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Boosting 
• Combining Multiple Classifiers 

• Voting 

• Boosting 

• Adaboost 

• Based on material by Y. Freund, P. Long & R. Schapire 
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Combining Multiple Learners 
• Have many simple learners 
• Also called base learners or 
  weak learners which have a classification error of <0.5 
• Combine or vote them to get a higher accuracy 
• No free lunch: there is no guaranteed best approach here 
• Different approaches: 

 Voting 
  combine learners with fixed weight 

 Mixture of Experts 
  adjust learners and a variable weight/gate fn 
 Boosting 
  actively search for next base-learners and vote 
 Cascading, Stacking, Bagging, etc. 
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Voting 
• Have T classifiers 
• Average their prediction with weights 

• Like mixture of experts but weight is constant with input 
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Mixture of Experts 
• Have T classifiers or experts       and a gating fn 
• Average their prediction with variable weights 
• But, adapt parameters of the gating function 
  and the experts (fixed total number T of experts) 
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Boosting 
• Actively find complementary or synergistic weak learners 
• Train next learner based on mistakes of previous ones. 
• Average prediction with fixed weights 
• Find next learner by training on weighted versions of data. 

weights 

training data 

    
x

1
,y

1( ),…, x
N
,y

N( ){ }

    
w

1
,…,w

N{ }

  
h

t
x( )weak learner 

ensemble of learners 

weak rule 

   

w
i
step −h

t
x

i( )yi( )i=1

N∑
w

ii=1

N∑
<

1
2
− γ

    
α

1
,h

1( ),…, α
T
,h

T( ){ }

prediction    
f x( ) = α

t
h

t
x( )t=1

T∑



Tony Jebara, Columbia University 

AdaBoost 
• Most popular weighting scheme 
• Define margin for point i as 
• Find an ht and find weight αt to min the cost function 
      sum exp-margins 

weights 

training data 
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AdaBoost 
• Choose base learner & αt: 
• Recall error of  
  base classifier ht must be 

• For binary h, Adaboost puts this weight on weak learners: 
     (instead of the 
      more general rule) 

• Adaboost picks the following for the weights on data for 
 the next round (here Z is the normalizer to sum to 1) 
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Decision Trees 
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An alternating decision tree 
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Example: Medical Diagnostics 

• Cleve dataset from UC Irvine database. 

• Heart disease diagnostics (+1=healthy,-1=sick)  

• 13 features from tests (real valued and discrete). 

• 303 instances. 
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Ad-Tree Example 
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Cross-validated accuracy 
Learning 
algorithm 

Number 
of splits 

Average 
test error 

Test error 
variance 

ADtree 6 17.0% 0.6% 

C5.0 27 27.2% 0.5% 

C5.0 + 
boosting 446 20.2% 0.5% 

Boost 
Stumps 16 16.5% 0.8% 
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AdaBoost Convergence 
• Rationale? 
• Consider bound on 
   the training error: 

• Adaboost is essentially doing gradient descent on this. 
• Convergence?  
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AdaBoost Convergence 
• Convergence? Consider the binary ht case. 
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Curious phenomenon 
Boosting decision trees 

Using <10,000 training examples we fit >2,000,000 parameters 
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Explanation using margins 

Margin 

0-1 loss 
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Explanation using margins 

Margin 

0-1 loss 

No examples 
with small 
margins!! 
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Experimental Evidence 
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AdaBoost Generalization Bound 
• Also, a VC analysis gives a generalization bound: 
     (where d is VC of 
     base classifier) 

• But, more iterations  overfitting! 
• A margin analysis is possible, redefine margin as: 

  Then have 
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AdaBoost Generalization Bound 

Margin Θ
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• Suggests this optimization problem: 
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AdaBoost Generalization Bound 
• Proof Sketch 
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UCI Results 

Database Other Boosting Error 
reduction 

Cleveland 27.2  (DT) 16.5 39% 

Promoters 22.0  (DT) 11.8 46% 

Letter 13.8  (DT) 3.5 74% 

Reuters 4 5.8, 6.0, 9.8 2.95 ~60% 
Reuters 8 11.3, 12.1, 13.4 7.4 ~40% 

% test error rates 
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Boosted Cascade of Stumps 
• Consider classifying an image as face/notface 
• Use weak learner as stump that averages of pixel intensity 
• Easy to calculate, white areas subtracted from black ones 

• A special representation of the sample called the integral 
image makes feature extraction faster. 
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Boosted Cascade of Stumps 
• Summed area tables 

• A representation that means any rectangle’s values can be 
calculated in four accesses of the integral image. 
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Boosted Cascade of Stumps 
• Summed area tables 
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Boosted Cascade of Stumps 
• The base size for a sub window is 24 by 24 pixels. 
• Each of the four feature types are scaled and shifted across 
all possible combinations 
• In a 24 pixel by 24 pixel sub window there are ~160,000 
possible features to be calculated. 
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Boosted Cascade of Stumps 
• Viola-Jones algorithm, with K attributes (e.g., K = 160,000) 
we have 160,000 different decision stumps to choose from 

At each stage of boosting  
• given reweighted data from previous stage 
• Train all K (160,000) single-feature perceptrons 
• Select the single best classifier at this stage 
• Combine it with the other previously selected classifiers 
• Reweight the data 
• Learn all K classifiers again, select the best, combine, 
reweight 
• Repeat until you have T classifiers selected 
• Very computationally intensive! 
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Boosted Cascade of Stumps 
• Reduction in Error as Boosting adds Classifiers 
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Boosted Cascade of Stumps 
• First (e.g. best) two features learned by boosting 
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Boosted Cascade of Stumps 
• Example training data 
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Boosted Cascade of Stumps 
• To find faces, scan all squares at different scales, slow  

• Boosting finds ordering on weak learners (best ones first) 
• Idea: cascade stumps to avoid too much computation!  
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Boosted Cascade of Stumps 

• Training time = weeks  (with 5k faces and 9.5k non-faces) 

• Final detector has 38 layers in the cascade, 6060 features 

• 700 Mhz processor: 
• Can process a 384 x 288 image in 0.067 seconds (in 2003 
when paper was written) 
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Boosted Cascade of Stumps 
• Results 


