
Experiments

Log-Linear Models, Logistic Regression and

Conditional Random Fields

February 21, 2013

Experiments

Generative, Conditional and Discriminative

Given D = (xt , yt)
T
t=1 sampled iid from unknown P(x , y)

Generative Learning (maximum likelihood Gaussians)

Choose family of functions pθ(x , y) parametrized by θ

Find θ by maximizing likelihood:
∏T

t=1 pθ(xi , yi)

Given x , output ŷ = arg maxy
pθ(x,y)

P

y pθ(x,y)

Conditional Learning (logistic regression)

Choose family of functions pθ(y |x) parametrized by θ

Find θ by maximizing conditional likelihood:
∏T

t=1 pθ(yi |xi)
Given x , output ŷ = arg maxy pθ(y |x)

Discriminative Learning (support vector machines)

Choose family of functions y = fθ(x) parametrized by θ

Find θ by minimizing classification error
∑T

t=1 ℓ(yi , fθ(xi))
Given x , output ŷ = fθ(x)

Experiments

Generative, Conditional and Discriminative

Generative Conditional Discriminative

Experiments

Generative: Maximum Entropy

Maximum entropy (or generally) minimum relative entropy

RE(p‖h) =
∑

y p(y) ln p(y)
h(y) subject to linear constraints

min
p
RE(p‖h) s.t.

∑

y

p(y)f(y) = 0,
∑

y

p(y)g(y) ≥ 0

Solution distribution looks like an exponential family model

p(y) = h(y) exp
(

θ⊤f(y) + ϑ⊤g(y)
)

/Z (θ,ϑ)

Maximize the dual (the negative log-partition) to get θ,ϑ.

max
θ,ϑ≥0

− lnZ (θ,ϑ) = max
θ,ϑ≥0

− ln
∑

y

h(y) exp
(

θ⊤f(y) + ϑ⊤g(y)
)

Experiments

Generative: Exponential Family and Maximum Likelihood

All maximum entropy models give an exponential family form:

p(y) = h(y) exp(θ⊤f(y)− a(θ))

This is also a log-linear model over discrete y ∈ Ω where |Ω| = n

p(y |θ) =
1

Z (θ)
h(y) exp

(

θ⊤f(y)
)

Parameters are vector θ ∈ R
d

Features are f : Ω 7→ R
d mapping each y to some vector

Prior is h : Ω 7→ R
+ a fixed non-negative measure

Partition function ensures that p(y |θ) normalizes

Z (θ) =
∑

y

h(y) exp(θ⊤f(y))

Experiments

Generative: Exponential Family and Maximum Likelilhood

We are given some iid data y1, . . . , yT where y ∈ {0, 1}. If we
wanted to find the best parameters of an exponential family
distribution known as the Bernouilli distribution:

p(y |θ) = h(y) exp(θ⊤f(y)− a(θ))

= θy(1− θ)1−y

This is unsupervised generative learning
We simply find the θ that maximizes the likelihood

L(θ) =

T
∏

t=1

p(yt |θ) = θ
P

t yt (1− θ)T−
P

t yt

Taking log then derivatives and setting to zero gives θ = 1
T

∑

t yt .

Experiments

Conditional: Logistic Regression

Given input-output iid data (x1, y1), . . . , (xT , yT) where y ∈ {0, 1}.
Binary logistic regression computes a probability for y = 1 by

p(y = 1|x ,ϑ) =
1

1 + exp(−ϑ⊤φ(x))
.

And the probability for p(y = 0|x ,θ) = 1− p(y = 1|x ,θ).
This is supervised conditional learning.
We find the θ that maximizes the conditional likelihood

L(ϑ) =

T
∏

t=1

p(yt |xt ,ϑ)

We can maximize this by doing gradient ascent.
Logistic regression is an example of a log-linear model.

Experiments

Conditional: Log-linear Models

Like an exponential family, but allow Z , h and f also depend on x

p(y |x ,θ) =
1

Z (x ,θ)
h(x , y) exp

(

θ⊤f(x , y)
)

Parameters are just one long vector θ ∈ R
d

Functions f : Ωx × Ωy 7→ R
d map x , y to a vector

Prior is h : Ωx × Ωy 7→ R
+ a fixed non-negative measure

Partition function ensures that p(y |x ,θ) normalizes

To make a prediction, we simply output

ŷ = arg max
y

p(y |x ,θ).

Let’s mimic (multi-class) logistic regression with this form.

Experiments

Conditional: Log-linear Models

In multi-class logistic regression, we have y ∈ {1, . . . , n}.

p(y |x ,θ) =
1

Z (x ,θ)
h(x , y) exp

(

θ⊤f(x , y)
)

If φ(x) ∈ R
k , then f(x , y) ∈ R

kn.
Choose the following for the feature function

f(x , y) =
[

δ[y = 1]φ(x)⊤ δ[y = 2]φ(x)⊤ . . . δ[y = n]φ(x)⊤
]⊤
.

If n = 2 and h(x , y) = 1, get traditional binary logistic regression!

Experiments

Conditional: Log-linear Models

Rewrite binary logistic regresion p(y = 1|x ,ϑ) = 1
1+exp(−ϑ⊤φ(x))

as

a log-linear model with n = 2, h(x , y) = 1 and f(x , y) as before

p(y |x ,θ) =
h(x , y) exp

(

θ⊤f(x , y)
)

Z (x ,θ)

=
exp

(

f(x , y)⊤θ
)

∑1
y=0 exp (f(x , y)⊤θ)

p(y = 1|x ,θ) =
exp

(

[0 φ(x)⊤]θ
)

exp ([φ(x)⊤ 0]θ) + exp ([0 φ(x)⊤]θ)

=
1

1 + exp ([φ(x)⊤ 0]θ − [0 φ(x)⊤]θ)

Can you see how to write ϑ in terms of θ?

Experiments

Conditional Random Fields (CRFs)

Conditional random fields generalize maximum entropy

Trained on iid data {(x1, y1), . . . , (xt , yt)}
A CRF is just a log-linear model with big n

p(y |xj ,θ) =
1

Z (xj ,θ)
h(xj , y) exp(θ⊤f(xj , y))

Maximum conditional log-likelihood objective function is

J(θ) =

t
∑

j=1

ln
h(xj , yj)

Z (xj ,θ)
+ θ⊤f(xj , yj) (1)

Regularized conditional maximum likelihood is

J(θ) =

t
∑

j=1

ln
h(xj , yj)

Z (xj ,θ)
+ θ⊤f(xj , yj)− tλ

2 ‖θ‖
2 (2)

Experiments

Conditional Random Fields (CRFs)

To train a CRF, we maximize (regularized) conditional
likelihood

Traditionally, maximum entropy, log-linear models and CRFs
were trained using majorization (the EM algorithm is a
majorization method)

The algorithms were called improved iterative scaling (IIS) or
generalized iterative scaling (GIS)

Maximum entropy [Jaynes ’57]
Conditional random fields [Lafferty, et al. ’01]
Log-linear models [Darroch & Ratcliff ’72]

Experiments

Majorization

If cost function θ∗ = arg minθ C (θ) has no closed form solution
Majorization uses with a surrogate Q with closed form update
to monotonically minimize the cost from an initial θ0

Find bound Q(θ,θi) ≥ C (θ) where Q(θi ,θi) = C (θi)

Update θi+1 = arg minθ Q(θ,θi)

Repeat until converged

Experiments

Majorization

If cost function θ∗ = arg minθ C (θ) has no closed form solution
Majorization uses with a surrogate Q with closed form update
to monotonically minimize the cost from an initial θ0

Find bound Q(θ,θi) ≥ C (θ) where Q(θi ,θi) = C (θi)

Update θi+1 = arg minθ Q(θ,θi)

Repeat until converged

Experiments

Majorization

If cost function θ∗ = arg minθ C (θ) has no closed form solution
Majorization uses with a surrogate Q with closed form update
to monotonically minimize the cost from an initial θ0

Find bound Q(θ,θi) ≥ C (θ) where Q(θi ,θi) = C (θi)

Update θi+1 = arg minθ Q(θ,θi)

Repeat until converged

Experiments

Majorization

IIS and GIS were preferred until [Wallach ’03, Andrew & Gao ’07]

Method Iterations LL Evaluations Time (s)

IIS ≥ 150 ≥ 150 ≥ 188.65
Conjugate gradient (FR) 19 99 124.67
Conjugate gradient (PRP) 27 140 176.55
L-BFGS 22 22 29.72

Gradient descent appears to be faster
But newer majorization methods are faster still

Experiments

Gradient Ascent for CRFs

We have the following model

p(y |x ,θ) =
1

Z (x ,θ)
h(x , y) exp

(

θ⊤f(x , y)
)

We want to maximize the conditional (log) likelihood:

log L(θ) =

T
∑

t=1

log p(yt |xt ,θ)

=
T
∑

t=1

− log Z (xt ,θ) + log(h(xt , yt)) + θ⊤f(xt , yt)

= const −
T
∑

t=1

log Z (xt ,θ) + θ⊤
T
∑

t=1

f(xt , yt)

Same as minimizing the sum of log partition functions plus linear!

Experiments

Gradient Ascent for CRFs

∂ log L

∂θ
=

∂

∂θ

(

θ⊤
T
∑

t=1

f(xt , yt)−
T
∑

t=1

log Z (xt ,θ)

)

=

T
∑

t=1

f(xt , yt)−
T
∑

t=1

1

Z (xt ,θ)

∑

y

h(xt , y)
∂

∂θ
exp

(

θ⊤f(xt , y)
)

=
T
∑

t=1

f(xt , yt)−
T
∑

t=1

∑

y

h(xt , y)

Z (xt ,θ)
exp

(

θ⊤f(xt , y)
)

f(xt , y)

=

T
∑

t=1

f(xt , yt)−
T
∑

t=1

∑

y

f(xt , y)p(y |xt ,θ)

The gradient is the difference between the feature vectors at the
true labels minus the expected feature vectors under the current
distribution. To update, θ ← θ + η ∂ log L

∂θ
.

Experiments

Stochastic Gradient Ascent for CRFs

Given current θ, update by taking a small step along the gradient

θ ← θ + η
∂ log L

∂θ
.

We can use the full derivative:

∂ log L

∂θ
=

T
∑

t=1

f(xt , yt)−
T
∑

t=1

∑

y

f(xt , y)p(y |xt ,θ)

Or do stochastic gradient with only a single random datapoint t:

∂ log L

∂θ
= f(xt , yt)−

∑

y

f(xt , y)p(y |xt ,θ)

Experiments

Better Majorization for CRFs

Recall log-linear model over discrete y ∈ Ω where |Ω| = n

p(y |θ) =
1

Z (θ)
h(y) exp

(

θ⊤f(y)
)

Parameters are vector θ ∈ R
d

Features are f : Ω 7→ R
d mapping each y to some vector

Prior is h : Ω 7→ R
+ a fixed non-negative measure

Partition function ensures that p(y |θ) normalizes

Z (θ) =
∑

y

h(y) exp(θ⊤f(y))

Problem: it’s ugly to minimize (unlike a quadratic function)

Experiments

Better Majorization for CRFs

The bound lnZ (θ) ≤ ln z + 1
2 (θ − θ̃)⊤Σ(θ − θ̃) + (θ − θ̃)⊤µ

is tight at θ̃ and holds for parameters given by

Input θ̃, f(y), h(y) ∀y ∈ Ω

Init z → 0+,µ = 0,Σ = zI
For each y ∈ Ω {
α = h(y) exp(θ̃⊤f(y))
l = f(y)− µ

Σ+=
tanh(1

2
ln(α/z))

2 ln(α/z) ll⊤

µ += α
z+α l

z += α }
Output z ,µ,Σ

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

θ

lo
g(

Z
)

an
d

B
ou

nd
s

Experiments

Better Majorization for CRFs

Bound Proof.

1) Start with bound log(eθ + e−θ) ≤ cθ2 [Jaakkola & Jordan ’99]
2) Prove scalar bound via Fenchel dual using θ =

√
ϑ

3) Make bound multivariate log(eθ⊤1 + e−θ⊤1)

4) Handle scaling of exponentials log(h1e
θ⊤f1 + h2e

−θ⊤f2)

5) Add one term log(h1e
θ⊤f1 + h2e

−θ⊤f2 + h3e
−θ⊤f3)

6) Repeat extension for n terms

Experiments

Better Majorization for CRFs (Bound also Finds Gradient)

Init z → 0+,µ = 0,Σ = zI
For each y ∈ Ω {
α = h(y) exp(θ̃⊤f(y))
l = f(y)− µ

Σ+=
tanh(1

2
ln(α/z))

2 ln(α/z) ll⊤

µ += α
z+α l

z += α }
Output z ,µ,Σ

Recall gradient
∂ log L

∂θ
=

T
∑

t=1

f(xt , yt)−
T
∑

t=1

∑

y

f(xt , y)p(y |xt ,θ)

The bound’s µ give part of gradient (can skip Σ updates).

µ =
∑

y

f(xt , y)p(y |xt ,θ)

Experiments

Better Majorization for CRFs

Input xj , yj and functions hxj
, fxj

for j =1, . . . , t
Input regularizer λ ∈ R

+

Initialize θ0 anywhere and set θ̃ = θ0

While not converged

For j = 1 to t compute bound for µj ,Σj from hxj
, fxj

, θ̃

Set θ̃=arg minθ

∑

j
1
2(θ − θ̃)⊤(Σj +λI)(θ − θ̃)

+
∑

j θ⊤(µj − fxj
(yj) + λθ̃)

Output θ̂ = θ̃

Theorem

If ‖f(xj , y)‖ ≤ r get J(θ̂)−J(θ0) ≥ (1− ǫ)maxθ(J(θ)−J(θ0))

within
⌈

ln (1/ǫ) / ln
(

1 + λ log n
2r2n

)⌉

steps

Experiments

Convergence Proof

Proof.

−5 0 5

−20

−15

−10

−5

0

Upper Bound U(θ)
Objective J(θ)
Lower Bound L(θ)

Figure: Quadratic bounding sandwich. Compare upper and lower bound
curvatures to bound maximum # of iterations.

Experiments

Experiments - Multi-Class Classification & Linear Chains

Data-set SRBCT Tumors Text SecStr CoNLL PennTree

Size n = 4 n = 26 n = 2 n = 2 m = 9 m = 45

t = 83 t = 308 t = 1500 t = 83679 t = 1000 t = 1000

d = 9236 d = 390260 d = 23922 d = 632 d = 33615 d = 14175

λ = 101
λ = 101

λ = 102
λ = 101

λ = 101
λ = 101

Algorithm time iter time iter time iter time iter time iter time iter

LBFGS 6.10 42 3246.83 8 15.54 7 881.31 47 25661.54 17 62848.08 7

Grad 7.27 43 18749.15 53 153.10 69 1490.51 79 93821.72 12 156319.31 12

Congrad 40.61 100 14840.66 42 57.30 23 667.67 36 88973.93 23 76332.39 18

Bound 3.67 8 1639.93 4 6.18 3 27.97 9 16445.93 4 27073.42 2

Table: Time in seconds and iterations to match LBFGS solution for
multi-class logistic regression (on SRBCT, Tumors, Text and SecStr
data-sets where n is the number of classes) and Markov CRFs (on CoNLL
and PennTree data-sets, where m is the number of classes). Here, t is
the number of samples, d is the dimensionality of the feature vector and
λ is the cross-validated regularization setting.

Experiments

Experiments - Linear Chains

Model Error oov Error

Hidden Markov Model 5.69% 45.59%

Maximum Entropy Markov Model 6.37% 54.61%

Conditional Random Field 5.55% 48.05%

Table: Accuracy on Penn tree-bank data-set for parts-of-speech tagging
with training on half of the 1.1 million word corpus. Note, the oov rate is
the error rate on out-of-vocabulary words.

Parts of speech data-set where there are 45 labels per word, e.g.

PRP VBD DT NN IN DT NN

| | | | | | |
I saw the man with the telescope

p(y |x,θ) =
1

Z
ψ(y1, y2)ψ(y2, y3)ψ(y3, y4)ψ(y4, y5)ψ(y5, y6)ψ(y6, y7)

How big is y? Recall graphical models for large spaces...

Experiments

Bounding Graphical Models with Large n

y1 y2 y3 y4

y5 y6

Each iteration is O(tn), but what if n is large?

Graphical model: an undirected graph G representing a
distribution p(Y) where Y = {y1, . . . , yn} and yi ∈ Z

p(Y) factorizes as product of {ψ1, . . . , ψC} functions over
{Y1, . . . ,YC} subsets of variables over the maximal cliques of
G

p(y1, . . . , yn) =
1

Z

∏

c∈C

ψc(Yc)

E.g.p(y1, . . . , y6)=ψ(y1, y2)ψ(y2, y3)ψ(y3, y4, y5)ψ(y4, y5, y6)

Experiments

Bounding Graphical Models with Large n

Instead of enumerating over all n, exploit graphical model

Build junction tree and run a Collect algorithm

Useful for computing Z (θ), ∂ log Z(θ)
∂θ

and Σ efficiently

Bound needs O(t
∑

c |Yc |) rather than O(tn)

For an HMM, this is O(TM2) instead of O(MT)

Experiments

Bounding Graphical Models with Large n

for c = 1, . . . ,m {
Yboth =Yc ∩ Ypa(c); Ysolo =Yc \ Ypa(c)

for each u ∈ Yboth {
initialize zc|x ← 0+, µc|x = 0, Σc|x = zc|x I

for each v ∈ Ysolo{

w = u ⊗ v ; αw = hc(w)eθ̃⊤fc (w)
∏

b∈ch(c)

zb|w

lw = fc(w)− µc|u +
∑

b∈ch(c)

µb|w

Σc|u+=
∑

b∈ch(c)

Σb|w+
tanh(1

2 ln(αw

zc|u
))

2 ln(αw

zc|u
)

lw l⊤w

µc|u +=
αw

zc|u + αw
lw ; zc|u+= αw }}}

	Experiments

