Clustering Graphs, Spectra and Semidefinite Programming

Tony Jebara

April 13, 2015

- Clustering
- 2 Graph Partition
- Graph Partition
- 4 $O(\sqrt{n})$ via Spectral
- **5** $O(\sqrt{\log n})$ via SDP

What is Clustering?

- Split *n* items into *k* partitions to minimize some **Cost**
- **Given:** dataset $\{x_1, \dots, x_n\}$ where $x_i \in \Omega$ and $k \in \mathbb{Z}$
- Output: $\mathcal{X}_1, \dots, \mathcal{X}_k \subseteq \{1, \dots, n\}$ such that $\mathcal{X}_i \cap \mathcal{X}_j = \{\}, \cup_{i=1}^k \mathcal{X}_i = \{1, \dots, n\}$

What is Clustering?

- Split *n* items into *k* partitions to minimize some **Cost**
- **Given:** dataset $\{x_1, \ldots, x_n\}$ where $x_i \in \Omega$ and $k \in \mathbb{Z}$
- Output: $\mathcal{X}_1, \dots, \mathcal{X}_k \subseteq \{1, \dots, n\}$ such that $\mathcal{X}_i \cap \mathcal{X}_j = \{\}, \ \cup_{i=1}^k \mathcal{X}_i = \{1, \dots, n\}$
- Additional possible assumptions
 - The x_i are independent identically distributed (iid) from p(x)
 - We are given a distance $d(x_i, x_j)$ or kernel $\kappa(x_i, x_j) = K_{ij}$, equivalent since $d(x_i, x_j) \equiv \sqrt{\kappa(x_i, x_i) 2\kappa(x_i, x_j) + \kappa(x_j, x_j)}$ e.g.

Linear (Euclidean)
$$\kappa(x_i, x_j) = x_i^{\top} x_j$$

Polynomial $\kappa(x_i, x_j) = (x_i^{\top} x_j + 1)^p$
Radial Basis Function $\kappa(x_i, x_j) = \exp(-\|x_i - x_j\|^2/\sigma^2)$
Laplace $\kappa(x_i, x_j) = \exp(-\|x_j - x_j\|/\sigma)$

... but what **Cost** function to use?

k-means - Lloyd 1957

- k-means minimizes the Cost $\min_{\mathcal{X}_1, \dots, \mathcal{X}_k} \sum_{i=1}^k \sum_{j \in \mathcal{X}_i} \|x_j - \frac{1}{|\mathcal{X}_i|} \sum_{m \in \mathcal{X}_i} x_m\|^2$
- Kernelized k-means minimizes the following:

$$\sum_{i=1}^{k} \left(\sum_{j \in \mathcal{X}_i} K_{jj} - 2 \sum_{j,m \in \mathcal{X}_i} \frac{1}{|\mathcal{X}_i|} K_{jm} + \frac{1}{|\mathcal{X}_i|} \sum_{j,m \in \mathcal{X}_i} K_{jm} \right)$$

Greedy Kernel KMeans (Dhillon et al. 04):

- 1. Initialize $\mathcal{X}_1,\ldots,\mathcal{X}_k$ randomly
- 2. Set $z_j = \arg\min_i \frac{1}{|\mathcal{X}_i|^2} \sum_{l,m \in \mathcal{X}_i} (K_{lm} 2K_{jm})$ 3. Set $\mathcal{X}_i = \{j : z_j = i\}$
- 4. If not converged goto 2

Clustering as Graph Partition

- Try clustering as graph partition problem (Shi & Malik 2000)
- Make $\{x_1, \ldots, x_n\}$ an undirected graph G = (V, E) of vertices $V = \{1, \ldots, n\}$ and edges $E = \{(i, j) : i < j \in \{1, \ldots, n\}\}$
- ullet Get adjacency $W \in \mathbb{R}^{n imes n}$ via $W_{ij} = \kappa(x_i, x_j)$ and $W_{ii} = 0$
- Clustering \equiv cutting graph into vertex subsets S_1, \ldots, S_k
- Define a weight over two sets as $W(A, B) = \sum_{i \in A, j \in B} W_{ij}$
- We want cuts with big intra-cluster weight $W(S_i, S_i)$ and small inter-cluster weight $W(S_i, S_i)$

Problem with k-Means

- Let's only consider k=2 and recover $S=V_1$ and $\bar{S}=V_2$
- Use $W_{ij} = \kappa(x_i, x_j)$ and assume $W_{ii} = const = 0$.
- The *k*-means **Cost** becomes $\min_{S} \frac{W(S,S)}{|S|} \frac{W(\bar{S},\bar{S})}{|\bar{S}|}$
- Problem: k-means ignores $W(S, \bar{S})$, the amount of *cutting*
- Let's consider alternative Cost functions...

Unbalanced Graph Partition

- One cost function that considers cutting is min-cut min_S $W(S, \bar{S})$
- This can be solved optimally in polynomial time!
- Problem: it can give trivially small partitions, in the above it just disconnects x_7 from the graph...
- We need both |S| and $|\bar{S}|$ to be balanced!

Balanced Graph Partition Cost Functions

There are many balanced graph partition cost functions

$$\begin{array}{ll} \textit{k-means} & \min_S \phi(S) = -\frac{W(S,S)}{|S|} - \frac{W(\bar{S},\bar{S})}{|\bar{S}|} \\ \text{sparse cut} & \min_S \phi(S) = \frac{W(S,\bar{S})}{|S||\bar{S}|/n} \\ \text{ratio cut} & \min_S \phi(S) = \frac{W(S,\bar{S})}{|\bar{S}|} + \frac{W(S,\bar{S})}{|\bar{S}|} \\ \text{expansion} & \min_S \phi(S) = \frac{W(S,\bar{S})}{\min(|S|,|\bar{S}|)} \\ \text{normalized cut} & \min_S \phi(S) = \frac{W(S,\bar{S})}{W(S,\bar{S})} + \frac{W(S,\bar{S})}{W(\bar{S},\bar{S})} \end{array}$$

- All are NP-hard to solve (Ambuhl et al. 2007) or approximate within a constant factor (Konstantin & Harald '04). Can't find \hat{S} such that $\phi(\hat{S}) \leq O(1) \min_S \phi(S)$ in polynomial time!
- Need efficient algorithms where factor grows slowly with n $O(n) \ge O(\sqrt{n}) \ge O(\sqrt{\log n}) \ge O(\log \log n) \ge O(1)$

Balanced Graph Partition Cost Functions beyond k=2

- We can extend beyond 2-way cuts to multi-way cuts
- For example, normalized cut for k = 2 is $\min_{S_1, S_2} \phi(S_1, S_2) = \frac{W(S_1, S_2)}{W(S_1, S_1)} + \frac{W(S_1, S_2)}{W(S_2, S_2)}$
- Multi-way normalized cut for k > 2 is simply $\min_{S_1, S_2, ..., S_k} \sum_{i=1}^k \sum_{j=i+1}^k \phi(S_i, S_j)$

Equivalence of Cost Functions

Lemma

The cost functions satisfy expansion(S) < ratio cut(S) \leq 2 × expansion(S)

Lemma

The minima of the cost functions satisfy $\min_S expansion(S) \leq \min_S sparse \ cut(S) \leq 2 \times \min_S expansions(S)$

Lemma

For b-regular graphs, $W \in \mathbb{B}^{n \times n}$, $\sum_{i} W_{ij} = b$, $W_{ii} = 0$, $W_{ij} = W_{ji}$ we have normalized $cut(S) = ratio \ cut(S)/b$

• So, let's focus on sparse cut $\phi^* = \min_S \frac{W(S,\overline{S})}{|S||\overline{S}|/n}$ and consider spectral heuristics for minimizing it

Spectral Cut - Donath & Hoffman 1973

SpectralCut: Input regular adjacency matrix W. Output cut \hat{S}

- 1. Compute the 2nd eigenvector $\mathbf{v} \in \mathbb{R}^n$ of W
- 2. For i = 1, ..., n create partition $\hat{S}_i = \{j : \mathbf{v}_j \leq \mathbf{v}_i\}$
- 3. Output $\hat{S} = \hat{S}_i$ with smallest sparse cut $i = \arg\min_i \phi(\hat{S}_i)$

Theorem (Alon & Milman 1985, Chung 1997)

Given a b-regular graph, SPECTRALCUT provides a cut \hat{S} that achieves a sparse cut value $\phi(\hat{S}) \leq \sqrt{8b\phi^*}$

Corollary

Given a b-regular graph, Spectral Cut provides a cut \hat{S} that achieves a sparse cut value $\phi(\hat{S}) \leq O(\sqrt{n})\phi^*$

Spectral Cut - Donath & Hoffman 1973

Proof. (Alon & Milman 1985, Chung 1997).

Clearly, $W\mathbf{1} = b\mathbf{1}$ so $\lambda_1 = b$ and $\lambda_2 = \max_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \perp \mathbf{1}} \frac{\mathbf{x}^t W\mathbf{x}}{\mathbf{x}^T \mathbf{x}}$. It is easy to show that $b - \lambda_2 \le \phi^*$ by relaxing the minimization $\min_{\mathbf{x} \in \mathbb{R}^n} \frac{\sum_{ij} W_{ij} (\mathbf{x}_i - \mathbf{x}_j)^2}{\frac{1}{n} \sum_{ij} (\mathbf{x}_i - \mathbf{x}_j)^2} \le \min_{\mathbf{x} \in \{-1,1\}^n} \frac{\sum_{ij} W_{ij} (\mathbf{x}_i - \mathbf{x}_j)^2}{\frac{1}{n} \sum_{ij} (\mathbf{x}_i - \mathbf{x}_j)^2}.$ Define $\hat{\mathbf{v}} \propto \mathbf{v}$ the 2^{nd} eigenvector such that $\max_i \hat{\mathbf{v}}_i - \min_i \hat{\mathbf{v}}_i = 1$. Select cut S by picking t uniformly in $t \in [\min_i \hat{\mathbf{v}}_i, \max_i \hat{\mathbf{v}}_i]$. Probability edge (i,j) is in cut (S,\bar{S}) is proportional to $|\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_j|$. Note $\mathrm{E}_t[W(S,\bar{S})] = \sum_{ii} W_{ij} \frac{|\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_j|}{2}$ and $\mathrm{E}_t[|S||\bar{S}|] = \sum_{ii} \frac{|\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_j|}{2}$. Sampling t achieves $\frac{W(S,\overline{S})}{\frac{1}{|S||S|}} \leq \frac{\sum_{ij} W_{ij} |\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_j|}{\sum_{i:j} |\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_j|}$. Min over \mathbf{v} gives $\phi_{sc} = \min_{\mathbf{v} \in \mathbb{R}^n} \frac{\sum_{ij} W_{ij} |\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_j|}{\frac{1}{2} \sum_{i:} |\hat{\mathbf{v}}_i - \hat{\mathbf{v}}_i|} = \min_{\mathbf{v} \in \mathbb{R}^n} \frac{\sum_{ij} W_{ij} |\mathbf{v}_i - \mathbf{v}_j|}{\frac{1}{2} \sum_{i:} |\mathbf{v}_i - \hat{\mathbf{v}}_i|}$ A few more steps yield $\phi_{sc} \leq \sqrt{8b(b-\lambda_2)}$.

Spectral Cut - Shi & Malik 2000

- A continuous relaxation of Normalized Cut
- Use eigenvectors of the Laplacian to find partition

SHIMALIKCUT: Input adjacency matrix W. Output cut \hat{S}

- 1. Define diagonal $\Delta \in \mathbb{R}^{n \times n}$ as $\Delta_{ii} = \sum_{j} W_{ij}$
- 2. Get Laplacian $L = I \Delta^{-1/2} W \Delta^{-1/2}$
- 3. Compute second smallest 2nd eigenvector $\mathbf{v} \in \mathbb{R}^n$ of L
- 4. Create partition $\hat{S} = \{j : \mathbf{v}_j \leq median(\mathbf{v})\}$

Spectral Cut - Shi & Malik 2000

Results of eigenvectors on $(D - W)y = \lambda Dy$

Spectral Cut - Ng, Jordan & Weiss 2001

- ullet A slight normalization procedure is applied to $\operatorname{ShiMalikCut}$
- Helps improve eigenvector stability

 $\overline{\mathrm{NJWC}}_{\mathrm{UT}}$: Input adjacency matrix W. Output cut \hat{S}

- 1. Define diagonal $\Delta \in \mathbb{R}^{n \times n}$ as $\Delta_{ii} = \sum_{j} W_{ij}$
- 2. Get normalized Laplacian $\mathcal{L} = \Delta^{-1/2} \mathring{W} \Delta^{-1/2}$
- 3. Obtain \mathbf{v}, \mathbf{w} as largest eigenvectors of \mathcal{L} and form $X = [\mathbf{v} \ \mathbf{w}]$
- 4. Form $Y \in \mathbb{R}^{n \times 2}$ as $Y_{ij} = X_{ij}/\sqrt{X_{i1}^2 + X_{i2}^2}$
- 5. Taking each row of Y as a point in \mathbb{R}^2 , obtain \hat{S} via k-means

Spectral Cut - Ng, Jordan & Weiss 2001

Irregularity Problems with Spectral Methods

- Problems even if multiple values of σ used in RBF kernel.
- The previous spectral methods fail for some situations.
- Suboptimality of spectral methods if the graph is irregular.

Irregularity Problems with Spectral Methods

- Try pruning the graph with k-nearest neighbors.
- Get popularity problem as interior points over-selected.
- Still end up with irregular graph due to greediness.

Irregularity Problems with Spectral Methods

- Prune graph with b-matching, gives perfectly regular graph.
- Minimizes distance while creating exactly *b* edges per node.
- Max-product takes $O(n^3)$ (Huang & Jebara 2007)

- First run b-matching on the points to get a regular graph
- Then use NJWCUT on the graph to get a partition

BMATCHCUT: Input kernel matrix K. Output cut \hat{S}

- 1. Compute distance matrix $D \in \mathbb{R}^{n \times n}$ as $D_{ij} = \sqrt{K_{ii} 2K_{ij} + K_{jj}}$
- 2. Set $b = \lfloor n/2 \rfloor$
- 3. $A = \arg\min_{A \in \mathbb{B}^{n \times n}} \sum_{ij} A_{ij} D_{ij} \ s.t. \sum_i A_{ij} = b, A_{ij} = A_{ji}, A_{ii} = 0$
- 4. Run NJWCUT on A

- ullet Cluster two S curves varying separation and σ in RBF kernel
- Compare NJWCUT to BMATCHCUT

- \bullet UCI experiments varying σ in RBF kernel
- \bullet Compare NJWcut to $\mathrm{BMATCHCUT}$ to $\mathrm{KNNCUT}.$

- Video clustering experiments varying σ in RBF kernel
- Compare NJWCUT to BMATCHCUT to KNNCUT.

Equivalence of Spectral Algorithms for $O(\sqrt{n})$

Lemma

For regular graphs, BMATCHCUT = NJWCUT.

Lemma

For regular graphs, $\phi_{NJW} \ge \phi_{SPECTRAL}$ and $\phi_{SHIMALIK} \ge \phi_{SPECTRAL}$.

Proof.

 $\Delta = bI$ so eigenvectors of L, W and \mathcal{L} are the same.

Top eigenvector of $\boldsymbol{\mathcal{L}}$ is constant so NJW normalization is same.

SpectralCut tries all thresholds so more thorough rounding.

Theorem

Thus, all these spectral algorithms achieve a factor of $O(\sqrt{n})$.

Graph Partition Beyond $O(\sqrt{n})$

- Linear programming obtains $O(\log n)$ (Leighton & Rao 1999)
- Best guarantee is $O(\sqrt{\log n})$ (Arora, Rao & Vazirani 2004)
- Solve the following semidefinite programming (SDP)

$$\begin{split} \min_{Y} \sum_{i \neq j} W_{ij} \| y_i - y_j \|^2 \\ s.t. \| y_i - y_j \|^2 + \| y_j - y_k \|^2 &\geq \| y_i - y_k \|^2, \sum_{i < j} \| y_i - y_j \|^2 = 1 \end{split}$$

- This semidefinite program finds an embedding of the graph
- Each $y_i \in \mathbb{R}^n$ is the coordinate of vertex i
- ullet SDP ensures connected points with large W_{ij} are close by
- The constraint $\sum_{i \le j} ||y_i y_j||^2 = 1$ fixes size of embedding
- Uses ℓ_2^2 constraints $||y_i y_j||^2 + ||y_j y_k||^2 \ge ||y_i y_k||^2$

SDP Graph Partition with $O(\sqrt{\log n})$

- What is an ℓ_2^2 embedding?
- All triples satisfy $||y_i y_i||^2 + ||y_i y_k||^2 \ge ||y_i y_k||^2$
- In d dimensions, there can only be 2^d such points
- Any triangle of points cannot subtend an obtuse angle

Graph with 8-cut Spectral Embedding ARV Embedding

SDP Graph Partition with $O(\sqrt{\log n})$

ARVEMBED: Input adjacency matrix W. Output $\{y_1, \dots, y_n\}$. $\beta = \min_{y_1, \dots, y_n} \sum_{ij} W_{ij} \|y_i - y_j\|^2$ s.t. $\|y_i - y_j\|^2 + \|y_j - y_k\|^2 \ge \|y_i - y_k\|^2$, $\sum_{i < j} \|y_i - y_j\|^2 = 1$.

ARVCUT: Input embedding $\{y_1, \ldots, y_n\}$. Output cut \hat{S} .

- 1. Sample $\vec{u} \in \mathbb{R}^d$ from a zero mean, identity covariance Gaussian.
- 2. Find $m = \frac{1}{n} \sum_{i} y_i^\top \vec{u}$ and $v = \frac{1}{n} \sum_{i} (y_i^\top \vec{u} m)^2$.
- 3. Let $P = \{\vec{i} : y_i^{\top} \vec{u} \ge m + \sqrt{v}\}$ and $N = \{\vec{i} : y_i^{\top} \vec{u} \le m \sqrt{v}\}$.
- 4. Discard pairs $y \in P$ and $\tilde{y} \in N$ such that $||y \tilde{y}||^2 \le 1/\sqrt{\log(n)}$.
- 5. Choose random $0 \le r \le 1/\sqrt{\log(n)}$
- 6. Output $\hat{S} = \{i : ||y_i \hat{y}||^2 \le r\}$ for some $\hat{y} \in P$.

Theorem (Arora et al. 2004)

Given a graph with n vertices, algorithm ARVEMBED followed by ARVCUT produces a cut \hat{S} satisfying $\phi(\hat{S}) \leq O(\sqrt{\log(n)})\phi^*$

SDP Graph Partition with $O(\sqrt{\log n})$

- ARV's semidefinite program requires $O(n^{4.5})$ time
- SDP-LR version improves social network partition (Lang 2006)
- Otherwise, still too slow for many problems

Conclusions

- Clustering can be studied as graph partition
- Most interesting cost functions are NP-hard
- Spectral methods work well but only have $\mathrm{O}(\sqrt{n})$ guarantees
- Spectral methods can do better if input graph is regular
- Can find closest regular graph quickly via b-matching
- Semidefinite methods get $O(\sqrt{\log n})$ guarantees
- ullet Via ℓ_2^2 property, get a better graph embedding