vec{w} + C\xi$ s.t. $\forall y'_1 \dots y'_n \in Y : \frac{1}{n} \sum_{i=1}^n \left[\vec{w}^T \Phi(x_i, y_i) - \vec{w}^T \Phi(x_i, y'_i) \right] \ge \frac{1}{n} \sum_{i=1}^n \left[\Delta(y_i, y'_i) \right] - \xi$

Comparing n-Slack & 1-Slack

•Example: $Y = \{A, B, C\}$ and $y_1 = A, y_2 = A, y_3 = B, y_4 = C$

 $\begin{array}{ll} \text{n-Slack} \rightarrow n(\text{k-1}) \text{ constraints} & 1\text{-Slack} \rightarrow \text{k}^n \text{ constraints} \\ y_1 \geq B, y_1 \geq C & y_1 y_2 y_3 y_4 \geq AAAA, AAAB, AAAC, AABA, \\ y_2 \geq B, y_2 \geq C & AABB, \cdot, AACA, AACB, AACC, \\ y_3 \geq A, y_3 \geq C & ABAA, ABAB, ABAC, ABBA, \\ y_4 \geq A, y_4 \geq B & ABBB, ABBC, ABCA, ABCB, \\ ABCC, ACAA, ACAB, ACAC, \dots \end{array}$

Idea: we expect only a few constraints to be active
Cutting-Plane: a greedy approach to QP
Solve with only a few constraints at a time
If solution violates come constraints, add them back in
If we are smart about which ones to add, may not need kⁿ

1-Slack Cutting-Plane Algorithm

• Input:
$$(x_1, y_1), \dots, (x_n, y_n), C, \epsilon$$

• $S \leftarrow \emptyset, \vec{w} \leftarrow 0, \xi \leftarrow 0$
• REPEAT
• FOR $i = 1, \dots, n$
• Compute $y'_i = argmax_{y \in Y} \{\Delta(y_i, y) + \vec{w}^T \Phi(x_i, y)\}$
• ENDFOR
• IF $\frac{1}{n} \sum_{i=1}^n \left[\Delta(y_i, y'_i) - \vec{w}^T [\Phi(x_i, y_i) - \Phi(x_i, y'_i)] \right] > \xi + \epsilon$
 $-S \leftarrow S \cup \{ \vec{w}^T \frac{1}{n} \sum_{i=1}^n [\Phi(x_i, y_i) - \Phi(x_i, y'_i)] \ge \frac{1}{n} \sum_{i=1}^n \Delta(y_i, y'_i) - \xi \}$
• optimize StructSVM over S to get w and ξ
• ENDIF

UNTIL solution has not changed during iteration [Jo06] [JoFinYu08]

Polynomial Sparsity Bound

Theorem: The cutting-plane algorithm finds a solution to the Structural SVM soft-margin optimization problem in the 1-slack formulation after adding at most

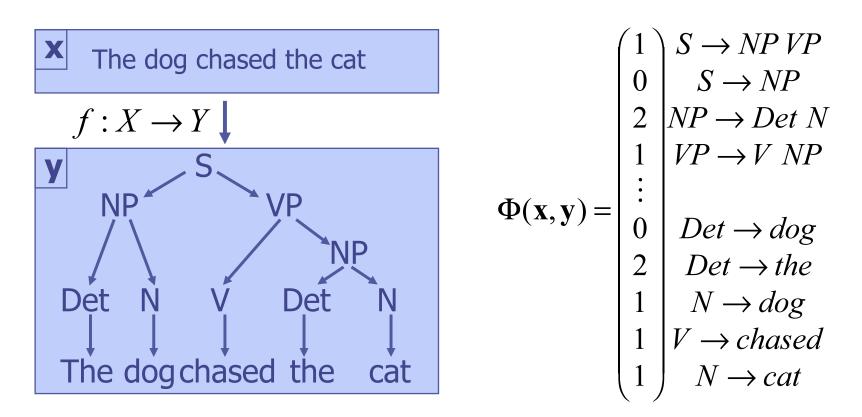
$$\left\lceil \log_2\left(\frac{\Delta}{4R^2C}\right) \right\rceil + \left\lceil \frac{16R^2C}{\varepsilon} \right\rceil$$

constraints to the working set S, so that the primal constraints are feasible up to a precision and the objective on S is optimal. The loss has to be bounded $0 \le \Delta(y_i, y) \le \Delta$, and $2||\Phi(x, y)|| \le R$.

[Jo03] [Jo06] [TeoLeSmVi07] [JoFinYu08]

Joint Feature Map for Trees

- Weighted Context Free Grammar
 - Each rule (e.g. $S \rightarrow NP VP$) has a weight
 - Score of a tree is the sum of its weights
 - Find highest scoring tree $h(\vec{x}) = argmax_{y \in Y} \left| \vec{w}^T \Phi(x, y) \right|$



Experiments: NLP

Implementation

- Incorporated modified version of Mark Johnson's CKY parser
- Learned weighted CFG with $\epsilon = 0.01, C = 1$

Data

- Penn Treebank sentences of length at most 10 (start with POS)
- Train on Sections 2-22: 4098 sentences
- Test on Section 23: 163 sentences

	Test Accuracy	
Method	Acc	F_1
PCFG with MLE	55.2	86.0
SVM with $(1-F_1)$ -Loss	58.9	88.5

[TsoJoHoAl04]

more complex features [TaKlCoKoMa04]

Experiments: 1-slack vs. n-slack

Part-of-speech tagging on Penn Treebank

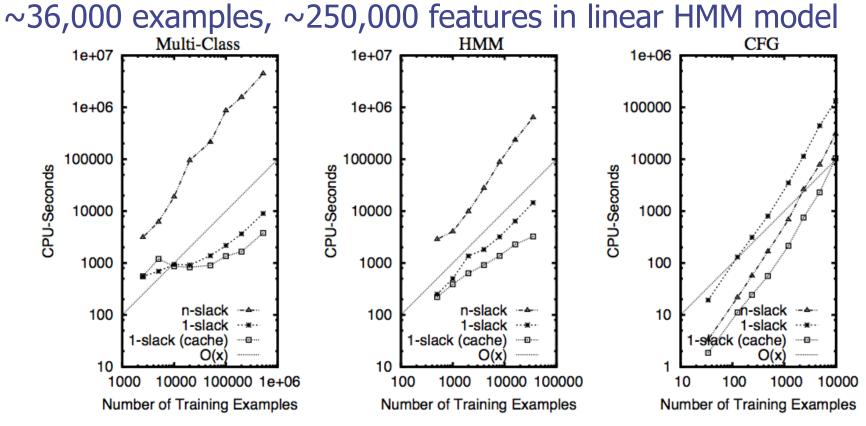


Fig. 1 Training times for multi-class classification (left) HMM part-of-speech tagging (middle) and CFG parsing (right) as a function of n for the n-slack algorithm, the 1-slack algorithm, and the 1-slack algorithm with caching.

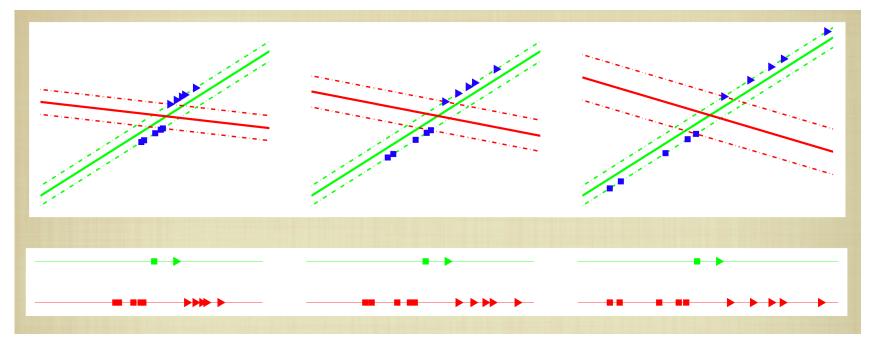
StructSVM for Any Problem

- General
 - SVM-struct algorithm and implementation
 - http://svmlight.joachims.org
 - Theory (e.g. training-time linear in n)
- Application specific
 - Loss function $\Delta(y_i, y)$
 - Representation $\Phi(x, y)$
 - Algorithms to compute

$$\widehat{y} = \operatorname{argmax}_{y \in Y} \{ \vec{w}^T \Phi(x_i, y) \}$$
$$\widehat{y} = \operatorname{argmax}_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$$

- Properties
 - General framework for discriminative learning
 - Direct modeling, not reduction to classification/regression
 - "Plug-and-play"

•Details in Shivaswamy and Jebara in NIPS 2008



•Red is maximum margin, Green is max relative margin

•Top is a two d classification problem

•Bottom is projection of data on solution w^Tx+b

•SVM solution changes as axes get scaled, has large spread

Fast trick to solve the *same* problem as on previous slides: Bound the spread of the SVM!
Recall original SVM primal problem (with slack):

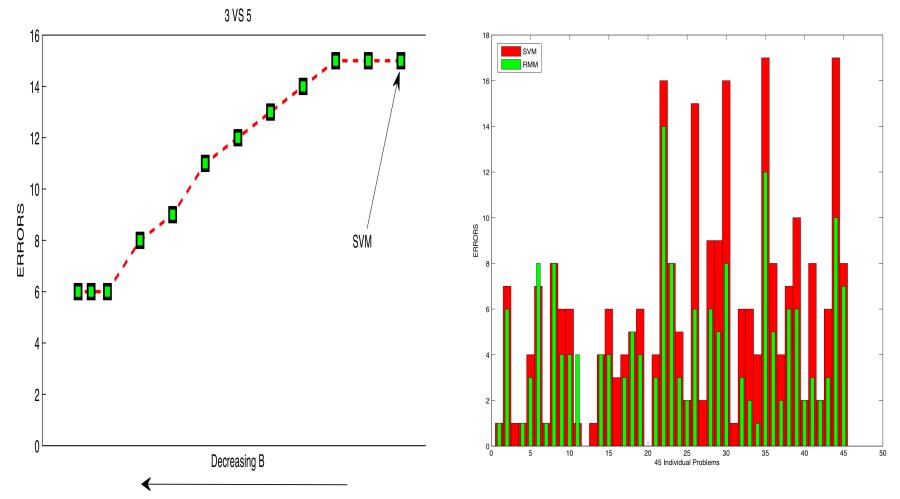
$$\min_{\boldsymbol{w},\boldsymbol{b},\boldsymbol{\xi}} \frac{1}{2} \left\| \boldsymbol{w} \right\|^2 + C \sum_i \boldsymbol{\xi}_i \quad subject \ to \quad y_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + \boldsymbol{b} \right) \geq 1 - \boldsymbol{\xi}_i$$

•Add the following constraints: $-B \le w^T x_i + b \le B$

This bounds the spread. Call it Relative Margin Machine.
Above is still a QP, scales to 100k examples
Can also be kernelized, solved in the dual, etc.
Unlike previous SDP which only runs on ~1k examples

•RMM as fast as SVM but much higher accuracy...

•RMM vs. SVM on digit classification (two-class 0,...,9)



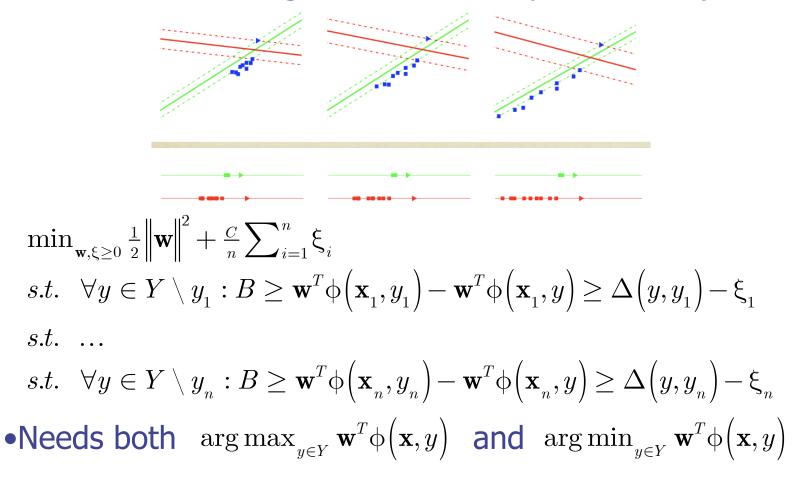
RMM vs. SVM on digit classification (two-class 0,...,9)
Cross-validate to obtain best B and C fro SVM and RMM
Compare also to Kernel Linear Discriminant Analysis
Try different polynomial kernels and RBF
PMM has consistently lower error for kernel classification

•RMM has consistently lo	ower error for k	cernel classification
--------------------------	------------------	-----------------------

		1	2	3	4	5	6	7	RBF
	SVM	71	57	54	47	40	46	46	51
OPT	Σ -SVM	61	48	41	36	35	31	29	47
OFI	KLDA	71	57	54	47	40	46	46	45
	RMM	71	36	32	31	33	30	29	51
	SVM	145	109	109	103	100	95	93	104
USPS	Σ -SVM	132	108	99	94	89	87	90	97
0313	KLDA	132	119	121	117	114	118	117	101
	RMM	153	109	94	91	91	90	90	98
	SVM	536	198	170	156	157	141	136	146
Full MNIST	RMM	521	146	140	130	119	116	115	129

Struct SVM with Relative Margin

Add relative margin constraints to struct SVM (ShiJeb09)Correct beats wrong labels but not by too much (relatively)



Struct SVM with Relative Margin

•Similar bound holds for relative margin •Maximum # of cuts is $\max\left\{\frac{2CR^2}{\varepsilon_n^2}, \frac{2n}{\varepsilon}, \frac{8CR^2}{\varepsilon^2}\right\}$

Try sequence learning problems for Hidden Markov Modeling
Consider named entity recognition (NER) task
Consider part-of-speech (POS) task

	NER	POS
CRF	5.13 ± 0.28	11.34 ± 0.64
StructSVM	5.09 ± 0.32	11.14 ± 0.60
StructRMM	$\textbf{5.05} \pm \textbf{0.28}$	10.42 ± 0.47
p-value	0.07	0.00