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Topic 2

eNonlinear Manifold Learning
eMultidimensional Scaling (MDS)

e[ ocally Linear Embedding (LLE)

eBeyond Principal Components Analysis (PCA)
eKernel PCA (KPCA)

eSemidefinite Embedding (SDE)

eMinimum Volume Embedding (MVE)
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Principal Components Analysis

eEncode data on linear (flat) manifold as steps anng |ts axes

T Y = g CU.
J y] M_l_ 1=1 g 1

eBest choice of u, c and v is least squares

or equivalently maximum Gaussian
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eTake derivatives of error over u, c and v and set to zero
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Manifold Learning & Embedding

eData is often not Gaussian and not in a linear subspace
eConsider image of face being translated from left-to-right

- t—
xt—T:cO

i a ﬁ ﬂ ﬂ ...nonlinear!

eHow to capture the true coordinates of the data on the
manifold or embedding space and represent it compactly?
eUnlike PCA, Embedding does not try to reconstruct the data
e]Just finds better more compact coordinates on the manifold
eExample, instead of pixel intensity
image (x,y) find a measure (t) of
how far the face has translated.
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Multidimensional Scaling

eIdea: find low dimensional embedding that mimics only

the distances between points X in original space
eConstruct another set of low dimensional (say 2D) points
with coordinates Y that maintain the pairwise distances
*A Dissimilarity d(x;,x;) is a function of two inputs

such that d(a?,,:z. >0

LI

d(:T::E —0

1 1

a(z,7 ) =d(7,7)

oA Distance Metric is stricter, satisfies triangle inequality:
a(z,7,) < d(3,7)+d(7,3,
eStandard example: Euclidean I2 metric d(z,7, ) = £
eAssume for N objects, we compute a dissimilarity A
matrix which tells us how far they are A =d(Z,7 )

2
=

T — I
i j
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Multidimensional Scaling

eGiven dissimilarity A between original X points under
original d() metric, find Y points with dissimilarity D under
another d’() metric such that D is similar to A

A, =d(z,7) D, =d'(7,J)
e\Want to find Y’s that minimize some difference from D to A2
oEg. Least Squares Stress = Stress(?jl,...,@’]v) - Z@,(D@, _ A@-j)
Stress(Y)

eEg. Invariant Stress = 1,,,9tress —

2
Zi oy Dij Some are global
Some are local

: 1 2
*Eg. Sammon Mapping = ZijI(Dij - A@j) Gradient descent
ij

eEg. Strain = tmce(](A2 —D2)J(A2 —D2)) whereJ =1 — L1117
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MDS Example 3D to 2D

eHave distances from
cities to cities, these - - ' - - .
are on the surface of e
a sphere (Earth) in
3D space
eReconstructed 2D y _
points on plane s ern
capture essential ot _

isbon ®ars #tockholm

properties (poles?) pm—

0.2

#rague

London Stockholm Lisbon Madrid Pans Amsterdam Berlin Prague Rome Dublin
London 0 560 667 530 141 180 357 396 570 100 #ondon
Stockholm 569 0 1212 1043 617 446 325 423 787 648
Lisbon 667 1212 0 201 59 768 923 882 714 714
Madrid 530 1043 201 0 431 608 740 690 516 622 1
Paris 141 617 596 431 0 177 340 337 436 320
Amsterdam | 140 46 768 608 177 0 218 272 519 302
Berlin 357 325 03 740 340 218 0 114 472 514 .
Prague 306 23 882 600 337 272 114 0 364 573 ®ublin ]
Rome 569 787 714 516 436 519 472 364 0 75
Dublin 190 648 714 622 320 302 514 573 755 0 A ! ! !

-ug -u.L 0 02 04 06
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MDS Example Multi-D to 2D

eMore
elaborate
example
eHave
correlation
matrix between
crimes. These
are arbitrary
dimensionality.
eHack: convert
correlation
to dissimilarity
and show
reconstructed Y

Murder
Rape
Robbery
Assault
Burglary
Larceny
MVT

Murder Rape Robbery Assault Burglary  Larceny MVT
1.000000 4.424527 1.430246 1.991164 1.949596 6.0901055 2.090254
4.424527 1.000000 4.124025 2.403713 1.930864 3.2641742 5.644764
1.420246 4.124025 1.000000 1.513991 1.677549 6.5831954 1.417225
1.991164 2.402713 1.512991 1.000000 1.466625 1.9557211 1.738007
1.949596 1.930864 1.677549 1.4666325 1.000000 1.6972866 1.732629
6.090106 2.364174 6.582195 1.955721 1.697287 1.0000000 4.614750
2.090254 5.644764 1.417225 1.732007 1.732629 4.6147505 1.000000

A

Jurder

obbery
AAssault +F
JJV’
Jarceny Surgiary
Sape

v
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Locally Linear Embedding

eInstead of trying to preserve ALL pairwise distances
only preserve SOME distances across nearby points:

Lets us unwrap manifold!
Also, distances are
only locally valid

Euclidean distance is only
similar to geodesic
at small scales

eHow do we pick which distances?
eFind the k nearest neighbors of each point and only
preserve those
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LLE with K-Nearest Neighbors

eStart with unconnected points @ @
eCompute pairs of distances @ @‘@
Ay = d(X;,X) @
eConnect each point to its k
closest points X, | X | X3 | Xq | Xs | X
B = Ay <= sort(Ay)x x, |0]|0|1]1] 00
x, | 0l0]|0[1] 1|0
x; | 1/0]0[0] 0 |1
«Then symmetrize the RERE o9 g
connectivity matrix ! SERTIEREEE
B; = max(B;; , By) s
X | 0/0|1[1] 00




LLE
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eInstead of distance, look at neighborhood of each point.
Preserve reconstruction of point with neighbors in low dim

oFind K nearest neighbors
for each point

eDescribe neighborhood as °

best weights on neighbors

to reconstruct the point RS
E(W) T i fi B M/;ij

subject to Zj W;j =1 V1

eFind best vectors that still
have same weights

2(Y) =5, - 32,

T4 o @ Select neighbors

Reconstruct with g ~ v
linear weights o "q’l. k

‘‘‘‘‘‘
........

Map to embedded coordinates

_0 Zz 1—)_)T =l
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LLE

eFinding W's (convex comblnatlon of weights on nelghbors):

(W) =Se, (W,) where ¢ ( Hx—ZJWJxJ
ei(%Hw—Zm H I
= (S w2 -z)) (2w, (7 -
A

= ijW W, C and recall ij;j =1
I/V: = argmin_ Ew "Cw — X(wTT)

1) Take Deriv () — x(f) 0 3)Find\, w 1=1
& Setto 0

T
— w 37
2) Solve (][w] — 1 4) Find w X[)\] 1=1
Linear system A
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LLE

eFinding Y’s (new low-D points that agree with the W's)

CID(Y) — ZjW : subject to Z =0, ZZ 1_’_’T —

:Z(g_zjm/;jgj (gz_ kw/;kyk)

Z 577 Z W5, — > W+ Y W Wi,
( W +Z 1 zk)ngk
o ij knggk
_ tr(MYYT)

e\Where Y is a matrix whose rows are the y vectors
eTo minimize the above subject to constraints
we set Y as the bottom d+1 eigenvectors of M
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LLE Results

eSynthetic data on S-manifold
eHave noisy 3D samples X
eGet 2D LLE embedding Y

eReal data on face images
eEach x is an image that has
been rasterized into a vector

| A
y_—9

—

O W =

eDots are reconstructed ,
. . . ;.\oic aﬂ_‘-'ll_':’d_t'd_ad_.d_-d_nd_-d_‘.d_‘oJ_oc"_od_gd
two-dimensional Y points IEEEEEREEEEEEEe e e
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LLE Results

eTop=PCA
eBottom=LLE
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Kernel Principal Components Analysis

eRecall, PCA approximates the data with , N ZC ,
eigenvectors, mean and coefficients: % ~ *

~C.V.
j=1 v )

eGet eigenvectors that best approximating the covariance:
Y =VAV"

IS o N 0 0 )
E12 E22 Z23 — [171] lﬁzl [631 0 >\2 0 [171] lﬁzl [631
>, 2, D 0 0 X |

-Elgenvectors are orthonormal: i =8,

eIn coordinates of v, Gaussian is dlagonal cov = A

eHigher eigenvalues are higher variance, use those first
I W=D V= .

«To compute the coefficients: c, = (a; —ii) @

How to extend PCA to make it nonlinear? Kernels!
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Kernel PCA

eIdea: replace dot-products in PCA with kernel evaluations.
eRecall, could do PCA on DxD covariance matrix of data

] . - Evals &
If data is O — lZN 7277 AN =¥ Eyecs
zero-mean N =13 satisfy
or NxN Gram matrix of data: = a: z,

eFor nonlinearity, do PCA on feature expansmns

C = FZZN)(%)@’(%)T
eInstead of doing explicit feature expansion, use kernel
I.e. d-th order polynomial . ;
K = k(xi,wj) =0 xl) d)(x]) = (szzj)

Uj
eAs usual, kernel must satisfy Mercer’s theorem
eAssume, for simplicity, all ZN d>( _0

feature data is zero-mean =1 P\ i) =
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Kernel PCA

oEfficiently find & use eigenvectors of C-bar: \o = v
eCan dot either side of above equation with feature vector:

No(z,) 7= 0 @ Ci .
eEigenvectors are in span of feature vectors: 7 =3 " o.4(z]

eCombine equations: i
Mo(z) 7 =0
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Kernel PCA

eFrom before, we had: >\q>(xi)T 7= q>(xi)T Cv

this is an eig equation! o _ =
eGet eigenvectors o and eigenvalues of K
eEigenvalues are N times A
eFor each eigenvector ok there is an eigenvector vk
e\Want eigenvectors v to be normalized: (5k)T ah 1

(Zilafd)(zi))T (Zf_ﬂ%(%)) =1
(@) K& =1
eCan now use alphas only (&’“)T NX'ah =1

for doing PCA projection & L,
reconstruction! (0‘) @ = AN
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Kernel PCA

eTo compute k’Tth projectijpn coefficient of a new point ¢(x)
c =olz) v = :E{ o } N oklz,x
-Recopstrudc):giczn* ole) (2 ole )y = 2o olbloe)
bla) =200, =30 D atk(we 3T otz
*Pre-image problem, linear combo in Hilbert goes outside
eCan now do nonlinear PCA and do PCA on non-vectors
eNonlinear KPCA eigenvectors satisfy iinearpcs
same properties as usual PCA but Aty
in Hilbert space. These evecs: 4%‘
1) Top g have max variance
2) Top g reconstruction has kernel PCA

with min mean square error :
3) Are uncorrelated/orthogonal N
o \ &

4) Top have max mutual with inputs
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Centering Kernel PCA

S0 far, we had assumed the N B
data was zero-mean: >, 0(z)=0

eWe want this: 43&:13].) — d)(xj) _ ﬁZLd)(%)
eHow to do without touching feature space? Use kernels...

K, =¢ (x)T J)(x])

N2 e ) d>(fb‘j)
NICARE SO DD DICICA RICY
— Dy ﬁzgﬂ Kkj B iz;ﬁ; Kz’k + ﬁZZzl Z;V:l Kkl

eCan get alpha eigenvectors from K tilde by adjusting old K
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Kernel PCA Results

eKPCA on 2d
dataset

o[ eft-to-right
Kernel poly
order goes
from 1 to 3

1=linear=PCA

e Top-to-bottom
top evec
to weaker
evecs

eval=0.34 eval=0.35 eval=0.60 eval=1.14

0.5

-0.5

1
0.5
0

-0.5
-1

evaIQO.OS

Thy
05/
0

-0.5
-1

Figure 2: Two—dimensional toy examples, with data generated in the following way: z—values have uniform
distribution in [~1, 1], y—values are generated from y; = #? + ¢, were ¢ is normal noise with standard deviation
0.2. From left to right, the polynomial degree in the kernel (22) increases from 1 to 4; from top to bottom, the first
3 Eigenvectors are shown (in order of decreasing Eigenvalue size). The figures contain lines of constant principal
component value {contour lines); in the linear case, these are orthogonal to the Eigenvectors. We did not draw
the Eigenvectors, as in the general case, they live in a higher—dimensional space. Note that linear PCA only leads
to 2 nonzero Eigenvalues, as the input dimensionality is 2. In contrast, nonlinear PCA uses the third component
to pick up the variance caused by the noise, as can be seen in the case of degree 2.
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Kernel PCA Results

eUse coefficients of the KPCA for training a linear SVM
classifier to recognize chairs from their images.

eUse various polynomial kernel
degrees where 1=linear as in L |

Down- =

regular PCA S

Test Error Rate for degree

# of components 1 2 3 4 b} 6 7

64 || 23.0 1 21.0 | 17.6 | 16.8 | 16.5 | 16.7 | 16.6
128 || 176 | 99 | 7.9 | 7.1 | 6.2 | 6.0 | 5.8
256 || 16.8 | 6.0 | 44 | 38 | 34 | 3.2 | 3.3
512 || naa. | 44 | 36 | 3.9 | 28 | 28 | 26

1024 || n.a. | 4.1 | 3.0 | 28 | 26 | 2.6 | 24

2048 || n.aa. | 4.1 | 29 | 26 | 25 | 24 | 2.2

Table 1: Test error rates on the MPI chair database for linear Support Vector machines trained on nonlinear
principal components extracted by PCA with kernel (22), for degrees 1 through 7. In the case of degree 1, we
are doing standard PCA, with the number of nonzero Eigenvalues being at most the dimensionality of the space,
256; thus, we can extract at most 256 principal components. The performance for the nonlinear cases (degree
> 1) is significantly better than for the linear case, illustrating the utility of the extracted nonlinear components
for classification.
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Kernel PCA Results

eUse coefficients of the KPCA for training a linear SVM
classifier to recognize characters from their images.

eUse various polynomial kernel degrees where 1=linear as
in regular PCA (worst case in experiments)

eInferior performance to nonlinear SVMs (why??)

Test Error Rate for degree
# of components 1 2 3 4 G} 6 7

32 [ 96 |88 |81 [85]9.1]93] 108

64 [ 88 |73 | 68|67 |67 72| 7.5

128 || 86 | 58 [ 5.9 | 6.1 | 58] 6.0 | 6.8

256 || 8.7 |55 |53 [52]52]54| 54

512 || n.aa. |49 |46 |44 | 51|46 | 4.9

1024 || naa. |49 |43 [ 44| 46| 48 | 4.6

2048 || n.a. | 4.9 | 4.2 [ 4.1 (4.0 43 | 44

Table 2: Test error rates on the USPS handwritten digit database for linear Support Vector machines trained
on nonlinear principal components extracted by PCA with kernel (22), for degrees 1 through 7. In the case of
degree 1, we are doing standard PCA, with the number of nonzero Eigenvalues being at most the dimensionality
of the space, 256; thus, we can extract at most 256 principal components. Clearly, nonlinear principal components
afford test error rates which are superior to the linear case (degree 1}).
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Semidefinite Embedding

eAlso known as Maximum Variance Unfolding

eSimilar to LLE and kernel PCA

eLike LLE, maintains only distance in the neighborhood
oStretch all the data while maintaining the distances:

eThen apply PCA (or kPCA)
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Semidefinite Embedding

eT0 visualize high-dimensional {x,...,x\} data:

*PCA and Kernel PCA (Sholkopf et al):
-Get matrix A of affinities between pairs A;=k(x;x;)
-SVD A & view top projections

eSemidefinite Embedding (Weinberger, Saul):
-Get k-nearest neighbors graph of data
-Get matrix A
-Use max trace SDP to stretch
stretch graph A into PD graph K
-SVD K & view top projections
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Semidefinite Embedding

oSDE unfolds (pulls apart) knn connected graph C
but preserves pairwise distances when C;=1

max ZZ)\Z. st. K €k

k = VK € RV
st.K >0
s.t.zzj Kij =0

st K, +K, —K —K =
A+A —A —A ifC. =1
1 i ] Jt )
oSDE’s stretching of graph improves the visualization

@A p—
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SDE Optimization with YALMIP

Linear Programming
<Quadratic Programming
<Quadratically Constrained Quadratic Programming
<Semidefinite Programming
<Convex Programming
<Polynomial Time Algorithms
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SDE Optimization with YALMIP

P min_b'Z st.¢'2>a Vi fast O(N?)
*QP min, L7"HZ +b'7 st.8'% > o Vi
*QCQP  min 17"HZ +b'7 st.6'3 >, Vi, 377 <1
eSDP min, tr(BK) st tr(q.TK) >, Vi, K0
... ALL above in the YALMIP package for Matab!

... Google it, download and install!

oCP min_ f(:i') s.t. g(f) > slow O(N3)
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SDE Results

oSDE unfolds (pulls apart) knn connected graph C

eSDE’s stretching of graph improves the visualization here
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SDE Results

*SDE unfolds (pulls apart)
knn connected graph C
before doing PCA

eGets more use or energy
out of the top eigenvectors
than PCA

eSDE's stretching of graph | 5
iImproves visualization here ™

0.00 0.20 0.40 0.60 0.80 1.00
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SDE Problems - MVE

eBut SDE stretching could worsen visualization!

eSpokes Experiment:

 Original PCA

e\Want to pull apart only

in visualized dimensions *
eFlatten down VS.

remaining ones
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Minimum Volume Embedding

eTo reduce dimension, drive energy into top (e.g. 2) dims
eMaximize fidelity F( K) _MNtX or % energy in top dims

DR

" Orlg‘mal . . .

F(K)=0.98

F(K)=0.29

eEquivalent to maximizing X, +X,—B>_.\, for some B
eAssume B=1/2...

33
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Minimum Volume Embedding

oStretch in d<D top dimensions and squash rest.
max . ijl A — Zf:dﬂ A sl K ER
eSimplest Linear-Spectral SDP...

N = QLI e OLd OLd_|_1 PPN OLD

F1 o 41 -1 e -1

oEffectively maximizes Eigengap
between d'th and d+1'th A
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Minimum Volume Embedding

oStretch in d<D top dimensions and squash rest.

max . ijl >\Z. — Zf:dﬂ >\Z, st. K €k

eSimplest Linear-Spectral SDP...

N = QLI e OLd OLd_|_1 PPN OLD

F1 o 41 -1 e -1

oEffectively maximizes Eigengap
between d'th and d+1'th A

eVariational bound on cost = Iterated Monotonic SDP
el ock V and solve SDP K. Lock K and solve SVD for V.
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MVE Optimization: Spectral SDP

eSpectral function: f(A,,...,Ap) eigenvalues of a matrix K
*SDP packages use restricted cost functions over hull kappa.

Trace SDPs max, . tr(BK|

Logdet SDPs max,_ > log\,
eConsider richer SDPs (assume A; in decreasing order)

Linear-Spectral SDPs max,_ > aX

eProblem: last one doesn't fit nicely into standard SDP code
(like YALMIP or CSDP). Need an iterative algorithm...
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MVE Optimization: Spectral SDP

oIf alphas are ordered g(K)= o),
get a variational SDP problem (a Procrustes problem).

maXKGKg() max ZOL)\

= max,_ > aX ’57"( ) st. Kv. = v

= max,_ Zzuzt’r(k ?JZUT) >\Z > >\Z i

= max, _ Z utr(szvz ) vy =8
1) )

— max tr(KE V. )
Ker i 1 1 1

. T T .
max . 1min tr(KE QLU ) st.uu =0, if a. <«
Kex U i1 1 1 T 7 1 1 1+1

T T .
max , max t'r(Kg QLU ) st.u,u, =90, if . >«
U i 1 1 1 T g i 1

Kexk 1+1

For max ovekr K use SDP. For max over U use SVD.
Iterate to obtain monotonic improvement.
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MVE Optimization: Spectral SDP

if alpha decreasing the objective
g(K) = Zicxl)\i st.o, > IS convex.

Recall from (Overton & Womersley 91) and
(Fan '49) and (Bach & Jordan ‘03)

"Sum of d top eigenvalues of p.d. matrix is convex”

J, (K) = ijl A\, = conver
Our linear-spectral cost is a combination of these
g(K) — OLDfD (K) + Zj:D—l(OLi - OLiJrl)f; (K)
— (thT (K) + 2120—1 ‘uz‘ B Oéz'-l—l‘f; (K)

Trace (linear) + conic combo of convex fn's =convex
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MVE Pseudocode

eDownload at www.metablake.com/mve

Input | (Z;)iL, kernel x, and parameters d, k.

1

"F .LN‘ X AN’

Step 1 | Form affinity matrix A € with

pairwise entries A;; = k(Z;,T;).

Step 2 | Use A to find a binary connectivity
matrix C' via k-nearest neighbors.
Step 3 | Initialize X = A.
Step 4 | Solve for the eigenvectors 7.. ... Uy and
eigenvalues \y > Ao > ... > Ay of K.

d N
Step 5 | Set B=— )" z“zz_ff + > f,f;r

i=1 i=d+1

Step 6 | Using SDP find A = argmingcx tr( K B).
Step 7 | If [[K — K|| > € set K = K, go to Step 4.
Step 8 | Perform kernel PCA on K™ to get
d-dimensional output vectors .. ... UN -
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MVE Results

eSpokes experiment visualization and spectra
eConverges in ~5 iterations

2
1 Original
i 40 T T
0:
s i
20 -
10r -1
0
10 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 a ]
15 T T T T T
‘O]IIIIIL
5F o
0
s 1 2 3 4 5 ] 7 8 9

MVE
60 T

T T
50
40
30F
201
10
0
-10 L L L
1 2 3
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MVE Results

mﬁ
eSwissroll Visualization \
(Connectivity via knn) 3
(d is set to 2) PCA .
SDE
MVE

eSame convergence
under random initialization
or K=A...




Tony Jebara

KNN Embedding with MVE

*MVE does better even with kNN connectivity
eFace images with spectra
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KNN Embedding with MVE

*MVE does better even with KNN
eDigit images visualization with spectra

PCA SDE MVE
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Graph Embedding with MVE

eCollaboration network with spectra
PCA SDE MVE

5.9% in 2D

3% in 2 % 1n2
05.3% 1n 2D 992% in2D 44 44
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MVE Results

eEvaluate fidelity or % energy in top 2 dims

kPCA SDE MVE

Star 95.0%| 29.9%| 100.0%
Swiss Roll | 45.8%| 99.9%| 99.9%
Twos 18.4% | 88.4%| 97.8%
Faces 31.4%| 83.6%| 99.2%

Network 5.9%| 95.3% 99.2%
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MVE for Spanning Trees

eInstead of KNN, use maximum weight spanning tree
to connect points

(Kruskal's algo: connect @ﬁs e
points with short edges 10

10 |
5
first, skip edges that create 2 4-&514

7 |6 ,@
loops, stop when tree) 7

eTree connectivity can fold under SDE or MVE.
eAdd constraints on all pairs to keep all distances from
shrinking (call this SDE-FULL or MVE-FULL)

K € originalx
and K. + K — K —K >A +A —A — A
i i i ji i 7 i ji
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MVE for Spanning Trees

eTree connectivity with degree=2.
oTop: taxonomy tree of 30 species of salamanders
eBottom: taxonomy tree of 56 species of crustaceans

KPCA SDE MVE SDE-full MVE-full
."..,’
4
\

L]

.
? 7 r P } 5
=% 52.8% I 99.6% | 100% 93.7% 98.7%

B

T le - w

38.2% 100% 100% 88.3% 97.7%



