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Graphical Models 
• Conditional Multi-Class and Structured Prediction 

• Review: Graphical Models  

• Review: Junction Tree Algorithm 

• MAP Estimation 

• Discriminative Multi-Class SVM and Structured SVM 

• Cutting Plane Algorithms 

• Large Margin versus Large Relative Margin 



Multi-Class & Structured Output 

Logistic regression initially only handled binary outputs 
It can easily also handle multi-class labels 

x 
y 

{male, female, child} 



Multi-Class & Structured Output 
Can logistic regression or CRF handle structured output? 
For example: Natural Language Parsing 

Given a sequence of words x, predict the parse tree y. 
Dependencies from structural constraints, since y has to 
be a tree. 

The dog chased the cat x 
S 

VP NP 

Det N V 
NP 

Det N 

y 



Multi-Class & Structured Output 
For example: Protein Sequence Alignment 

Given two sequences x=(s,t), predict an alignment y. 
Structural dependencies, since prediction has to be a 
valid global/local alignment.  

•   x y 

AB-JLHBNJYAUGAI 

 BHJK-BN-YGU 

s=(ABJLHBNJYAUGAI) 

t=(BHJKBNYGU) 



Multi-Class & Structured Output 
For example: Information Retrieval 

Given a query x, predict a ranking y. 
Dependencies between results (e.g. avoid redundant hits) 
Loss function over rankings (e.g. AvgPrec) 

Boosting x 1.  AdaBoost 
2.  Freund 
3.  Schapire 
4.  Kernel-Machines 
5.  Support Vector Machines 
6.  MadaBoost 
7.  … 

y 



Multi-Class & Structured Output 
For Example, Noun-Phrase Co-reference 

Given a set of noun phrases x, predict a clustering y. 
Structural dependencies, since prediction has to be an 
equivalence relation.  
Correlation dependencies from interactions. 

x y 

The policeman fed 

the cat. He did not know 

that  he was late.  

The cat is called Peter. 

The policeman fed 

the cat. He did not know 

that he was late.  

The cat is called Peter. 



Multi-Class & Structured Output 
• These problems are usually solved via maximum likelihood 
• Or via Bayesian Networks and Graphical Models 
• Problem: these methods are not discriminative! 
• They learn p(x,y), we want a p(y|x) like a CRF… 
• We will adapt the CRF approach to these domains…  

x y 

The policeman fed 

the cat. He did not know 

that  he was late.  

The cat is called Peter. 

The policeman fed 

the cat. He did not know 

that he was late.  

The cat is called Peter. 
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CRFs for Structured Prediction 
• Recall CRF or log-linear model: 

• The key of structured prediction 
         is fast computation of: 

 and fast calculation of: 

• Usually, the space y is too huge to enumerate 
• If y splits into many conditionally independent terms 
  finding the max (Decoding) may be efficient 
  computing sums (Inference) may be efficient 
  computing the gradient may be efficient 
• Graphical models have three canonical problems to solve: 
 1) Marginal inference, 2) Decoding and 3) Learning 

    
arg max

y
θT f x,y( )

    
p y x( ) = 1

Zx θ( ) exp θT f x,y( )( )

    
p y | x( )y∑ f x,y( )
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Structured Prediction & HMMs 
• Recall Hidden Markov Model (now x is observed, y hidden): 

• Here, space of y’s is huge just like in structured prediction 
• Would like to do 3 basic things with graphical models: 
  1) Evaluate: given x1,…,xT compute likelihood p(x1,…,xT) 
  2) Decode: given x1,…xT compute best y1,…,yT or p(yt) 
  3) Learn: given x1,…,xT learn parameters θ 

• Typically, HMMs use Baum-Welch, α-β or Viterbi algorithm 
• More general graphical models use Junction Tree Algorithm 
• The JTA is a way of performing efficient inference 

  x1

  y1

  x2

  y2

  x3

  y3

  x4

  y4

  x0

  y0 space of y’s 
is O(MT)  
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Inference 
• Inference: goal is to predict some variables given others 
  y1: flu 
  y2: fever 
  y3: sinus infection   Patient claims headache 
  y4: temperature   and high temperature. 
  y5: sinus swelling   Does he have a flu? 
  y6: headache 

  Given findings variables Yf and unknown variables Yu  
  predict queried variables Yq 

• Classical approach: truth tables (slow) or logic networks 

• Modern approach: probability tables (slow) or Bayesian 
networks (fast belief propagation, junction tree algorithm)  
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Directed Graphical Models 
• Factorize a large (how big?) probability over several vars 

• Interpretation 
  1: flu 
  2: fever 
  3: sinus infection 
  4: temperature 
  5: sinus swelling 
  6: headache 

    
p y

1
,…,y

n( ) = p y
i
| pa

i( )i=1

n∏ = p y
i
| π

i( )i=1

n∏

    
p y

1
,…,y

6( ) = p y
1( )p y

2
| y

1( )p y
3
| y

1( )p y
4
| y

2( )p y
5
| y

3( )p y
6
| y

2
,y

5( )

Aka Bayesian Networks 

  y1

  y4

  y2

  y5

  y6

  y3
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• Probability for undirected is defined via Potential Functions 
  which are more flexible than conditionals or marginals 

• Just a factorization of p(Y), Z just normalizes the pdf 
• Potential functions are positive functions of 
  (not mutually exclusive) sub-groups of variables 
• Potential functions are over complete sub-graphs or cliques 
  C in the graph, clique is a set of fully-interconnected nodes 
• Use maximal cliques, absorb cliques contained in larger ψ 

Undirected Graphical Models 

    
p Y( ) = p y

1
,…,y

M( ) = 1
Z

ψ Y
C( )C∏   

Z = ψ Y
C( )C∏Y∑

  y1   y2   y3

  y5

  y4

  y6

   
p Y( ) = 1

Z
ψ y

1
,y

2( )ψ y
2
,y

3( )ψ y
3
,y

4
,y

5( )ψ y
4
,y

5
,y

6( )

  y1   y2   y3

  y5

  y4

  y6    

ψ y
2
,y

3( )ψ y
2( )ψ y

3( )
→ ψ y

2
,y

3( )

0.1 0.2 

0.05 0.3 
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Junction Tree Algorithm 
• Involves 5 steps, the first 4 build the Junction Tree: 

  
1) Moralization 
 Polynomial in # of nodes 

2) Introduce Evidence (fixed or constant) 

 Polynomial in # of nodes (convert pdf to slices) 

3) Triangulate (Tarjan & Yannakakis 1984) 

 Suboptimal=Polynomial, Optimal=NP 
4) Construct Junction Tree (Kruskal) 

 Polynomial in # of cliques 
5) Junction Tree Algorithm (Init,Collect,Distribute,Normalize) 
 Polynomial (linear) in # of cliques, Exponential in Clique Cardinality 



Tony Jebara, Columbia University 

Moralization 
• Converts directed graph into undirected graph 
• By moralization, marrying the parents: 
   1) Connect nodes that have common children 
   2) Drop the arrow heads to get undirected 

• Note: moralization resolves coupling due to marginalizing 
• moral graph is more general (loses some independencies) 

 →

most 
specific 

most 
general … … 

   
p y

1( )p y
2
| y

1( )p y
3
| y

1( )p y
4
| y

2( )p y
5
| y

3( )p y
6
| y

2
,y

5( )

   
→ 1

Z
ψ y

1
,y

2( )ψ y
1
,y

3( )ψ y
2
,y

4( )ψ y
3
,y

5( )ψ y
2
,y

5
,y

6( )

   
p y

1( )p y
2
| y

1( )
   
→ ψ y

1
,y

2( )

   
p y

4
| y

2( )
   
→ ψ y

2
,y

4( )
   Z → 1

  y1

  y4

  y2

  y5

  y6

  y3

  y1

  y4

  y2

  y5

  y6

  y3
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Triangulation 
• Triangulation: Connect nodes in moral graph such that no 
  chordless cycles (no cycle of 4+ nodes remains) 

• So, add links, but many possible choices… 
• HINT: keep largest clique size small (for efficient JTA) 
• Chordless: no edges between successor nodes in cycle 
• Sub-optimal triangulations of moral graph are Polynomial 
• Triangulation that minimizes largest clique size is NP 
• But, OK to use a suboptimal triangulation (slower JTA…) 

1-cycle 
OK 

2-cycle 
OK 

3-cycle 
OK 

4-cycle 
BAD 

5-cycle 
BAD 



Tony Jebara, Columbia University 

Triangulation 

1-cycle 
OK 

2-cycle 
OK 

3-cycle 
OK 

3-cycle 
OK 

3-cycle 
OK 

• Triangulation: Connect nodes in moral graph such that no 
  chordless cycles (no cycle of 4+ nodes remains) 

• So, add links, but many possible choices… 
• HINT: keep largest clique size small (for efficient JTA) 
• Chordless: no edges between successor nodes in cycle 
• Sub-optimal triangulations of moral graph are Polynomial 
• Triangulation that minimizes largest clique size is NP 
• But, OK to use a suboptimal triangulation (slower JTA…) 
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Running Intersection Property 
• Junction Tree must satisfy Running Intersection Property 
• RIP: On unique path connecting clique    to clique   , all 
 other cliques share nodes in   V ∩W
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Running Intersection Property 
• Junction Tree must satisfy Running Intersection Property 
• RIP: On unique path connecting clique    to clique   , all 
 other cliques share nodes in 

HINT: Junction 
Tree has largest 
total separator 
cardinality 

  V ∩W

B-here 

B-here 

Missing 
More B’s 
on path! 

   

Φ = φ B,C( ) + φ C,D( )
= 2 + 2    

Φ = φ C,D( ) + φ D( )
= 2 +1
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Forming the Junction Tree 
• Now need to connect the cliques into a Junction Tree 
• But, must ensure Running Intersection Property 
• Theorem: a valid (RIP) Junction Tree connection is one 
  that maximizes the cardinality of the separators 

• Use Kruskal’s algorithm: 
 1) Init Tree with all cliques unconnected (no edges) 
 2) Compute size of separators between all pairs 
 3) Connect the two cliques with the biggest separator 
  cardinality which doesn’t create a loop 
  in current Tree (maintains Tree structure) 
 4) Stop when all nodes are connected, else goto 3  

   

JT * = max
TREE STRUCTURES

Φ

= max
TREE STRUCTURES

φ Y
S( )S∑
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Kruskal Example 
• Start with unconnected cliques (after triangulation) 

ACD BDE CDF DEH DFGH FGHI 

ACD - 1 2 1 1 0 

BDE - 1 2 1 0 

CDF - 1 2 1 

DEH - 2 1 

DFGH - 3 

FGHI - 

1 

2 3 

4 5 

 A  B

 C  D  E

 F  G  H

 I
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Junction Tree Probabilities 
• We now have a valid Junction Tree! 
• What does that mean? 
• Recall probability for undirected graphs: 

• Can write junction tree as potentials of its cliques: 

• Alternatively: clique potentials over separator potentials: 

• This doesn’t change/do anything! Just less compact… 
• Like de-absorbing smaller cliques from maximal cliques: 

    
p Y( ) = p y

1
,…,y

M( ) = 1
Z

ψ Y
C( )C∏

    
p Y( ) = 1

Z
ψ Y

C( )C∏

   

p Y( ) =
1
Z

ψ Y
C( )C∏

φ Y
S( )S∏

    

ψ A,B,D( ) =
ψ A,B,D( )
φ B,D( )

…gives back 
original 

formula if     
φ B,D( ) 1



Tony Jebara, Columbia University 

Junction Tree Algorithm 
• Send message from each clique to its separators of 
  what it thinks the submarginal on the separator is. 
• Normalize each clique by incoming message 
  from its separators so it agrees with them 

   
V = A,B{ } S = B{ } W = B,C{ }

If agree: 
   

ψ
VV \S∑ = φ

S
= p S( ) = φ

S
= ψ

WW \S∑
Else: 

   

φ
S
* = ψ

VV \S∑

ψ
W
* =

φ
S
*

φ
S

ψ
W

ψ
V
* = ψ

V

Send message 
From V to W… 

Send message 
From W to V… 

   

φ
S
** = ψ

W
*

W \S∑

ψ
V
** =

φ
S
**

φ
S
*
ψ

V
*

ψ
W
** = ψ

W
*

…Done! 

Now they 
Agree…Done! 

   

ψ
V
**

V \S∑ = φS
**

φS
*
ψ

V
*

V \S∑

=
φ

S
**

φ
S
*

ψ
V
*

V \S∑

= φ
S
** = ψ

W
**

W \S∑
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Junction Tree Algorithm 
• When “Done”, all clique potentials are marginals and 
    all separator potentials are submarginals! 
• Note that p(X) is unchanged by message passing step: 

• Example: if potentials are poorly initialized… get corrected! 
   

φ
S
* = ψ

VV \S∑

ψ
W
* =

φ
S
*

φ
S

ψ
W

ψ
V
* = ψ

V
   
p Y( ) = 1

Z

ψ
V
* ψ

W
*

φ
S
*

= 1
Z

ψ
V

φS
*

φS

ψ
W

φ
S
*

= 1
Z

ψ
V
ψ

W

φ
S

   

ψ
AB

= p B | A( )p A( )
= p A,B( )

ψ
BC

= p C | B( )
φ

B
= 1

 →

   

φ
B
* = ψ

ABA∑ = p A,B( ) = p B( )A∑

ψ
BC
* =

φ
S
*

φ
S

ψ
BC

=
p B( )

1
p C | B( ) = p B,C( ) →
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Junction Tree Algorithm 
• Use tree recursion rather than iterate messages mindlessly! 
initialize(DAG){  Pick root 
    Set all variables as:                                      }                                             

collectEvidence(node) { 
    for each child of node  { 
        update1(node,collectEvidence(child)); } 
    return(node); } 

distributeEvidence(node) { 
    for each child of node  { 
        update2(child,node);  
        distributeEvidence(child); } } 

update1(node w,node v) {                                                              } 

update2(node w,node v) {                                                              } 

normalize() {                                                                              } 

   
ψ

Ci
= p y

i
| π

i( ),φS
= 1

   
p Y

C( ) = 1
ψC

**
C∑
ψ

C
** ∀C , p Y

S( ) = 1
φS

**
S∑
φ

S
** ∀S

   
φ

V∩W
* = ψ

VV \ V∩W( )∑ , ψ
W

= φV∩W
*

φV∩W
ψ

W

   
φ

V∩W
** = ψ

VV \ V∩W( )∑ , ψ
W

= φV∩W
**

φV∩W
*
ψ

W



Tony Jebara, Columbia University 

Junction Tree Algorithm 
• JTA:    1)Initialize   2)Collect    3)Distribute   4)Normalize 

• Note: leaves do not change their ψ during collect 
• Note: the first cliques collect changes are parents of leaves 
• Note: root does not change its ψ during distribute 
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ArgMax Junction Tree Algorithm 
• We can also use JTA for finding the max (not the sum) 
   over the joint to get argmax of marginals & conditionals 
• Say have some evidence: 

• Most likely (highest p) YF? 

• What is most likely state of patient with fever & headache? 

• Solution: update in JTA uses max instead of sum: 

• Final potentials aren’t marginals: 
• Highest value in potential is most likely: 

    
p Y

F
,Y

E( ) = p y
1
,…,y

n
,y

n+1
,…,y

N( )

   
Y

F
* = arg max

YF
p Y

F
,Y

E( )

   

p
F
* = max

y2 ,y3 ,y4 ,y5
p y

1
= 1,y

2
,y

3
,y

4
,y

5
,y

6
= 1( )

= max
y2

p y
2
| y

1
= 1( )p y

1
= 1( )max

y3
p y

3
| y

1
= 1( )

max
y4

p y
4
| y

2( )max
y5

p y
5
| y

3( )p y
6

= 1 | y
2
,y

5( )

   
φ

S
* = max

V \S
ψ

V
ψ

W
* =

φ
S
*

φ
S

ψ
W

ψ
V
* = ψ

V

   
ψ X

C( ) = max
U \C

p Y( )
   
Y

C
* = arg max

C
ψ Y

C( )



Tony Jebara, Columbia University 

Generative, Conditional and 
Discriminative Prediction 
• Generative: hidden Markov model learns p(x,y) 
• Conditional: conditional random field learns p(y|x) 
• Discriminative: structured SVM learns y=f(x) where y is big  

• Generate & Conditional Need JTA & ArgMax JTA 
• Discriminative only needs ArgMax JTA  



• Binary classification:  

• P: 

• D: 

• Primal (P) and dual (D) give same solution 

Large-Margin SVM 

    
min

w,b,ξ≥0
1
2

w
2
+ C

n
ξ

ii=1

n∑ s.t. y
i

wTx
i

+b( )≥ 1−ξ
i

Hard Margin 
(separable) 

Soft Margin 
(training error) δ	



δ	


δ	



     
x

1
,y

1( ),…, x
n
,y

n( ){ }→ f x( ) = wTx +b

    
max

λ
λ

i
−

i=1

n∑ 1
2

λ
i
λ

j
y

i
y

j
x

i
Tx

ji, j =1

n∑ s.t.0 ≤ λ
i
≤ C

n
, λ

i
y

ii=1

n∑ = 0

    
w* = λ

i
*
i
y

i
x

ii=1

n∑



• Binary classification:  

• P: 

• D: 

• Solution through origin                       (or just pad x with 1) 

Large-Margin SVM with b=0 

    
min

w,b,ξ≥0
1
2

w
2
+ C

n
ξ

ii=1

n∑ s.t. y
i

wTx
i( )≥ 1−ξ

i

Hard Margin 
(separable) 

Soft Margin 
(training error) δ	



δ	


δ	



     
x

1
,y

1( ),…, x
n
,y

n( ){ }→ f x( ) = wTx

    
max

λ
λ

i
−

i=1

n∑ 1
2

λ
i
λ

j
y

i
y

j
x

i
Tx

ji, j =1

n∑ s.t.0 ≤ λ
i
≤ C

n

    
w* = λ

i
*
i
y

i
x

ii=1

n∑



Multi-Class & Structured Output 
• View the problem as a list of all possible answers 
• Approach: view as multi-class classification task 
• Every complex output                is one class 
• Problems: Exponentially many classes! 
     How to predict efficiently? How to learn efficiently? 

Potentially huge model! Manageable number of features? 

The dog chased the cat x 
S VP NP 

Det N V 
NP 

Det N 

y2 

S VP VP 

Det N V 
NP 

V N 

y1 

S 
NP 

VP 

Det N V 
NP 

Det N 

yk 

…
 

  yi
∈Y



Multi-Class Output 
• View the problem as a list of all possible answers 
• Approach: view as multi-class classification task 
• Every complex output                 is one of K classes 
• Enumerate many constraints (slow)…     

y
i
∈ 1,…,k{ }

     
x

1
,y

1( ),…, x
n
,y

n( ){ }→ f x( ) = arg max
i∈ 1,…,k{ } w

i
Tx

     

minw1 ,…,wk ,ξ≥0
w

i

2

i=1

k∑ + C
n

ξ
ii=1

n∑
s.t. ∀j ≠ y

1
: w

y1

Tx
1( )≥ w

j
Tx

1( ) +1−ξ
1

s.t. …

s.t. ∀j ≠ y
n

: w
yn

Tx
n( )≥ w

j
Tx

n( ) +1−ξ
n



Joint Feature Map 
• Instead of solving for K different w’s, make 1 long w 
• Replace each x with 
• Put the x vector in the i’th position 
• The feature vector is DK dimensional 

    
y

i
∈ 1,…,k{ }

     
x

1
,y

1( ),…, x
n
,y

n( ){ }→ f x( ) = arg max
y∈Y

wTφ x,y( )

     

minw,ξ≥0
w

2

s.t. ∀y ∈Y \ y
1
: wTφ x

1
,y

1( )≥ wTφ x
1
,y( ) +1

s.t. …

s.t. ∀y ∈Y \ y
n

: wTφ x
n
,y

n( )≥ wTφ x
n
,y( ) +1

     
φ x,y = i( ) = 0T 0T …0T xT 0T …0T⎡

⎣⎢
⎤
⎦⎥
T

    
wTφ x,y

1( )
    
wTφ x,y

2( )

    
wTφ x,y

4( )

    
wTφ x,y

58( )



Joint Feature Map 
• Learn weight 
  vector so that               
               is max 
  for correct y  

     

minw,ξ≥0
w

2

s.t. ∀y ∈Y \ y
1
: wTφ x

1
,y

1( )≥ wTφ x
1
,y( ) +1

s.t. …

s.t. ∀y ∈Y \ y
n

: wTφ x
n
,y

n( )≥ wTφ x
n
,y( ) +1

    
wTφ x

i
,y( )

… 



Joint Feature Map with Slack 

     

minw,ξ≥0
1
2

w
2
+ C

n
ξ

ii=1

n∑
s.t. ∀y ∈Y \ y

1
: wTφ x

1
,y

1( )≥ wTφ x
1
,y( ) +1−ξ

1

s.t. …

s.t. ∀y ∈Y \ y
n

: wTφ x
n
,y

n( )≥ wTφ x
n
,y( ) +1−ξ

n

… 



The label loss function 
• Not all classes are created equal, why clear each by 1? 

• Instead of a constant 1 value, clear some classes more 

• For example, if y can be {lion, tiger, cat} 

     

minw,ξ≥0
1
2

w
2
+ C

n
ξ

ii=1

n∑
s.t. ∀y ∈Y \ y

1
: wTφ x

1
,y

1( )≥ wTφ x
1
,y( ) +1−ξ

1

s.t. …

s.t. ∀y ∈Y \ y
n

: wTφ x
n
,y

n( )≥ wTφ x
n
,y( ) +1−ξ

n

   
Δ y,y

1( )

   
Δ y,y

1( ) = Loss for predicting y insteadof y
1

   

Δ tiger,lion( ) = Δ lion,tiger( ) = 1

Δ cat,lion( ) = Δ lion,cat( ) = 999

Δ tiger,tiger( ) = Δ cat,cat( ) = Δ lion,lion( ) = 0



Joint Feature Map with Any Loss 

     

minw,ξ≥0
1
2

w
2
+ C

n
ξ

ii=1

n∑
s.t. ∀y ∈Y \ y

1
: wTφ x

1
,y

1( )≥ wTφ x
1
,y( ) +Δ y,y

1( )−ξ1
s.t. …

s.t. ∀y ∈Y \ y
n

: wTφ x
n
,y

n( )≥ wTφ x
n
,y( ) +Δ y,y

n( )−ξn

… 



Joint Feature Map with Slack 
• Loss function Δ measures match between target & prediction	



     

minw,ξ≥0
1
2

w
2
+ C

n
ξ

ii=1

n∑
s.t. ∀y ∈Y \ y

1
: wTφ x

1
,y

1( )≥ wTφ x
1
,y( ) +Δ y,y

1( )−ξ1
s.t. …

s.t. ∀y ∈Y \ y
n

: wTφ x
n
,y

n( )≥ wTφ x
n
,y( ) +Δ y,y

n( )−ξn

Lemma: The training loss is upper bounded by 



Generic Structural SVM (slow!) 
"   Application Specific Design of Model 

  Loss function 
  Representation 
  Markov Random Fields [Lafferty et al. 01, Taskar et al. 04] 

"   Prediction:   

"   Training: 

"   Applications: Parsing, Sequence Alignment, Clustering, etc. 



Reformulating the QP 
n-Slack Formulation: [TsoJoHoAl04] 



Reformulating the QP 

1-Slack Formulation: 

n-Slack Formulation: 

 
[JoFinYu08] 

[TsoJoHoAl04] 



Comparing n-Slack & 1-Slack 
• Example: 

n-Slackn(k-1) constraints  1-Slackkn constraints 

• Idea: we expect only a few constraints to be active 
• Cutting-Plane: a greedy approach to QP 
• Solve with only a few constraints at a time 
• If solution violates come constraints, add them back in 
• If we are smart about which ones to add, may not need kn 

   
Y = A,B,C{ } and y
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4
≥AAAA,AAAB,AAAC,AABA,

AABB,⋅,AACA,AACB,AACC,
ABAA,ABAB,ABAC,ABBA,
ABBB,ABBC,ABCA,ABCB,
ABCC,ACAA,ACAB,ACAC,...



1-Slack Cutting-Plane Algorithm 

"   Input:                                         

"   REPEAT 
  FOR 

  Compute 
  ENDFOR 
  IF 

  optimize StructSVM over S to get w and ξ	


  ENDIF 

"   UNTIL solution has not changed during iteration 

_ 

[Jo06] [JoFinYu08] 



Polynomial Sparsity Bound 
"  Theorem: The cutting-plane algorithm finds a solution 

to the Structural SVM soft-margin optimization 
problem in the 1-slack formulation after adding at 
most 

constraints to the working set S, so that the primal 
constraints are feasible up to a precision    and the 
objective on S is optimal. The loss has to be 
bounded                          , and                         . 

[Jo03] [Jo06] [TeoLeSmVi07] [JoFinYu08] 



Joint Feature Map for Trees 
"   Weighted Context Free Grammar 

  Each rule     (e.g.                      )  has a weight  
  Score of a tree is the sum of its weights 
  Find highest scoring tree  

The dog chased the cat 

S 
VP NP 

Det N V 
NP 

Det N 

The cat the chased dog 

x 

y 



Experiments: NLP 
Implementation 

  Incorporated modified version of Mark Johnson’s CKY parser 
  Learned weighted CFG with 

Data 
  Penn Treebank sentences of length at most 10 (start with POS) 
  Train on Sections 2-22: 4098 sentences 
  Test on Section 23: 163 sentences 

  more complex features [TaKlCoKoMa04]  

[TsoJoHoAl04] 



 Part-of-speech tagging on Penn Treebank 
~36,000 examples, ~250,000 features in linear HMM model 

Experiments: 1-slack vs. n-slack 



StructSVM for Any Problem 
"   General 

  SVM-struct algorithm and implementation 
  http://svmlight.joachims.org 

  Theory (e.g. training-time linear in n) 
"   Application specific 

  Loss function 
  Representation 
  Algorithms to compute  

"   Properties 
  General framework for discriminative learning 
  Direct modeling, not reduction to classification/regression 
  “Plug-and-play”  



Tony Jebara, Columbia University 

• Details in Shivaswamy and Jebara in NIPS 2008 

• Red is maximum margin, Green is max relative margin 
• Top is a two d classification problem 
• Bottom is projection of data on solution wTx+b 
• SVM solution changes as axes get scaled, has large spread 

Maximum Relative Margin 



Tony Jebara, Columbia University 

• Fast trick to solve the same problem as on previous slides: 
 Bound the spread of the SVM! 
• Recall original SVM primal problem (with slack): 

• Add the following constraints: 

• This bounds the spread. Call it Relative Margin Machine. 
• Above is still a QP, scales to 100k examples 
• Can also be kernelized, solved in the dual, etc. 
• Unlike previous SDP which only runs on ~1k examples 

• RMM as fast as SVM but much higher accuracy… 

Maximum Relative Margin 

   
min

w,b,ξ
1
2

w
2
+C ξ

ii∑ subject to y
i

wTx
i

+b( )≥ 1−ξ
i

  −B ≤ wTx
i

+b ≤ B



Tony Jebara, Columbia University 

• RMM vs. SVM on digit classification (two-class 0,…,9) 

Maximum Relative Margin 



Tony Jebara, Columbia University 

• RMM vs. SVM on digit classification (two-class 0,…,9) 
• Cross-validate to obtain best B and C fro SVM and RMM 
• Compare also to Kernel Linear Discriminant Analysis 
• Try different polynomial kernels and RBF 
• RMM has consistently lower error for kernel classification 

Maximum Relative Margin 



Struct SVM with Relative Margin 
• Add relative margin constraints to struct SVM (ShiJeb09) 
• Correct beats wrong labels but not by too much (relatively) 

• Needs both                              and   
     

minw,ξ≥0
1
2

w
2
+ C

n
ξ

ii=1

n∑
s.t. ∀y ∈Y \ y

1
: B ≥ wTφ x

1
,y

1( )−wTφ x
1
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1( )−ξ1
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s.t. ∀y ∈Y \ y
n

: B ≥ wTφ x
n
,y

n( )−wTφ x
n
,y( )≥ Δ y,y

n( )−ξn

    
arg max

y∈Y
wTφ x,y( )

    
arg min

y∈Y
wTφ x,y( )



Struct SVM with Relative Margin 
• Similar bound holds for relative margin 
• Maximum # of cuts is 

• Try sequence learning problems for Hidden Markov Modeling 
• Consider named entity recognition (NER) task 
• Consider part-of-speech (POS) task 

   
max

2CR2

ε
B
2

,
2n
ε

,
8CR2

ε2
⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪


