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Clustering

What is Clustering?

@ Split n items into k partitions to minimize some Cost
o Given: dataset {xy,...,x,} where x; € Q and k € Z
@ Output: X3,..., X C{1,...,n}

suchthat X, N X; = {}, Uk & ={1,...,n}




Clustering

What is Clustering?

@ Split n items into k partitions to minimize some Cost
o Given: dataset {xy,...,x,} where x; € Q and k € Z
e Output: X3,..., X C{1,...,n}
suchthat X; N X; = {}, Uk_ & ={1,...,n}
@ Additional possible assumptions
s The x; are independent identically distributed (iid) from p(x)
@ We are given a distance d(x;, xj) or kernel k(xi, x;) = Kijj,
equivalent since d(x;, x;) = /k(xi, xi) — 2k(xi, x;) + K(x;, X;)
e.g.

Linear (Euclidean)  &(x;,x;)

Polynomial  k(xj, x;) = (x XJ 1)P

Radial Basis Function  (x;, x;) = exp(—||xi — xj[|*/o?)
Laplace  k(xj,xj) = exp(—||x, — xjl|/o)

:X

. but what Cost function to use?



Clustering

k-means - Lloyd 1957

@ k-means minimizes the Cost
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@ Kernelized k-means minimizes the following'
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GREEDY KERNEL KMEANS (Dhillon et al. 04):
1. Initialize A7, ..., Xk randomly

2. Set z; = arg min; ﬁ > tmex; (Kim — 2Kjm)
3. SetX;:{jZZj:i}

4. If not converged goto 2




Clustering

Clustering as Graph Partition

(]

Try clustering as graph partition problem (Shi & Malik 2000)
Make {x1,...,xn} an undirected graph G = (V, E) of vertices
V={1,...,n} and edges E = {(i,j): i <je€{l,...,n}}
Get adjacency W € R™" via Wj; = k(x;, xj) and W;; =0
Clustering = cutting graph into vertex subsets Sy, ..., Sk

(]

Define a weight over two sets as W(A,B) = ;. ;cg Wi

We want cuts with big intra-cluster weight W(S;, S;) and
small inter-cluster weight W(S;, ;)

e © e ¢



Clustering

Problem with k-Means

@ Let's only consider k = 2 and recover S = V; and S=V
e Use Wj; = k(x;j,x;) and assume Wj; = const = 0.

@ The k-means Cost becomes ming — Wg"s) — W‘(g"g)

@ Problem: k-means ignores W(S,S), the amount of cutting

Let's consider alternative Cost functions...



Graph Partition

Unbalanced Graph Partition

D)
© @ge.oge

@ One cost function that considers cutting is
min-cut  ming W(S,S)
@ This can be solved optimally in polynomial time!

@ Problem: it can give trivially small partitions, in the above it
just disconnects x7 from the graph...

@ We need both |S| and |5| to be balanced!



Graph Partition

Balanced Graph Partition Cost Functions

@ There are many balanced graph partition cost functions

k-means
sparse cut
ratio cut
expansion

normalized cut

mins ¢(5) = — W|(§S\’S) - vvg',é)
mins ¢(S) = 12&2)

mins ¢(S) = Wfé’s)f W\(;’S)
mins 6(S) = nigidy
mins 8(5) = izs) + WD)

@ All are NP-hard to solve (Ambuhl et al. 2007) or approximate
within a constant factor (Konstantin & Harald '04). Can't
find S such that ¢(5) < O(1) mins ¢(S) in polynomial time!

@ Need efficient algorithms where factor grows slowly with n

O(n) = O(v/n) = O(V/Tog n) = O(log log n) > O(1)



Graph Partition

Balanced Graph Partition Cost Functions beyond k=2

@ We can extend beyond 2-way cuts to multi-way cuts

@ For example, normalized cut for k =2 is

. (51,5 5,5
mins, s, $(S1, S2) = Weed + wiee

@ Multi-way normalized cut for k > 2 is simply
; k k
Mins, s,....S Dim1 j=i+1 o(Si, 5))




Graph Partition

Equivalence of Cost Functions

Lemma

The cost functions satisfy
expansion(S) < ratio cut(S) < 2 x expansion(S)

Lemma

The minima of the cost functions satisfy
ming expansion(S) < ming sparse cut(S) < 2 x ming expansions(S)

| A\

4

Lemma
For b-regular graphs, W € B™", >~ Wj; = b, W; =0, W; = W;
we have normalized cut(S) = ratio cut(S)/b

\

@ So, let's focus on sparse cut ¢* = mins ¢(S) = ming ‘V;/'(é‘fg

and consider spectral heuristics for minimizing it




O(+/n) via Spectral

Spectral Cut - Donath & Hoffman 1973

SPECTRALCUT: Input regular adjacency matrix W. Output cut S
1. Compute the 2nd eigenvector v € R” of W

2. For i =1,...,n create partition S = {j:vj<vi}

3. Output § = §; with smallest sparse cut i = argmin; ¢(5;)

Theorem (Alon & Milman 1985, Chung 1997)

Given a b-regular graph, SPECTRALCUT provides a cut S that
achieves a sparse cut value ¢(S) < \/8bg*

Corollary

| \

Given a b-regular graph, SPECTRALCUT provides a cut S that
achieves a sparse cut value ¢(S) < O(y/n)¢*

\




O(+/n) via Spectral

Spectral Cut - Donath & Hoffman 1973

Proof. (Alon & Milman 1985, Chung 1997).

Clearly, W1 = b1 so A\ = b and A\> = maxycrn 11 XI}/Z".

It is easy to show that b — A\, < ¢* by relaxing the minimization
: > Wi(xi—x;)? - > Wi(xi—x;)?
MiNxeR" Ts~ 0 )2 > ()2 < MiNxe{-1,1}" T )2 S 06—%)2

Define ¥ o< v the 2"? eigenvector such that max; V; — min; v; = 1.
Select cut S by picking ¢ uniformly_in t € [min; v;, max; v;].
Probability edge (/,/) is in cut (S, S) is proportional to |U; — Uj|.
Note E[W(S, 5)] = 3o, Wy 5% and Be[|S|[S[] = 5 P15,
wW(s,S) < 2o Wil Vi—

Sampling t achieves

115115 = 25109l
. . . Z VV,:,“\AI,'—VH . Z W,-J-|v,-—vj-|
Min over v gives = MiNyeRn T = MiNyeR» T
BiVes ¢sc VR T =] Y i

A few more steps yield ¢ < \/8b(b — A2). O

ot



O(+/n) via Spectral

Spectral Cut - Shi & Malik 2000

@ A continuous relaxation of Normalized Cut

@ Use eigenvectors of the Laplacian to find partition

SHIMALIKCUT: Input adjacency matrix W. Output cut S
1. Define diagonal A € R™" as A;; = Zj Wi

2. Get Laplacian L=/ — A~12WA—1/2

3. Compute second smallest 2nd eigenvector v € R" of L
4. Create partition S = {j : v; < median(v)}




O(+/n) via Spectral

Spectral Cut - Shi & Malik 2000

Results of eigenvectors on (D — W)y = ADy




O(+/n) via Spectral

Spectral Cut - Ng, Jordan & Weiss 2001

@ A slight normalization procedure is applied to SHIMALIKCUT
@ Helps improve eigenvector stability

NJWCuUT: Input adjacency matrix W. Output cut S

1. Define diagonal A € R™" as Aj;; = ZJ- Wi

Get normalized Laplacian £ = A~Y2WA~1/2

Obtain v, w as largest eigenvectors of £ and form X = [v w|
Form Y € R™2 as Y; = X;i/1/ X3 + X3

Taking each row of Y as a point in R?, obtain S via k-means

ok N




O(+/n) via Spectral

Spectral Cut - Ng, Jordan & Weiss 2001




O(+/n) via Spectral

Irregularity Problems with Spectral Methods

DDDDD vyVyv vyVyv DDDDD
o @ o vEdv vEB v v o
o o A4 v v v v
ogo VeV Vyv VeV
oo oo v o ov
v o o v
th] Dv[] v o og sV
v o o v
oo oo vao ov
o
oo aVv v'a vv;vv
o o o o oo
L4 L ARG ¥ A o
o o o_ v v o o o
o v o o
o v v o o v @ 8
ng vﬁ]u oo v oo vv
o v v O o v v v

@ Problems even if multiple values of ¢ used in RBF kernel.
@ The previous spectral methods fail for some situations.

@ Suboptimality of spectral methods if the graph is irregular.



O(+/n) via Spectral

Irregularity Problems with Spectral Methods
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@ Try pruning the graph with k-nearest neighbors.
o Get popularity problem as interior points over-selected.

o Still end up with irregular graph due to greediness.



O(+/n) via Spectral

Irregularity Problems with Spectral Methods
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@ Prune graph with b-matching, gives perfectly regular graph.
@ Minimizes distance while creating exactly b edges per node.
@ Max-product takes O(n®) (Huang & Jebara 2007)



O(+/n) via Spectral

B-Matched Spectral Cut - Jebara & Shchogolev 2006

@ First run b-matching on the points to get a regular graph
@ Then use NJWcCUT on the graph to get a partition

BMATCHCUT: Input kernel matrix K. Output cut S

1. Compute distance matrix D € R™*" as Dj; = /Kji — 2Kjj + Kj;
2. Set b=[n/2]

3. A = argminyggnxn ZIJ A,JD,J s.t. Z:AU = b,A,’j = Aj,', Ai=0
4. Run NJWCuT on A




O(+/n) via Spectral

B-Matched Spectral Cut - Jebara & Shchogolev 2006

@ Cluster two S curves varying separation and ¢ in RBF kernel
@ Compare NJWcuT to BMATCHCUT

separation 10
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Synthetic dataset: spectral accuracy

kernel parameter o

Synthetic dataset: permute-prune accuracy
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separation 10




O(+/n) via Spectral

B-Matched Spectral Cut - Jebara & Shchogolev 2006

@ UCI experiments varying o in RBF kernel

@ Compare NJWcuUT to BMATCHCUT to KNNCUT.




O(+/n) via Spectral

B-Matched Spectral Cut - Jebara & Shchogolev 2006

@ Video clustering experiments varying o in RBF kernel

@ Compare NJWcuUT to BMATCHCUT to KNNCUT.
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O(+/n) via Spectral

Equivalence of Spectral Algorithms for O(,/n)

For regular graphs, BMATCHCUT = NJWCUT.
For regular graphs, onjw > @sprcrrar and @SmMaLik = PSPECTRAL-

A = bl so eigenvectors of L, W and L are the same.
Top eigenvector of L is constant so NJW normalization is same.
SpectralCut tries all thresholds so more thorough rounding. O

Thus, all these spectral algorithms achieve a factor of O(v/n).




O(+/Tog n) via SDP

Graph Partition Beyond O(+/n)

Linear programming obtains O(log n) (Leighton & Rao 1999)
Best guarantee is O(y/log n) (Arora, Rao & Vazirani 2004)
Solve the following semidefinite programming (SDP)

min > Willyi -
i#j

sty = yill® + vy = velP® = llyi = il 2D lyi = yill> =1
i<j

(]

(]

This semidefinite program finds an embedding of the graph
Each y; € R" is the coordinate of vertex i
SDP ensures connected points with large Wj; are close by

The constraint Zi<j llyi — y;]|? = 1 fixes size of embedding

e © ¢ ¢ ¢

Uses (3 constraints ly; — y;lI* + lly; — yill* = llyi — yll?



O(+/Tog n) via SDP

SDP Graph Partition with O(+/log n)

@ What is an /2 embedding?

o All triples satisfy |ly; — ;|1 + ly; — vll* > Ilyi — yll?
@ In d dimensions, there can only be 29 such points
@ Any triangle of points cannot subtend an obtuse angle

> D>k

6 <90 6 =90 0 > 90x

Graph with 8-cut Spectral Embedding ARV Embedding



O(+/Tog n) via SDP

SDP Graph Partition with O(+/log n)

ARVEMBED: Input adjacency matrix W. Output {y1,...,yn}
f=miny, .y, ZU Willyi — yjII?

st lyi = yillP + llys = yill® = llyi = w3 i — yill* = 1.
ARVcuT: Input embedding {y1,...,yn}. Output cut S.
Sample ii € RY from a zero mean, identity covariance Gaussian.
Find m=21%.yTdand v==1% (y d— m)>

Let P={i:y'd>m+/v}and N={i:yi<m—/v}
Discard pairs y € P and y € N such that ||y — 7||> < 1/+/log(n).
Choose random 0 < r < 1/4/log(n)

Output 5= {i : |lyi — §||?> < r} for some y € P.

oo whH

Theorem (Arora et al. 2004)

Given a graph with n vertices, algorithm ARVEMBED followed by
ARVcUT produces a cut S satisfying ¢(S) < O(4/log(n))¢*




O(+/Tog n) via SDP

SDP Graph Partition with O(+/log n)

@ ARV's semidefinite program requires O(n*°) time
@ SDP-LR version improves social network partition (Lang 2006)
@ Otherwise, still too slow for many problems
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quotient cut score (smaller is better)

Social Graph
(DBLP Coauthorship)
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(worse balance) size of small side (better balance)




O(+/Tog n) via SDP

Conclusions

o Clustering can be studied as graph partition

@ Most interesting cost functions are NP-hard

@ Spectral methods work well but only have O(y/n) guarantees
@ Spectral methods can do better if input graph is regular

@ Can find closest regular graph quickly via b-matching

@ Semidefinite methods get O(y/log n) guarantees

@ Via K% property, get a better graph embedding
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