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Graphical Models

eConditional Multi-Class and Structured Prediction
eReview: Graphical Models

eReview: Junction Tree Algorithm

*MAP Estimation

eDiscriminative Multi-Class SVM and Structured SVM
eCutting Plane Algorithms

e arge Margin versus Large Relative Margin



Multi-Class & Structured Output

Logistic regression initially only handled binary outputs
It can easily also handle multi-class labels

—| {male, female, child}




Multi-Class & Structured Output

Can logistic regression or CRF handle structured output?
For example: Natural Language Parsing
Given a sequence of words x, predict the parse tree y.
Dependencies from structural constraints, since y has to
be a tree.

The dog chased the cat | — / \ /
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Multi-Class & Structured Output

For example: Protein Sequence Alignment
Given two sequences x=(s,t), predict an alignment .
Structural dependencies, since prediction has to be a
valid global/local alignment.

X y

s= (ABJLHBNJYAUGAT) AB—JLHBNJYATGAI
— BN

t= (BHJKBNYGU) BHJK-BN-YGU




Multi-Class & Structured Output

For example: Information Retrieval
Given a query X, predict a ranking V.

Dependencies between results (e.g. avoid redundant hits)
Loss function over rankings (e.g. AvgPrec)

AdaBoost

Freund

Schapire
Kernel-Machines

Support Vector Machines
MadaBoost

Boostingl =™ y

N U AW




Multi-Class & Structured Output

For Example, Noun-Phrase Co-reference
Given a set of noun phrases x, predict a clustering .
Structural dependencies, since prediction has to be an
equivalence relation.
Correlation dependencies from interactions.

X Y

The policeman fed The policemag

the cat. He did not know

that he was late.

The catlis called}

The cat is called Peter. eter.




Multi-Class & Structured Output

eThese problems are usually solved via maximum likelihood
eOr via Bayesian Networks and Graphical Models

eProblem: these methods are not discriminative!

eThey learn p(x,y), we want a p(y|x) like a CRF...

o\We will adapt the CRF approach to these domains...

X Y

The policeman fed The policemag

the cat. He did not know

that he was late.

eter.

The cat is called Peter. The catlis called}
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CRFs for Structured Prediction

*Recall CRF or log-linear model:  p(y[x) = 45 exp(67f (x.y))

eThe key of structured prediction N eTf(x )
is fast computation of: &hax, Y

and fast calculation of: > p(vlx)f(x.y)

eUsually, the space y is too huge to enumerate
oIf y splits into many conditionally independent terms
- finding the max (Decoding) may be efficient
- computing sums (Inference) may be efficient
- computing the gradient may be efficient
eGraphical models have three canonical problems to solve:
1) Marginal inference, 2) Decoding and 3) Learning
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Structured Prediction & HMMs

eRecall Hidden Markov Model (now X is observed, y hidden):

@ @ @ @ @ space of y's
@ & & @ @ 's O(M')

eHere, space of y’'s is huge just like in structured prediction
e\Would like to do 3 basic things with graphical models:
1) Evaluate: given Xy,...,x; compute likelihood p(x;,...,X7)
2) Decode: given Xj,...X; compute best y;,...,yr or p(Y,)
3) Learn: given Xy,...,X; learn parameters 6

eTypically, HMMs use Baum-Welch, o-p or Viterbi algorithm
eMore general graphical models use Junction Tree Algorithm
eThe JTA is a way of performing efficient inference
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Inference

eInference: goal is to predict some variables given others
yl: flu

y2: fever

y3: sinus infection Patient claims headache
v4: temperature and high temperature.
y5: sinus swelling Does he have a flu?

y6: headache
Given findings variables Y; and unknown variables Y,
predict queried variables Y,

eClassical approach: truth tables (slow) or logic networks

eModern approach: probability tables (slow) or Bayesian
networks (fast belief propagation, junction tree algorithm)
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Aka Bayesian Networks

Directed Graphical Models

eFactorize a large (how big?) probability over several vars

p(vn,) =11 oy, [ pa)=T1" oy, ||
eInterpretation @ @

1: flu

2: fever

3: sinus infection @O@
4. temperature

: A

6:

sinus swelling
headache

p(y1 ,,,,, y6) = p(yl)p(y2 | yl)p(yg | yl)p(y4 IyQ)p(y5 | yg)p(% | y27y5)

2" ot 92 92 92 92 9
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Undirected Graphical Models

eProbability for undirected is defined via Potential Functions
which are more flexible than conditionals or marginals

p(Y):p(yl’“"yM):éncw(yc) Z:ZYHCw(YC)

oJust a factorization of p(Y), Z just normalizes the pdf

ePotential functions are positive functions of

0.1 0.2

(not mutually exclusive) sub-groups of variables .20 | 03
ePotential functions are over complete sub-graphs or cliques

C in the graph, cligue is a set of fully-interconnected nodes
eUse maximal cligues, absorb cllques contalned in larger y

w(yQ,yg)w(yQ)lb(yg)
— w(yyyg,)
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Junction Tree Algorithm

eInvolves 5 steps, the first 4 build the Junction Tree:

1) Moralization
Polynomial in # of nodes
2) Introduce Evidence (fixed or constant)
Polynomial in # of nodes (convert pdf to slices)
3) Triangulate (Tarjan & Yannakakis 1984)
Suboptimal=Polynomial, Optimal=NP
4) Construct Junction Tree (Kruskal)
Polynomial in # of cliques
5) Junction Tree Algorithm (Init,Collect,Distribute,Normalize)
Polynomial (linear) in # of cliques, Exponential in Clique Cardinality
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Moralization

eConverts directed graph into undirected graph
eBy moralization, marrying the parents:
1) Connect nodes that have common children
2) Drop the arrow heads to get undirected

p(w)p(v, 1v,)p(y, 1v)p(y, | v,)p(y | v,) P (b, | 9,00, )
— élb(yl,yQ)lb(yl,y?,)w(yQ,y4)1b(y3,y5)w(yz,y5,y6)

p(yl)p(yZ |y,
— 11)(:&/1,?;2

p(y4 | 9,
— 1\” y27y4

/Z —1

|

|

eNote: moralization resolves coupling due to marginalizing
emoral graph |s more general ( Ioses some independencies)

most
specific -

most
general
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Triangulation

e [riangulation: Connect nodes in moral graph such that no

chordless cycles (no cycle of 4+ nodes remains) @
© © & &

1-cycle 2-cycle 3-cycle 4-cycle 5-cycle
OK OK OK BAD BAD

eS0, add links, but many possible choices...

oHINT: keep largest clique size small (for efficient JTA)
eChordless: no edges between successor nodes in cycle
eSub-optimal triangulations of moral graph are Polynomial
eTriangulation that minimizes largest clique size is NP
eBut, OK to use a suboptimal triangulation (slower JTA...)
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Triangulation

e [riangulation: Connect nodes in moral graph such that no

chordless cycles (no cycle of 4+ nodes remains) @
© © o8& &
OK OK

1-cycle 2-cycle 3-cycle 3-cycle 3-cycle
OK OK OK

eS0, add links, but many possible choices...

oHINT: keep largest clique size small (for efficient JTA)
eChordless: no edges between successor nodes in cycle
eSub-optimal triangulations of moral graph are Polynomial
eTriangulation that minimizes largest clique size is NP
eBut, OK to use a suboptimal triangulation (slower JTA...)
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Running Intersection Property

oJunction Tree must satisfy Running Intersection Property
eRIP: On unique path connecting clique V to clique W all
other cliques share nodes in VnNW

ABD ABD

CD CD
CDE CopE>
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Running Intersection Property

oJunction Tree must satisfy Running Intersection Property
eRIP: On unique path connecting clique V to clique W all
other cliques share nodes in VnNW

ABD B-here
BD

CD B-here* 0D y

CDE ‘ “.,
T Missing
HINT: Junction More B's
Tree has largest on path!

total separator | ®| = ‘4)(37 0)‘ + ‘d)((]’ D )‘ 2| = ‘d’(C’D )‘ T MD )‘
cardinality _ 9219 _ 9241
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Forming the Junction Tree

eNow need to connect the cliques into a Junction Tree

eBut, must ensure Running Intersection Property

eTheorem: a valid (RIP) Junction Tree connection is one
that maximizes the cardinality of the separators

JT = max ‘CID‘

TREE STRUCTURES

— MAX ppp sTRUCTURES Zs ‘d) (YS )‘
eUse Kruskal’s algorithm:
1) Init Tree with all cligues unconnected (no edges)
2) Compute size of separators between all pairs
3) Connect the two cliques with the biggest separator
cardinality which doesn't create a loop
in current Tree (maintains Tree structure)
4) Stop when all nodes are connected, else goto 3
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Kruskal Example
eStart with unconnected cliques (after triangulation)
Cacp

2 : : 3

ACD | BDE | CDF | DEH | DFGH | FGHI
ACD - 1 2 1 1 0
BDE - 1 2 1 0
CDF - 1 2 1
DEH 2 1
DFGH 3
FGHI -
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Junction Tree Probabilities

o\We now have a valid Junction Tree!

e\What does that mean?

eRecall probability for undirected graphs:
p(Y)=p(y,0,) = gHCw(Yj

eCan write junction tree as potentials of its cliques:
p(v)=2ILo0e) |

eAlternatively: clique potentials over separator potentials:

1 Y,

p(Y) _ Z 11c¢ (YC)

[o(v,)

S

eThis doesn’t change/do anything! Just less compact...

oLike de-absorbing smaller cliques from maximal cliques:
A,B,D) ...gives back

lb( ) ) original d)(B, D) =1

¢(B,D) formula if

fb(A,B,D) —
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Junction Tree Algorithm

eSend message from each clique to its separators of
what it thinks the submarginal on the separator is.

eNormalize each cliqgue by incoming message
from its separators so it agrees with them

CAB (51 CBCD v-{an} s-{s} w-{sc]

If agree: ZV\SmpV = ¢, = p(S) = ¢, = ZW\SlpW ...Done!

Else: Send message Send message Now they

FromVtoW... FromWto V... Agree...Done!

3 sk % *k o ﬁ *
d)s - Zv\s wv (1)5 — Zw\s ww ZV\S lL)V B ZV\S o qJ)V

Y b b .
Py = 2, P, =0, =53

* * V\§ TV
o} b o \

Py, =V, Py, = by, = ¢y = ZW\SwW
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Junction Tree Algorithm

e\When "Done”, all clique potentials are marginals and
all separator potentials are submarginals!
eNote that p(X) is unchanged by message passing step:

b=, by B
.y CV >3 @
9% y R o T
“J)V:UV p( >_Z d)j; — z d)i; — z (j)s
eExample: if potentials are poorly initialized... get corrected!
b,, =p(B|4)p(4) o
— (A, B) — d)B — Z;A leB — ZAP(A’ B) — p(B)
be=olel8) = =S, =0 )= y(m0)

b 1
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Junction Tree Algorithm

eUse tree recursion rather than iterate messages mindlessly!

initialize(DAG){ Pick root
Set all variables as: ¥, = p(yz. | WZ.),% =13}

collectEvidence(node) {
for each child of node {
updatel(node,collectEvidence(child)); }
return(node); }

distributeEvidence(node) {
for each child of node {
update2(child,node);
distributeEvidence(child); } }

updatel(node w,node v) { ¢ = ZV\(WW) Gy b, _ Svow v, 3

CI)VW

update2(node w,nodev) { ¢ = ZVWHW)%’ b, _ v v, 3

-
(YS) - qu{;‘ s ¥

normalize() { » (YC) =

1
> oo te
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Junction Tree Algorithm
oJTA: 1)Initialize 2)Collect 3)Distribute 4)Normalize

eNote: leaves do not change their v during collect
eNote: the first cliques collect changes are parents of leaves
eNote: root does not change its y during distribute
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ArgMax Junction Tree Algorithm

o\We can also use JTA for finding the max (not the sum)
over the joint to get argmax of marginals & conditionals
Say have some evidence:  p(v,.¥,)=p(y,-,9,.7, - Ty)

eMost likely (highest p) Ye? v’ — argmax, p(YF,VE)

e\What is most likely state of patient with fever & headache?
pp=max p(v, = Ly, v, 0,00,,9, = 1)

= max p(y2 |y, = 1)29(91 = 1) max, p(y3 |y, = 1)

max, p(y, | yg)maxys p(v; 1v,)p(y, =119,9,)
eSolution: update in JTA uses max instead of sum:
d)*

Oy =max, b U=, 6=

eFinal potentials aren't margingls: lb(Xc) = maXU\oP(Y>
eHighest value in potential is most likely: Y = arg maxclb(Yc)
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Generative, Conditional and
Discriminative Prediction

eGenerative: hidden Markov model learns p(x,y)
eConditional: conditional random field learns p(y|x)
eDiscriminative: structured SVM learns y=f(x) where vy is big

eGenerate & Conditional Need JTA & ArgMax JTA
eDiscriminative only needs ArgMax JTA

"%,
",
x\
°
3

5

0
.
o L3
B
10 5
» ul

Generative Conditional Discriminative




Large-Margin SVM

eBinary classification: {(lel)(xy)} — f (x) —w x+b

+ 2k Hard Margin
(separable)

e
/'\'8/ —
5 0 Soft Margin
(training error)
—_—

P min o éHWH2 T %ijlgl st y, (WTXZ' o b) =1-%,

*D: max Z X——Zj] 1>\Z>\jyyxx st.0< N <& ZH y =0

=1 1

ePrimal (P) and dual (D) give same solution w" =>"" \yx.



Large-Margin SVM with b=0

*Binary classification: {(x,,9,),--.(x,.5,)} = f(x) = w'x

+ = Hard Margin + op
(separable) ==

e
/Ts/ — |
0 Soft Margin :
0 .. '
(training error) s
— [

‘WHQ + %Z?ﬂ gz st Y, (WTXz') > 1- gz

oP: i L
IR e>0 2

. n 1 n T C
oD: max, Zi:l N —Ezmzl ANYyxx st.0<\ <<

eSolution through origin w" = > =" Xx. (or just pad x with 1)



Multi-Class & Structured Output

o\View the problem as a list of all possible answers
eApproach: view as multi-class classification task
eEvery complex output y. €Y  is one class
eProblems: Exponentially many classes!
How to predict efficiently? How to learn efficiently?
Potentially huge model! Manageable number of features?

X The dog chased the cat | — Del by be




Multi-Class Output

o\View the problem as a list of all possible answers
eApproach: view as multi-class classification task
eEvery complex output y, € {1,...,k} is one of K classes
eEnumerate many constraints (slow)...

{(Xl,yl>,...,(xn,yn)} — f(x) = arg maxie{lmk} WZ,TX

L\
i

2 n -
+020E N
st. Vj=uy, : (WyTlxl) > (W]TX1) +1-¢, ST

. k
mlnw ey W, €20 Zi:l

s.t. ...

st. Vj=y : (ijn> > (fon) +1-¢ I



Joint Feature Map

eInstead of solving for K different w’s, make 1 long w
eReplace each x with  o(x,y = z) =1070"...0" x" 0"...0"
oPut the x vector in the i'th position

eThe feature vector is DK dimensional

Y. € {1 ..... k}

T

{(Xl,yl),...,(xn,yn)} — f(x) = argmax _, WT¢(X,y) W' O (Xa ?JQ)
) WT¢(X, yl)
minwéZO W
st. VyeY \y, :WTd)(Xl,yl)ZwT(b(Xl,y)—l—l WTd)(X,y )
s.t. ...

st. YyeY\ y WTCb(Xn,yn> > WTd)(Xnay) +1 WT(b(X’yE)éz)



Joint Feature Map

eLearn weight ML, WH
vector so that st Yy eY \y :wo(x,y, ] > wo(x,y)+1
Wolx.y)iSMaX sy
for correct y st. VyeY \y 1w d)(x Y )>WT<1><Xn,y)+1
T D (21,y1) T P(22,y2) W P(x3,Y3) @' (20, yn)

(1,91) (z2,92) (z3,93) (zn, yn)



Joint Feature Map with Slack

2 n
minw,&zo % ‘WH T %Zizlgi
st. YyeY\ Y, WT<1><X1,y1) > wTd>(x1,y) +1-¢,
s.t. ...
st. YyeY\ Yy WTdD(Xn,yn) > WTd)(Xn,y) +1-¢
W (z1,y1) T D(x0,y2) W P(23,y3) @' & (2n, yn)

(z1,y1) (z2,y2) (z3,93) (zn, yn)



The label loss function

eNot all classes are created equal, why clear each by 17?

min, 4w+ 23" €, Ay,
st. VyeY \y, : WT¢(X1,y1) > wTd)(xl,y) + 1—(/§1//
s.t. ...

st. VyeY\y : ch|>(Xn,yn) > WT¢(Xn,y) +1-¢
eInstead of a constant 1 value, clear some classes more
A (y, y1> = Loss for predicting y instead of y,
oFor example, if y can be {lion, tiger, cat}
Al tiger, lion) = A(lz'on, tiger) =1
Al cat, lz’an) = A(lion,cat) = 999
Al tiger, tiger) — A(cat,cat) — A(lion, lion) =0




Joint Feature Map with Any Loss

min, 4w+ <307 €,
st. YyeyY\ Y, WT(j)(Xl,y1> > WT(b(Xl,y) + A(?J,?Jl) — &,
s.t. ...
st. VyeY\y : WT¢(Xn,yn) > WTdD(Xn,y> + A(y,yn) —€,
D (z1, 1) B (20,y2) W P(23,y3) @' D (2, yn)
A(ys,y')
Ay1,y")
HEN

(z1,y1) (z2,y2) (z3,93) (zn, yn)



Joint Feature Map with Slack

e[ 0ss function Ameasures match between target & prediction

w2300 e,

st. YyeY\ Y, WT¢(X1,yl) > WTd)(Xl,y) + A(y,yl) — &,
s.t. ...

st. YyeyY\ Yy WTdD(Xn,yn) > WTd)(Xn,y) =+ A(y;yn) —&

] 1
mmw’&zo 5

Lemma: The training loss is upper bounded by

12 1§
Brrs(h) == 3 Ay, (7)) < = 3 &
i=1 =L




Generic Structural SVM (slow!)

@ Application Specific Design of Model
= Loss function A(y;, )
= Representation (z, y)

=» Markov Random Fields [Lafferty et al. 01, Taskar et al. 04]
@ Prediction:

g=argmaz,cy{w ®@,y)}

€ Training:
_ 1 C
min —wld+ =Y &
@E>0 2 ni=1

st. YyeY\yy : @l (zy,y1) > @ P (x1,y) + Ay1,y) —&;

Yy EY\yn : B D (2n, yn) > B D (zn, y) + Ayn,y) —én

@ Applications: Parsing, Sequence Alignment, Clustering, etc.



Reformulating the QP

n-Slack Formulation: [TsoJoHoAIO4]
 1.p, C&
min  —w W+ — Z &

st. VY eY @ d(z,y1) — @ P(z1,9) > Alyr,y) —&1

Vy' €Y : Wl d(zn, yn) — TLD(zn, y") > Alyn,y) —En




Reformulating the QP

n-Slack Formulation: [TsoJoHoAIO4]
. 1 —»T — C L
min —w W+ — 2 &

st. VyeY:wld(z,y) —wld(z,9) > Ayr,y)—&1

Vy' ey : TIJ'Tq)(iﬁna Yn) — ’lETq)(iUna y) > Ayn,y) —én

&

1-Slack Formulation: [JoFinYu08]

1
min 5@’ w+ C¢&

Tk

s.t. Vy'l...y.;LEY : li[@':’eb(xi,y,)—ﬁw:vi,yg)] > %Zn:[A(’Uuy;)] —&

n-{;:l —1




Comparing n-Slack & 1-Slack

eExample: v = {A,B,C’} and y, = Ay, = Ay, = By, =C

n-Slack-=>n(k-1) constraints 1-Slack=>k" constraints
y > B,y >C yy,y.y, > AAAA, AAAB,AAAC, AABA,
y. > B,y >C AABB, AACA,AACB,AACC,
9 — yd9
. > Ay, >C ABAA,ABAB,ABAC,ABBA,
3 — “Hdg —
y, > Ay, >B ABBB,ABBC,ABCA, ABCB,

ABCC,ACAA, ACAB,ACAC, ...

eJdea: we expect only a few constraints to be active
oCutting-Plane: a greedy approach to QP

eSolve with only a few constraints at a time

oIf solution violates come constraints, add them back in

oIf we are smart about which ones to add, may not need k"



1-Slack Cutting-Plane Algorithm

@® Input: (z1,91),---,(@Tn,yn),C, e
©S<—Q),QE<—O,§<—O
€ REPEAT
= FORi1=1,....n
= Compute  yi=argmaz,cy {Ay;,y) +7’ @y}
C ENDF%R

= F 25 [AG) — o0 @) - @u)])] > &+
=

+1 12
=1 =1

= optimize StructSVM over S to get w and &
= ENDIF
€ UNTIL solution has not changed during iteration  [Jo06] [JoFinYu08]



Polynomial Sparsity Bound

@ Theorem: The cutting-plane algorithm finds a solution
to the Structural SVM soft-margin optimization
problem in the 1-slack formulation after adding at

most
o A . 16R*C
82| 4R2C £

constraints to the working set S, so that the primal
constraints are feasible up to a precision and the
objective on S is optimal. The loss has to be
bounded 0<A®;.p) <A ,and 2||¢@y| <R

[Jo03] [Jo06] [TeoLeSmVi07] [JoFinYuOS8]



Joint Feature Map for Trees

@® Weighted Context Free Grammar

« Eachrule (e.g.§ —> NPVP ) hasa weight
= Score of a tree is the sum of its weights
= Find highest scoring tree h(Z)= argmaz,cy [?ETCD(ZU, y)]

The dog chased the cat

f'XeYl

/\ /

Det Det

T

l

The dog chased the cat

D(x,y) =

.

\

_—N O

\

J

S —-> NPVP
S —> NP
NP — Det N
VP —V NP

Det — dog
Det — the
N — dog

V — chased

N — cat



Experiments: NLP

Implementation
= Incorporated modified version of Mark Johnson’s CKY parser
= Learned weighted CFG with e =0.01,C =1

Data
= Penn Treebank sentences of length at most 10 (start with POS)

m [rain on Sections 2-22: 4098 sentences
m lest on Section 23: 163 sentences

Test Accuracy
Method Acc Fq

PCFG with MLE 55.2 | 86.0
SVM with (1-F;)-Loss| 58.9 | 88.5 | [TsoJoHoAI04]

= more complex features [ TaKICoKoMa04]



Experiments: 1-slack vs. n-slack

Part-of-speech tagging on Penn Treebank

~36,000 examples, ~250,000 features in linear HMM mode
1e+07 Multi-Class 1e+07 MM 1e+06 S S
16406 | P 16406 } R 100000 } 4
/ / ¥
A, ,“! _,l'4
» 100000 r's E » 100000 F re » 10000 f LY
g e 2 7
& 10000 / _ & 10000 P ¢ 1000 X d
g “« !:, - g «” uxET ° ?_) lgllﬂ
1000 F ',--B_";;g}:.-'-a,:f.'f;"‘B“ - 1000 ¢ " B - - 100 } ;"_'ﬁ ’__/'
w o Ly
5 - ,{n
100 k n-slack -&- 100 K n-slack ~-&- 10 ' /en-slack -+ |
1-slack - 1-slack -~ /7 1-slack -
1-slack (cache) &~ 1-slack (cache) -&- 1-sfack (cache) &~
10 O(X_) ............ 10 B O(X_) ............ 1 d O(& ...........
1000 10000 100000 1e+06 100 1000 10000 100000 10 100 1000 10000
Number of Training Examples Number of Training Examples Number of Training Examples

Fig. 1 Training times for multi-class classification (left) HMM part-of-speech tagging (middle)
and CFG parsing (right) as a function of n for the n-slack algorithm, the 1-slack algorithm, and the

1-slack algorithm with caching.



StructSVM for Any Problem

® General

= SVM-struct algorithm and implementation
http://svmlight.joachims.org

= Theory (e.g. training-time linear in n)
@ Application specific
= Loss function A(y;,y)
= Representation d(x, y)
= Algorithms to compute
g=argmazycy{&' ®@;y)}
j=argmazycy { A1) +3 ®@;.)}
@ Properties
= General framework for discriminative learning
= Direct modeling, not reduction to classification/regression

= Plug-and-play”
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Maximum Relative Margin
eDetails in Shivaswamy and Jebara in NIPS 2008

eRed is maximum margin, Green is max relative margin
eTop is a two d classification problem

eBottom is projection of data on solution w'x+b

*SVM solution changes as axes get scaled, has large spread
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Maximum Relative Margin

eFast trick to solve the same problem as on previous slides:
Bound the spread of the SVM!
eRecall original SVM primal problem (with slack):

m HwH2 + C’Ziii subjectto y. (’LUTZL’Z. + b) >1-€

inw,b,ﬁ %
*Add the following constraints: —B<w'z, +b< B

eThis bounds the spread. Call it Relative Margin Machine.
eAbove is still a QP, scales to 100k examples

eCan also be kernelized, solved in the dual, etc.
eUnlike previous SDP which only runs on ~1k examples

eRMM as fast as SVM but much higher accuracy...



ERRORS
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Maximum Relative Margin
*RMM vs. SVM on digit classification (two-class 0,...,9)
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Tony Jebara, Columbia University

Maximum Relative Margin

eRMM vs. SVM on digit classification (two-class 0,...,9)
eCross-validate to obtain best B and C fro SVM and RMM
eCompare also to Kernel Linear Discriminant Analysis
oTry different polynomial kernels and RBF

*RMM has consistently lower error for kernel classification

1 2 3 4 5 6 7 RBF
SVM ! 57 54 47 40 46 46 ol
OPT 3-SVM | 61 48 41 36 35 31 29 47
KLDA fe! 57 54 47 40 46 46 45
RMM il 36 32 31 33 30 29 o1
SVM 145 | 109 | 109 | 103 | 100 95 93 104
USPS 3-SVM | 132 | 108 | 99 94 89 87 90 97
KLDA 132191217 (ERE7E S S A (FEEET 31 T 1S A |
RMM 153 | 109 94 91 91 90 90 98
SVM 536 | 198 | 170 | 156 | 157 | 141 | 136 | 146
Full MNIST | RMM 521 | 146 | 140 | 130 | 119 | 116 | 115 | 129




Struct SVM with Relative Margin

eAdd relative margin constraints to struct SVM (ShiJeb09)
eCorrect beats wrong labels but not by too much (relatively)

W[+ o3

st. YyeY\ y, : B> WT¢(X1ayl> — WT(b(ley) > A<y7y1) -
s.t. ...

st. VyeY\y :B> WT¢(Xn,yn) — WT¢<Xn,y) > A(y,yn) —&

eNeeds both arg max _, WT¢(X,y) and arg min _, WTd)(X,y)

] 1
mmw’gzo 5



Struct SVM with Relative Margin

eSimilar bound holds for relative margin
eMaximum # of cuts is 5CR? 9 SCR?
max

2 ) 2
EB e e

eTry sequence learning problems for Hidden Markov Modeling
eConsider named entity recognition (NER) task
eConsider part-of-speech (POS) task

NER POS
CRF 5.13£0.28 | 11.34 £ 0.64
StructSVM | 5.09 £ 0.32 | 11.14 £ 0.60
StructRMM | 5.05 = 0.28 | 10.42 1= 0.47
p-value 0.07 0.00




