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Abstract

We show a classic result that spectral clustering on a b-regular graph can only
solve sparse cut to φsc ≤

√
8bφ.

We are given a weighted graph G with n nodes with weights W which can equivalently be repre-
sented as an adjacency matrix A ∈ Rn×n. Graph partitioning recovers a cut or subset of vertices S
on G such that |S| ≤ |V |. Good choices of S are obtained by minimizing the SPARSE CUT criterion
defined as

SCG(S) = W (S, S̄)/(|S||S̄|/n).

Here we have defined W (S1, S2) as the total weight of edges between the set of nodes S1 and S2.

Consider trying to minimize SCG(S) which is NP-hard. Instead, we attempt to run the following
polynomial-time algorithm.

SPECTRALCUT:
Input: a graph G = (V,E) with adjacency matrix A.
1. Compute the second leading eigenvector v ∈ <n of A.
2. For each i = 1, . . . , n create a candidate partition Si = {j : j ∈ V,v(j) ≤ v(i)}.
3. Output the partition with lowest SPARSE CUT value S = arg mini∈{1,...,n} SCG(Si).

The following theorem says how well this algorithm performs.

Theorem 1 Given a b-regular graph G with the optimal SPARSEST CUT φ = minS SCG(S) then
algorithm SPECTRALCUT provides a cut forG that achieves a sparse cut value φsc satisfying φsc ≤√

8b(b− λ2) and therefore satisfying φsc ≤
√

8bφ.

Proof 1 Consider the incidence matrix A for G for a b-regular graph which satisfies A1 = b1. The
leading eigenvalue of the graph is λ1 = b. Given a vector x ∈ <n, the second eigenvalue is:

λ2 = max
x:x∈<n,x⊥1

xTAx
xT x

.

Similarly, it is straightforward to show for b-regular graphs that

b− λ2 = min
x:x∈<n,x⊥1

∑
ij A(i, j)(x(i)− x(j))2

1
n

∑
ij(x(i)− x(j))2

= min
x:x∈<n

∑
ij A(i, j)(x(i)− x(j))2

1
n

∑
ij(x(i)− x(j))2

where we have dropped the perpendicularity constraint which is redundant. It is also straightfor-
ward to see that

b−λ2 = min
x:x∈<n

∑
ij A(i, j)(x(i)− x(j))2

1
n

∑
ij(x(i)− x(j))2

≤ min
x:x∈{−1,1}n

∑
ij A(i, j)(x(i)− x(j))2

1
n

∑
ij(x(i)− x(j))2

= φ (1)

since minization over real values is a strict relaxation over the discrete minimization producing φ.
Define v ∈ <n as the second leading eigenvector which minimizes the continuous optimization
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above:

b− λ2 =

∑
ij A(i, j)(v(i)− v(j))2

1
n

∑
ij(v(i)− v(j))2

. (2)

Normalize v to obtain v̂ ∝ v such that maxi v̂(i) − mini v̂(i) = 1. Consider selecting a cut S
by picking a threshold t as in the algorithm SPECTRALCUT where t is distributed uniformly in the
interval t ∈ [mini v̂(i),maxi v̂(i)]. The cut we produce is then S = {j : j ∈ V, v̂(j) ≥ t}. The
probability that edge (i, j) is in the cut E(S, S̄) is proportional to |v̂(i) − v̂(j)|. It is easy to see
that the following expectations over t are satisfied E[W (S, S̄] = 1

2

∑
ij A(i, j)|v̂(i) − v̂(j)| and

E[|S||S̄|] = 1
2

∑
ij |v̂(i)− v̂(j)|. Thus, as we sample t we must find a threshold that satisfies:

W (S, S̄)
1
n |S||S̄|

≤
∑

ij A(i, j)|v̂(i)− v̂(j)|∑
ij |v̂(i)− v̂(j)|

.

Minimizing over v then yields

φsc = min
v∈<n

∑
ij A(i, j)|v̂(i)− v̂(j)|
1
n

∑
ij |v̂(i)− v̂(j)|

= min
v∈<n

∑
ij A(i, j)|v(i)− v(j)|
1
n

∑
ij |v(i)− v(j)|

. (3)

Assume without loss of generality that the median of v = 0. Define the vector y ∈ <n such that
y(i) = v(i)|v(i)|. It is immediate to see that

1
n

∑
i,j

|v(i)− v(j)|2 = 2
∑

i

v(i)2 − 2

(∑
i

v(i)

)2

≤ 2
∑

i

|y(i)| (4)

and that

|y(i)− y(j)| = |v(i)− v(j)|(v(i) + v(j)).

Multiply both sides by A(i, j) and sum over i, j to get:∑
ij

A(i, j)|y(i)− y(j)| =
∑
ij

A(i, j)|v(i)− v(j)|(|v(i)|+ |v(j)|).

Apply Cauchy-Schwartz to the above expression:∑
ij

A(i, j)|y(i)− y(j)| ≤
√∑

ij

A(i, j)|v(i)− v(j)|2
√∑

ij

A(i, j)(|v(i)|+ |v(j)|)2

=

√
b− λ2

n

∑
ij

(v(i)− v(j))2
√∑

ij

A(i, j)(|v(i)|+ |v(j)|)2

where we plugged in Equation 2 inside the left root. Next, apply Equation 4 in the left root:∑
ij

A(i, j)|y(i)− y(j)| ≤
√

2(b− λ2)
∑

i

|y(i)|
√∑

ij

A(i, j)(|v(i)|+ |v(j)|)2.

Apply Jensen’s inequality (E[x])2 ≤ E[x2] inside the right root:∑
ij

A(i, j)|y(i)− y(j)| ≤
√

2(b− λ2)
∑

i

|y(i)|
√∑

ij

A(i, j)(2|v(i)|2 + 2|v(j)|2)

=
√

2(b− λ2)
∑

i

|y(i)|
√

4b
∑

i

|v(i)|2

where the second line holds since A comes from a b-regular graph. Next, since |v(i)|2 = |y(i)|∑
ij

A(i, j)|y(i)− y(j)| ≤
√

8b(b− λ2)
∑

i

|y(i)|

≤
√

8b(b− λ2)
1
n

∑
ij

|y(i)− y(j)|
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where the last step holds since the median is zero. Dividing both sides by 1
n

∑
ij |y(i)− y(j)| gives∑

ij A(i, j)|y(i)− y(j)|
1
n

∑
ij |y(i)− y(j)|

≤
√

8b(b− λ2).

Since Equation 3 guarantees that φsc is lower than the left hand side of the above equation for any
choice of v ∈ <n or y ∈ <n, we have φsc ≤

√
8b(b− λ2) as desired for the first part of the

theorem. Applying Equation 1 to b− λ2 gives the second part of the theorem.
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