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Generative, Conditional and Discriminative

o Given D = (x, y¢)/_, sampled iid from unknown P(x,y)
@ Generative Learning (maximum likelihood Gaussians)

s Choose family of functions pg(x,y) parametrized by 0

@ Find @ by maximizing likelihood: H;l po(xi, yi)

s Given x, output § = arg max, %
L Po(x;

@ Conditional Learning (logistic regression)
@ Choose family of functions pg(y|x) parametrized by 6
s Find 0 by maximizing conditional likelihood: H;l po (yilxi)
o Given x, output y = arg max, pe(y|x)

@ Discriminative Learning (support vector machines)
@ Choose family of functions y = fg(x) parametrized by 6
o Find @ by minimizing classification error 37, £(yi, fo(x;))
s Given x, output § = fp(x)



Generative, Conditional and Discriminative

Generative Conditional Discriminative



Generative: Maximum Entropy

Maximum entropy (or generally) minimum relative entropy

RE(pllh) =3, p(y)In % subject to linear constraints

minRE(p|[h) s:t. > p(y)f(y) = 0,3 p(v)ely) > 0

y

Solution distribution looks like an exponential family model

ply) = h(y)exp (87F(y) + 9 g(y)) /Z(6,9)

Maximize the dual (the negative log-partition) to get 8, 9.

_ _ _ T T
max InZ(6,9) max Inzy:h(y)exp (9 f(y) +9 g(y))



Generative: Exponential Family and Maximum Likelihood

All maximum entropy models give an exponential family form:

p(y) = h(y)exp(6 f(y) — a(6))

This is also a log-linear model over discrete y € Q where |Q| = n

p(y16) = ﬁh(y)exp (67F()

Parameters are vector 6 € R

Features are f : Q — RY mapping each y to some vector
Prior is h: Q — R™ a fixed non-negative measure
Partition function ensures that p(y|@) normalizes

Zh y)exp(8f(y))

e © ¢ ¢



Generative: Exponential Family and Maximum Likelilhood

We are given some iid data yi,...,yr where y € {0,1}. If we
wanted to find the best parameters of an exponential family
distribution known as the Bernouilli distribution:

p(y|0) = h(y)exp(8'f(y)— a(0))
0¥(1—0)

This is unsupervised generative learning
We simply find the @ that maximizes the likelihood

.
LO) = []r(:lo) = 62eri(1—g)T e

t=1

Taking log then derivatives and setting to zero gives 8 = % Do Ve



Conditional: Logistic Regression

Given input-output iid data (x1,y1),. .., (xT,yT) where y € {0,1}.
Binary logistic regression computes a probability for y = 1 by

1
1+ exp(—9T ¢(x))’

And the probability for p(y = 0|x,0) =1 — p(y = 1|x,0).
This is supervised conditional learning.
We find the 0 that maximizes the conditional likelihood

ply = 1lx,8) =

-
L(9) = H p(yelxe,9)

We can maximize this by doing gradient ascent.
Logistic regression is an example of a log-linear model.



Conditional: Log-linear Models

Like an exponential family, but allow Z, h and f also depend on x

prba) = Spgrhx e (07F(x.y)

Parameters are just one long vector 8 € R
Functions f : Q, x Q, — RY map x,y to a vector

°
°
@ Prioris h: Q, x Q, — R™ a fixed non-negative measure
°

Partition function ensures that p(y|x, 8) normalizes
To make a prediction, we simply output

y = argmaxp(y|x,0).
y

Let's mimic (multi-class) logistic regression with this form.



Conditional: Log-linear Models

In multi-class logistic regression, we have y € {1,..., n}.
1
PUIx0) = 5 gyhley)ew (67 0))

If p(x) € RK, then f(x,y) € RX".
Choose the following for the feature function

T

fxy) = [oly =1e()" oly = 26(x)"..oly = nle(x)"]

If n=2 and h(x,y) =1, get traditional binary logistic regression!



Conditional: Log-linear Models

Rewrite binary logistic regresion p(y = 1|x,9) = m as

a log-linear model with n =2, h(x,y) =1 and f(x,y) as before

h(x,y)exp (0Tf(x,y))

p(ylx, ) 20:.0)
_ e (fxy)'0)
Z;:o exp (f(x,y)"0)
ex x)T
ply =1lx,8) = p ([0 #(x)"]6)

exp ([p(x)" 0]0) +exp ([0 ¢(x)"]6)
1

1+exp([¢(x)" 0]0 — [0 ¢(x)7]0)

Can you see how to write 4 in terms of 67




Conditional Random Fields (CRFs)

(]

Conditional random fields generalize maximum entropy
Trained on iid data {(x1,y1), .., (xt, )}
A CRF is just a log-linear model with big n

plylx;,0) = ﬁh(&ay)exp(ff(&y))

Maximum conditional log-likelihood objective function is

Zl f’yf J+07105,,) (1)

(]

Regularized conditional maximum likelihood is

XJ7yJ T A 2
Zl Zoog) HO e - 210 @)



Conditional Random Fields (CRFs)

@ To train a CRF, we maximize (regularized) conditional
likelihood

@ Traditionally, maximum entropy, log-linear models and CRFs
were trained using majorization (the EM algorithm is a
majorization method)

@ The algorithms were called improved iterative scaling (11S) or
generalized iterative scaling (GIS)

@ Maximum entropy [Jaynes '57]
@ Conditional random fields [Lafferty, et al. '01]
@ Log-linear models [Darroch & Ratcliff '72]



Majorization

If cost function 8* = arg ming C(@) has no closed form solution
Majorization uses with a surrogate  with closed form update
to monotonically minimize the cost from an initial 6

@ Find bound Q(6,80;) > C(0) where Q(6;,0;) = C(6;)
@ Update 6;,1 = arg ming Q(0, 0;)

@ Repeat until converged
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Majorization

[IS and GIS were preferred until [Wallach '03, Andrew & Gao '07]

Method lterations | LL Evaluations | Time (s)
1) > 150 > 150 > 188.65
Conjugate gradient (FR) | 19 99 124.67
Conjugate gradient (PRP) | 27 140 176.55
L-BFGS 22 22 29.72

Gradient descent appears to be faster
But newer majorization methods are faster still




Gradient Ascent for CRFs

We have the following model

1

pUYIx0) = o gshby)exm (07F(x.))

We want to maximize the conditional (log) likelihood:

.
log L(0) = ) _logp(ylx:,0)
t=1

T
= Z—bg Z(Xtuo) + |0g(h(Xta)/t)) +0Tf(Xt7yt)
t=1
T T
= const — Z log Z(x;,0) + 60" Z f(xt, yt)

t=1 t=1

Same as minimizing the sum of log partition functions plus linear!



Gradient Ascent for CRFs

T T
algag L = 5% <0T Zf(xtuyt) - Z log Z(Xh 0))
; t=1 . 1 t=1 ;
= Zf(xt,yt) - Z m Z h(xt,y)% exp (ng(xt,y)>
- Zf Xt; Yt) Z Z Xl: )é)) exp (an(th)) f(xe,y)
= Zf Xt,)/t sz xt, y)p(y|xt, 0)

t=1 y

The gradient is the difference between the feature vectors at the

true labels minus the expected feature vectors under the current

distribution. To update, 8 «— 0 + naIOgL.




Stochastic Gradient Ascent for CRFs

Given current 8, update by taking a small step along the gradient

dlog L

06 — 0+n 50

We can use the full derivative:

8|OgL fot)yt) szxtv }/|Xt, )

t=1 vy

Or do stochastic gradient with only a single random datapoint t:

Olog L
o = flaye) = Y f(xey)p(yix:. 0)

y




Better Majorization for CRFs

Recall log-linear model over discrete y € Q where |Q2| = n

1

pYIO) = Sgrh) e (676(1)

Parameters are vector 8 € R
Features are f : Q — RY mapping each y to some vector
Prior is h: Q — R™ a fixed non-negative measure

Partition function ensures that p(y|@) normalizes

Z(6) = > h(y)exp(8f(y))

y

Problem: it's ugly to minimize (unlike a quadratic function)



Better Majorization for CRFs

The bound InZ(0) < Inz+ (6 — 6)'(0-6)+(0-6)"n
is tight at 6 and holds for parameters given by

Input 0,f(y), h(y)Vy € Q
Initz—0", u=0% = zI
For each y € Q {
a = h(y)exp(6'f(y))
I =fy)—n

tanh(3 In(a/z2))
)2 :72|s(a/z) n

log(Z) and Bounds

p+= 5!
z+=a }

Output z, u, X2




Better Majorization for CRFs

Bound Proof.

1) Start with bound log(e? + e=?) < c#? [Jaakkola & Jordan '99]
2) Prove scalar bound via Fenchel dual using § = /9

3) Make bound multivariate log(e? ! + e=¢'1)

4) Handle scaling of exponentials Iog;(hleeTfl + hoe
5) Add one term Iog(hleeTfl + hze_esz + h3e_9Tf3)

6) Repeat extension for n terms O

—esz)




Better Majorization for CRFs (Bound also Finds Gradient)

Initz—0",u=0% =zl
For each y € Q {
a = h(y)exp(6'f(y))
b =f)—n
tanh(3 In(a/2))
X+ = e n
pt= 53
z+=a }
Output z, p, X

T T
. OloglL
Recall radient 5= = 3 f(st.ye) = 30 3 .1 )oly1:.6)

t=1 y
The bound’s p give part of gradient (can skip ¥ updates).

po= Y f(xy)p(y|x, 0)
y



Better Majorization for CRFs

Input xj, y; and functions hy, f for j=1,... ¢
Input regularizer A € R

Initialize @9 anywhere and set 8 = 6
While not converged
For j =1 to t compute bound for p;,3; from hxj,ij,B~
Set & =arg ming > 10— 0)T(Z;+ M) (6 - 6)
+32, 0" (1 — £, (5) + A9)

Output 8 = 6

IF |[f (x5, )|l <r get J(8)—J(Bo) > (1 — €) maxg(J(8)—J(60))
within {ln(l/e)/m (1 + *'°g"ﬂ steps




Convergence Proof

— Upper Bound U(6)

< Objective J(0)
- --Lower Bound L(6)
-5 0 5

Figure: Quadratic bounding sandwich. Compare upper and lower bound
curvatures to bound maximum # of iterations.

O

4




Experiments

Experiments - Multi-Class Classification & Linear Chains

Data-set || SRBCT | Tumors Text SecStr CoNLL PennTree
Size n=4 n=26 n=2 n=2 m=29 m=45
t=283 t=2308 |t=1500 |t = 83679 t = 1000 t = 1000
d = 9236[d = 390260 |[d = 23922 d = 632 d = 33615 | d = 14175
A=10'| Ax=10" | A=10° | A=10" A =10 A =10!
Algorithm|| time [iter| time [iter] time [iter| time Jiter]| time [iter] time [iter
LBFGS |/6.10|42|3246.83| 8 |15.54| 7 |881.31 |47 25661.54|17 | 62848.08 | 7
Grad || 7.27|4318749.15| 53 [153.10] 69 [1490.51] 79|[93821.72[12|156319.31] 12
Congrad |[40.61|100[14840.66| 42| 57.30 | 23 | 667.67 | 36||88973.93| 23| 76332.39 | 18
Bound [|3.67| 8 (1639.93| 4 | 6.18 | 3 | 27.97 | 9 |{16445.93| 4 [27073.42| 2

Table: Time in seconds and iterations to match LBFGS solution for
multi-class logistic regression (on SRBCT, Tumors, Text and SecStr
data-sets where n is the number of classes) and Markov CRFs (on CoNLL
and PennTree data-sets, where m is the number of classes). Here, t is
the number of samples, d is the dimensionality of the feature vector and
A is the cross-validated regularization setting.



Experiments

Experiments - Linear Chains

Model Error | oov Error

Hidden Markov Model 5.69% | 45.59%
Maximum Entropy Markov Model || 6.37% | 54.61%
Conditional Random Field 5.55% | 48.05%

Table: Accuracy on Penn tree-bank data-set for parts-of-speech tagging
with training on half of the 1.1 million word corpus. Note, the oov rate is
the error rate on out-of-vocabulary words.

Parts of speech data-set where there are 45 labels per word, e.g.
PRP VBD DT NN IN DT NN
| I |

| saw the man with the telescope

p(ylx,0) = %w(}/hY2)¢(}/27)’3)1/1(}’37}’4)1/1()’4ay5)1/1()’5a)/6)¢(y6a)/7)

How big is y? Recall graphical models for large spaces...



Experiments

Bounding Graphical Models with Large n

@ Each iteration is O(tn), but what if n is large?

@ Graphical model: an undirected graph G representing a
distribution p(Y) where Y = {yi1,...,yn} and y; € Z

@ p(Y) factorizes as product of {11,...,%c} functions over
{Y1,..., Yc} subsets of variables over the maximal cliques of

G

p(ylv"' 7}/n) = % H wC(Yc)

ceC

° Eg.p(y1, -, ¥6)=0(y1, y2)¥(v2, y3)U(y3, ya, y5)U(ya, ¥5, ¥6)



Experiments

Bounding Graphical Models with Large n

Instead of enumerating over all n, exploit graphical model
Build junction tree and run a Collect algorithm

Useful for computing Z(8), 8'%62,(0) and X efficiently
Bound needs O(t ) _|Yc|) rather than O(tn)

For an HMM, this is O( TM?) instead of O(MT)

e © ¢ ¢ ¢



Experiments

Bounding Graphical Models with Large n

forc=1,...,m{
Yboth=Yc N Ypa(c); Ysolo=Yc \ Ypa(c)
for each u € Yporn {
initialize z¢x < 07, pep = 0, B = zxl
for each v € Ysoi0{
W= UV, = hC(W)eéTfC(W) H Zbjw
bech(c)
v = fC(W) — Hclu + Z Hblw
bech(c)
tanh(3 In(2x))

Zclu IT
w w

2|n(;‘C—T”u)

lw; zc|u+: Ay }}}

Ec\u"’_: Z 2b|w+
bech(c)
[0

="
He|u Zefu + O
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