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Boosting

eCombining Multiple Classifiers
e\/oting

eBoosting

eAdaboost

eBased on material by Y. Freund, P. Long & R. Schapire
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Combining Multiple Learners

eHave many simple learners
eAlso called base learners or
weak learners which have a classification error of <0.5
eCombine or vote them to get a higher accuracy
*No free lunch: there is no guaranteed best approach here
oDifferent approaches:
Voting
combine learners with fixed weight
Mixture of Experts
adjust learners and a variable weight/gate fn
Boosting
actively search for next base-learners and vote
Cascading, Stacking, Bagging, etc.
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Voting

eHave T classifiers h |z
eAverage their prediction with weights

f(x) = Zj:lutht (x) wherea, > 0and Z; a, =1

oL ike mixture of experts but weight is constant with input
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Mixture of Experts

eHave T classifiers or experts h xz} and a gating fn o, (:c)
eAverage their prediction with variable weights
eBut, adapt parameters of the gating function

and the experts (fixed total number T of experts)

f(x) = Zil Q, (x)ht (a:) wherea, (a:) > 0and ijl Q, (x) =1

Output

Gating
Network

Input
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Boosting

eActively find complementary or synergistic weak learners
eTrain next learner based on mistakes of previous ones.

eAverage prediction with fixed weights
oFind next learner by training on weighted versions of data.

weak rule
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AdaBoost

eMost popular weighting scheme
«Define margin for pointias y> ., o t(x)
eFind an h, and find weight o, to min the cost function

ZN: exp( y > t( )) sum exp-margins

training ‘data
X oz weak rule
17 yl Y Y] N’ yN
weak learner y x)
gl Zil w,step (_ht (xz)yz) - 1 f
—
>, 2
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ensemble of learners
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AdaBoost

«Choose base learner & o,: |min Zjvlexp(—inT ah (:c))

eRecall error of

base classifier h, must be __ Zilwﬁtep(—ht (ﬂ?)y) 1

eFor binary h, Adaboost puts this weight on

&
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Weak learners:
(instead of the

1—¢
< t more general rule)
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eAdaboost picks the following for the weights on data for
the next round (here Z is the normalizer to sum to 1)
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Decision Trees
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Decision tree as a sum
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An alternating decision tree
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Example: Medical Diagnostics

e Cleve dataset from UC Irvine database.
*Heart disease diagnostics (+1=healthy,-1=sick)
13 features from tests (real valued and discrete).

*303 1nstances.
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Ad-Tree Example

A.-.__-‘ é.. ..5 -..__..‘

1: thal = normal 2: number-vessels-colored = 0 3: chest-pain-type is asymptomatic 4: oldpeak < 2.45
Y Y
5: cholesteral < 240.5 6: sex = female

y
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Cross-validated accuracy

6 17.0% | 0.6%
27 27.2% | 0.5%
446 20.2% | 0.5%
16 16.5% | 0.8%
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AdaBoost Convergence

Logitboost |
eRationale? Loss
eConsider bound on Brownboost
the training error: 0-1 loss
’
_ 1 — .
Remp N Zi: Step( —y.f (%)) Mistakes Margin
LNV Correct
< _Z': CXp (—y.f ($>) exp bound on step
— ZZ 1€Xp( Y, Zt O t( )) definition of f(x)
— thl A recursive use of Z

eAdaboost is essentially doing gradient descent on this.
eConvergence?
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AdaBoost Convergence

-Convergence? Consider the binary h, case.

R

emp

emp

So, the final learner converges exponentially fast in T if
each weak learner is at least better than gamma!

<]

11, t—Ht 12 wexp( ayh( ))

Lo ()
:itlz wj exp|In 188] (Xt:lln 1_€t]
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R < exp(—ZZt t) < exp(—QTﬂ{ )
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Curious phenomenon

10
error

. train
10 100 1000

# of rounds (T)

10,000 2,000,000
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Explanation using margins

0-1 loss
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Explanation using margins

\

0-1 loss &
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Experimental Evidence

1.0-

0.5-

margin (#)
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AdaBoost Generalization Bound

eAlso, a VC analysis gives a generalization bound:

Td (where d is VC of
L L \/ N base classifier)

eBut, more iterations - overfitting!
*A margin analysis is possible, redefine margin as:

2,0 ()
2.

Thenhave R< 1 Zstep (9 marf( ))—I— O

mar, (2,9) =

Q
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AdaBoost Generalization Bound

eSuggests this optimization problem:
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AdaBoost Generalization Bound
eProof Sketch
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UCI Results

%% test error rates

Cleveland 27.2 (DT) 16.5 39%
Promoters| 22.0 (DT) 11.8 46%

Letter 13.8 (DT) 3.5 74%
Reuters 4| 5.8, 6.0, 9.8 2.95 ~60%

Reuters 8 |11.3, 12.1, 13.4 /.4 ~40%
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Boosted Cascade of Stumps

eConsider classifying an image as face/notface
eUse weak learner as stump that averages of pixel intensity
eEasy to calculate, white areas subtracted from black ones

*A special representation of the sample called the integral
iImage makes feature extraction faster.
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Boosted Cascade of Stumps

eSummed area tables

sum(l:x, 1:y)

*A representation that means any rectangle’s values can be
calculated in four accesses of the integral image.
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Boosted Cascade of Stumps

eSummed area tables

LS
=S

Figure 3: The sum of the pixels within rectangle D can be computed with four array references. The value
of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 1s A + B,

at location 3 is A + C, and at location 4 is A + B + C + D. The sum within D can be computed as
441-(2+3).
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Boosted Cascade of Stumps

eThe base size for a sub window is 24 by 24 pixels.
eEach of the four feature types are scaled and shifted across

all possible combinations
eIn a 24 pixel by 24 pixel sub window there are ~160,000

possible features to be calculated.
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Boosted Cascade of Stumps

eViola-Jones algorithm, with K attributes (e.g., K = 160,000)
we have 160,000 different decision stumps to choose from

At each stage of boosting

egiven reweighted data from previous stage

eTrain all K (160,000) single-feature perceptrons

eSelect the single best classifier at this stage

eCombine it with the other previously selected classifiers
eReweight the data

eLearn all K classifiers again, select the best, combine,
reweight

eRepeat until you have T classifiers selected

e\Very computationally intensive!
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Boosted Cascade of Stumps

eReduction in Error as Boosting adds Classifiers
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Boosted Cascade of Stumps

oFirst (e.g. best) two features learned by boosting
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Boosted Cascade of Stumps

eExample training data
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Boosted Cascade of Stumps

oTo find faces, scan all squares at different scales, slow ®

eBoosting finds ordering on weak learners (best ones first)
e]dea: cascade stumps to avoid too much computation! ©

" Al Sub-windows )

Reject Sub-window
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Boosted Cascade of Stumps

eTraining time = weeks (with 5k faces and 9.5k non-faces)

eFinal detector has 38 layers in the cascade, 6060 features

¢700 Mhz processor:
eCan process a 384 x 288 image in 0.067 seconds (in 2003

when paper was written)
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Boosted Cascade of Stumps

eResults




