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Abstract

We show a classic result that spectral clustering on a b-regular graph can only
solve sparse cut to ¢s. < /8b¢.

We are given a weighted graph G with n nodes with weights W which can equivalently be repre-
sented as an adjacency matrix A € R™*™. Graph partitioning recovers a cut or subset of vertices S
on G such that |S| < |V]. Good choices of S are obtained by minimizing the SPARSE CUT criterion
defined as

SCa(8) = W(S,9)/(ISIIS|/n).
Here we have defined W (S1, S2) as the total weight of edges between the set of nodes S; and Ss.

Consider trying to minimize SC(.S) which is NP-hard. Instead, we attempt to run the following
polynomial-time algorithm.

SPECTRALCUT:

Input: a graph G = (V, E) with adjacency matrix A.

1. Compute the second leading eigenvector v € ™ of A.

2. Foreachi = 1,...,n create a candidate partition S; = {j : j € V,v(j) < v(i)}.

3. Output the partition with lowest SPARSE CUT value S = arg min;c 1. n} SCq Si)-

The following theorem says how well this algorithm performs.

Theorem 1 Given a b-regular graph G with the optimal SPARSEST CUT ¢ = ming SC(S) then
algorithm SPECTRALCUT provides a cut for G that achieves a sparse cut value ¢ 4. satisfying ¢s. <

\/8b(b — \2) and therefore satisfying ¢s. < /Sbo.

Proof 1 Consider the incidence matrix A for G for a b-regular graph which satisfies A1 = bl. The
leading eigenvalue of the graph is A1 = b. Given a vector x € R", the second eigenvalue is:

Ay = max XTTﬂ
x:xeR?,x1l1l X*X
Similarly, it is straightforward to show for b-regular graphs that
i Zf Al )@ —x()? 3 AG ) (x(0) - x(5))?
wxdliin Ly () —x())? | xwer LY (x(i) - x())?

where we have dropped the perpendicularity constraint which is redundant. It is also straightfor-
ward to see that

b— Ay =

L S A X6 X, AG () = x()
wxdie T T ) —x()? e 23, (x(0) — X())P?

since minization over real values is a strict relaxation over the discrete minimization producing ¢.
Define v € R™ as the second leading eigenvector which minimizes the continuous optimization
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above:

> Al ) (v (@) = v(4))?
& 2 (v(i) = v (j)?
Normalize v to obtain v v such that max; V(i) — min; V(i) = 1. Consider selecting a cut S
by picking a threshold t as in the algorithm SPECTRALCUT where t is distributed uniformly in the
interval t € [min; v(i), max; v(4)]. The cut we produce is then S = {j : j € V,¥(j) > t}. The
probability that edge (i, j) is in the cut E(S, S) is proportional to |V (i) — V(j)|. It is easy to see
that the following expectations over t are satisfied E[W(S,S] = %Zw A, ))|v(@) — ¥(5)| and

E[|S||S]] = % > V(@) = V(j)| Thus, as we sample t we must find a threshold that satisfies:

W(S.S) Sy, AGIND - ¥6)]

b— Xy = 2

SIsist — 25 [V(E) =¥ ()]
Minimizing over v then yields
225 Al )V () = v ()] 2 Al DIvE) — v

¢se = min = min

vern L35 [ (i) = V() vert L3 V(i) = v (j)]

Assume without loss of generality that the median of v = 0. Define the vector y € R" such that
yv(i) = v(i)|v(?)|. It is immediate to see that

B DI =V = 23 (va) < 23 Iy(0) @

3)

and that

y(@) =yl = v@) = v(@IVQE) +v())-

Multiply both sides by A(i, j) and sum over i, j to get:

ZA i)y (2) ZA i DIV (E) = vV @]+ V()
Apply Cauchy—Schwartz to the above expression:

ZA(i,j)ly(i)—.Y(j)l < X:A(Z',J')IV(Z')—V(j)l2 ZA(i,j)(Iv(i)|+|v(j)|)2

PRS0 — V02, [ AG (VG + V)2
1] ¥
where we plugged in Equation 2 inside the left root. Next, apply Equation 4 in the left root:
ZA(Z'J)I.Y(Z') -yl < \/2(b ) Z Iy @)1, D AGHIVE] + ()2
17 7 (%]
Apply Jensen’s inequality (E[x])? < E[x?] inside the right root:

ZA(i,j)ly(i) -yl \/2(?) ) Z ly (@)l X:A(ZQJ')(QIV(Z')I2 +2lv(i)?)

\/2<b—A2>Z|y<z‘>| BY )P
where the second line holds since A comes from a b-regular graph. Next, since |v(i)|* = |y (i)|

Do AGHYEH -y < \/8b<b—A2>Z|y<z'>|
V/8b(b — Ag) = Z|y
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where the last step holds since the median is zero. Dividing both sides by = >, iy () —y(j)| gives

i Al )y () —y (i
Zzlj ( J)|.() .(J)| < VRN,
7 2 1y (@) —y(5)]
Since Equation 3 guarantees that ¢4 is lower than the left hand side of the above equation for any
choice of v.€ R" ory € R", we have ¢ps. < \/8b(b— \3) as desired for the first part of the
theorem. Applying Equation 1 to b — \s gives the second part of the theorem.




