Clustering
Graphs, Spectra and Semidefinite Programming

Tony Jebara

April 13, 2015
1. Clustering

2. Graph Partition

3. Graph Partition

4. $O(\sqrt{n})$ via Spectral

5. $O(\sqrt{\log n})$ via SDP
What is Clustering?

- Split n items into k partitions to minimize some **Cost**
- **Given:** dataset $\{x_1, \ldots, x_n\}$ where $x_i \in \Omega$ and $k \in \mathbb{Z}$
- **Output:** $\mathcal{X}_1, \ldots, \mathcal{X}_k \subseteq \{1, \ldots, n\}$ such that $\mathcal{X}_i \cap \mathcal{X}_j = \{\}$, $\bigcup_{i=1}^{k} \mathcal{X}_i = \{1, \ldots, n\}$
What is Clustering?

- Split \(n \) items into \(k \) partitions to minimize some **Cost**
- **Given:** dataset \(\{x_1, \ldots, x_n\} \) where \(x_i \in \Omega \) and \(k \in \mathbb{Z} \)
- **Output:** \(X_1, \ldots, X_k \subseteq \{1, \ldots, n\} \)
 such that \(X_i \cap X_j = \{\}, \cup_{i=1}^k X_i = \{1, \ldots, n\} \)
- Additional possible assumptions
 - The \(x_i \) are independent identically distributed (iid) from \(p(x) \)
 - We are given a distance \(d(x_i, x_j) \) or kernel \(\kappa(x_i, x_j) = K_{ij} \)
 equivalent since \(d(x_i, x_j) \equiv \sqrt{\kappa(x_i, x_i) - 2\kappa(x_i, x_j) + \kappa(x_j, x_j)} \)
 e.g.

 - **Linear (Euclidean)** \(\kappa(x_i, x_j) = x_i^\top x_j \)
 - **Polynomial** \(\kappa(x_i, x_j) = (x_i^\top x_j + 1)^p \)
 - **Radial Basis Function** \(\kappa(x_i, x_j) = \exp(-\|x_i - x_j\|^2/\sigma^2) \)
 - **Laplace** \(\kappa(x_i, x_j) = \exp(-\|x_i - x_j\|/\sigma) \)

 ... but what **Cost** function to use?
k-means - Lloyd 1957

- *k*-means minimizes the **Cost**
 \[
 \min_{x_1,\ldots,x_k} \sum_{i=1}^k \sum_{j \in x_i} \|x_j - \frac{1}{|x_i|} \sum_{m \in x_i} x_m\|^2
 \]

- Kernelized *k*-means minimizes the following:
 \[
 \sum_{i=1}^k \left(\sum_{j \in x_i} K_{jj} - 2 \sum_{j,m \in x_i} \frac{1}{|x_i|} K_{jm} + \frac{1}{|x_i|} \sum_{j,m \in x_i} K_{jm} \right)
 \]

Greedy Kernel kMeans (Dhillon et al. 04):

1. Initialize x_1, \ldots, x_k randomly
2. Set $z_j = \arg\min_i \frac{1}{|x_i|^2} \sum_{l,m \in x_i} (K_{lm} - 2K_{jm})$
3. Set $x_i = \{j : z_j = i\}$
4. If not converged goto 2
Try clustering as graph partition problem (Shi & Malik 2000)

Make \(\{x_1, \ldots, x_n\} \) an undirected graph \(G = (V, E) \) of vertices \(V = \{1, \ldots, n\} \) and edges \(E = \{(i, j) : i < j \in \{1, \ldots, n\}\} \)

Get adjacency \(W \in \mathbb{R}^{n \times n} \) via \(W_{ij} = \kappa(x_i, x_j) \) and \(W_{ii} = 0 \)

Clustering \(\equiv \) cutting graph into vertex subsets \(S_1, \ldots, S_k \)

Define a weight over two sets as \(W(A, B) = \sum_{i \in A, j \in B} W_{ij} \)

We want cuts with big intra-cluster weight \(W(S_i, S_i) \) and small inter-cluster weight \(W(S_i, S_j) \)
Problem with k-Means

- Let’s only consider $k = 2$ and recover $S = V_1$ and $\bar{S} = V_2$
- Use $W_{ij} = \kappa(x_i, x_j)$ and assume $W_{ii} = \text{const} = 0$.
- The k-means Cost becomes $\min_S - \frac{W(S,S)}{|S|} - \frac{W(\bar{S},\bar{S})}{|\bar{S}|}$
- Problem: k-means ignores $W(S, \bar{S})$, the amount of cutting
- Let’s consider alternative Cost functions...
One cost function that considers cutting is:

\[\text{min-cut} \quad \min_S W(S, \bar{S}) \]

This can be solved optimally in polynomial time!

Problem: it can give trivially small partitions, in the above it just disconnects \(x_7 \) from the graph...

We need both \(|S| \) and \(|ar{S}| \) to be balanced!
Balanced Graph Partition Cost Functions

- There are many balanced graph partition cost functions

 - **k-means** \(\min_S \phi(S) = -\frac{W(S,S)}{|S|} - \frac{W(\tilde{S}, \tilde{S})}{|\tilde{S}|} \)

 - **sparse cut** \(\min_S \phi(S) = \frac{W(S, \tilde{S})}{|S||\tilde{S}|/n} \)

 - **ratio cut** \(\min_S \phi(S) = \frac{W(S, \tilde{S})}{|S|} + \frac{W(S, \tilde{S})}{|\tilde{S}|} \)

 - **expansion** \(\min_S \phi(S) = \frac{W(S, \tilde{S})}{\min(|S|,|\tilde{S}|)} \)

 - **normalized cut** \(\min_S \phi(S) = \frac{W(S, \tilde{S})}{W(S,S)} + \frac{W(S, \tilde{S})}{W(\tilde{S}, \tilde{S})} \)

- All are NP-hard to solve (Ambuhl et al. 2007) or approximate within a constant factor (Konstantin & Harald ’04). Can’t find \(\hat{S} \) such that \(\phi(\hat{S}) \leq O(1) \min_S \phi(S) \) in polynomial time!

- Need efficient algorithms where factor grows slowly with \(n \)

 \[O(n) \geq O(\sqrt{n}) \geq O(\sqrt{\log n}) \geq O(\log \log n) \geq O(1) \]
Balanced Graph Partition Cost Functions beyond $k=2$

- We can extend beyond 2-way cuts to multi-way cuts.
- For example, normalized cut for $k=2$ is
 \[
 \min_{S_1, S_2} \phi(S_1, S_2) = \frac{W(S_1, S_2)}{W(S_1, S_1)} + \frac{W(S_1, S_2)}{W(S_2, S_2)}
 \]
- Multi-way normalized cut for $k > 2$ is simply
 \[
 \min_{S_1, S_2, \ldots, S_k} \sum_{i=1}^{k} \sum_{j=i+1}^{k} \phi(S_i, S_j)
 \]
Equivalence of Cost Functions

Lemma

The cost functions satisfy
\[\text{expansion}(S) < \text{ratio cut}(S) \leq 2 \times \text{expansion}(S) \]

Lemma

The minima of the cost functions satisfy
\[\min_S \text{expansion}(S) \leq \min_S \text{sparse cut}(S) \leq 2 \times \min_S \text{expansion}(S) \]

Lemma

For b-regular graphs, \(W \in \mathbb{B}^{n \times n}, \sum_i W_{ij} = b, W_{ii} = 0, W_{ij} = W_{ji} \)
we have normalized cut \(\phi(S) = \text{ratio cut}(S)/b \)

- So, let’s focus on sparse cut \(\phi^* = \min_S \phi(S) = \min_S \frac{W(S, \bar{S})}{|S||\bar{S}|/n} \)
 and consider spectral heuristics for minimizing it
Spectral Cut - Donath & Hoffman 1973

SPECTRAL CUT: Input regular adjacency matrix W. Output cut \hat{S}

1. Compute the 2nd eigenvector $v \in \mathbb{R}^n$ of W
2. For $i = 1, \ldots, n$ create partition $\hat{S}_i = \{j : v_j \leq v_i\}$
3. Output $\hat{S} = \hat{S}_i$ with smallest sparse cut $i = \arg \min_j \phi(\hat{S}_j)$

Theorem (Alon & Milman 1985, Chung 1997)

Given a b-regular graph, **SPECTRAL CUT** provides a cut \hat{S} that achieves a sparse cut value $\phi(\hat{S}) \leq \sqrt{8b}\phi^*$

Corollary

Given a b-regular graph, **SPECTRAL CUT** provides a cut \hat{S} that achieves a sparse cut value $\phi(\hat{S}) \leq O(\sqrt{n})\phi^*$

Clearly, $W1 = b1$ so $\lambda_1 = b$ and $\lambda_2 = \max_{x \in \mathbb{R}^n, x \perp 1} \frac{x^T W x}{x^T x}$. It is easy to show that $b - \lambda_2 \leq \phi^*$ by relaxing the minimization
\[
\min_{x \in \mathbb{R}^n} \sum_{ij} W_{ij} (x_i - x_j)^2 \leq \min_{x \in \{-1,1\}^n} \frac{1}{n} \sum_{ij} (x_i - x_j)^2.
\]
Define $\hat{v} \propto v$ the 2nd eigenvector such that $\max_i \hat{v}_i - \min_i \hat{v}_i = 1$.
Select cut S by picking t uniformly in $t \in [\min_i \hat{v}_i, \max_i \hat{v}_i]$.
Probability edge (i, j) is in cut (S, \bar{S}) is proportional to $|\hat{v}_i - \hat{v}_j|$.
Note $E_t[W(S, \bar{S})] = \sum_{ij} W_{ij} |\hat{v}_i - \hat{v}_j|/2$ and $E_t[|S||\bar{S}|] = \sum_{ij} |\hat{v}_i - \hat{v}_j|/2$.
Sampling t achieves $\frac{W(S, \bar{S})}{\frac{1}{n} |S||\bar{S}|} \leq \frac{\sum_{ij} W_{ij} |\hat{v}_i - \hat{v}_j|}{\sum_{ij} |\hat{v}_i - \hat{v}_j|}$.
Min over v gives $\phi_{sc} = \min_{v \in \mathbb{R}^n} \frac{\sum_{ij} W_{ij} |v_i - v_j|}{\frac{1}{n} \sum_{ij} |v_i - v_j|} = \min_{v \in \mathbb{R}^n} \frac{\sum_{ij} W_{ij} |v_i - v_j|}{\frac{1}{n} \sum_{ij} |v_i - v_j|}$.
A few more steps yield $\phi_{sc} \leq \sqrt{8b(b - \lambda_2)}$.

Spectral Cut - Shi & Malik 2000

- A continuous relaxation of Normalized Cut
- Use eigenvectors of the Laplacian to find partition

ShiMalikCut: Input adjacency matrix W. Output cut \hat{S}
1. Define diagonal $\Delta \in \mathbb{R}^{n \times n}$ as $\Delta_{ii} = \sum_j W_{ij}$
2. Get Laplacian $L = I - \Delta^{-1/2}W\Delta^{-1/2}$
3. Compute second smallest 2nd eigenvector $v \in \mathbb{R}^n$ of L
4. Create partition $\hat{S} = \{j : v_j \leq \text{median}(v)\}$

W
L
Spectral Cut - Shi & Malik 2000

Results of eigenvectors on $(D - W)y = \lambda Dy$
Spectral Cut - Ng, Jordan & Weiss 2001

- A slight normalization procedure is applied to ShiMalikCut
- Helps improve eigenvector stability

NJWCut: Input adjacency matrix W. Output cut \hat{S}
1. Define diagonal $\Delta \in \mathbb{R}^{n \times n}$ as $\Delta_{ii} = \sum_j W_{ij}$
2. Get normalized Laplacian $L = \Delta^{-1/2} W \Delta^{-1/2}$
3. Obtain v, w as largest eigenvectors of L and form $X = [v \ w]$
4. Form $Y \in \mathbb{R}^{n \times 2}$ as $Y_{ij} = X_{ij} / \sqrt{X_{i1}^2 + X_{i2}^2}$
5. Taking each row of Y as a point in \mathbb{R}^2, obtain \hat{S} via k-means
Spectral Cut - Ng, Jordan & Weiss 2001
Irregularity Problems with Spectral Methods

- Problems even if multiple values of σ used in RBF kernel.
- The previous spectral methods fail for some situations.
- Suboptimality of spectral methods if the graph is irregular.
Try pruning the graph with k-nearest neighbors.

Get popularity problem as interior points over-selected.

Still end up with irregular graph due to greediness.
Irregularity Problems with Spectral Methods

- Prune graph with b-matching, gives perfectly regular graph.
- Minimizes distance while creating exactly b edges per node.
- Max-product takes $O(n^3)$ (Huang & Jebara 2007)
B-Matched Spectral Cut - Jebara & Shchogolev 2006

- First run b-matching on the points to get a regular graph
- Then use NJWcut on the graph to get a partition

\textbf{BMatchCut}: Input kernel matrix K. Output cut \hat{S}
1. Compute distance matrix $D \in \mathbb{R}^{n \times n}$ as $D_{ij} = \sqrt{K_{ii} - 2K_{ij} + K_{jj}}$
2. Set $b = \lfloor n/2 \rfloor$
3. $A = \arg\min_{A \in \mathbb{B}^{n \times n}} \sum_{ij} A_{ij} D_{ij}$ s.t. $\sum_i A_{ij} = b$, $A_{ij} = A_{ji}$, $A_{ii} = 0$
4. Run NJWcut on A
B-Matched Spectral Cut - Jebara & Shchogolev 2006

- Cluster two S curves varying separation and σ in RBF kernel
- Compare \texttt{NJWcut} to \texttt{bMatchCut}

![Synthetic dataset: spectral accuracy](image1)

![Synthetic dataset: permute-prune accuracy](image2)
B-Matched Spectral Cut - Jebara & Shchogolev 2006

- UCI experiments varying σ in RBF kernel
- Compare NJWcut to bMatchCut to knnCut.
Video clustering experiments varying σ in RBF kernel

- Compare NJWcut to bMatchCut to knnCut.

![Graph comparison](image)
Equivalence of Spectral Algorithms for $O(\sqrt{n})$

Lemma

For regular graphs, $b\text{MatchCut} = NJW\text{Cut}$.

Lemma

For regular graphs, $\phi_{NJW} \geq \phi_{Spectral}$ and $\phi_{ShiMalik} \geq \phi_{Spectral}$.

Proof.

$\Delta = bl$ so eigenvectors of L, W and L are the same. Top eigenvector of L is constant so NJW normalization is same. SpectralCut tries all thresholds so more thorough rounding.

Theorem

Thus, all these spectral algorithms achieve a factor of $O(\sqrt{n})$.
Graph Partition Beyond $O(\sqrt{n})$

- Linear programming obtains $O(\log n)$ (Leighton & Rao 1999)
- Best guarantee is $O(\sqrt{\log n})$ (Arora, Rao & Vazirani 2004)
- Solve the following semidefinite programming (SDP)

$$\min_Y \sum_{i \neq j} W_{ij} \|y_i - y_j\|^2$$

$$s.t. \|y_i - y_j\|^2 + \|y_j - y_k\|^2 \geq \|y_i - y_k\|^2, \sum_{i < j} \|y_i - y_j\|^2 = 1$$

- This semidefinite program finds an embedding of the graph
- Each $y_i \in \mathbb{R}^n$ is the coordinate of vertex i
- SDP ensures connected points with large W_{ij} are close by
- The constraint $\sum_{i < j} \|y_i - y_j\|^2 = 1$ fixes size of embedding
- Uses ℓ_2^2 constraints $\|y_i - y_j\|^2 + \|y_j - y_k\|^2 \geq \|y_i - y_k\|^2$
SDP Graph Partition with $O(\sqrt{\log n})$

- What is an ℓ^2_2 embedding?
- All triples satisfy $\|y_i - y_j\|^2 + \|y_j - y_k\|^2 \geq \|y_i - y_k\|^2$
- In d dimensions, there can only be 2^d such points
- Any triangle of points cannot subtend an obtuse angle

$\theta < 90 \quad \theta = 90 \quad \theta > 90\times$

Graph with 8-cut Spectral Embedding ARV Embedding
SDP Graph Partition with $O(\sqrt{\log n})$

ARV\textsc{Embed}: Input adjacency matrix W. Output $\{y_1, \ldots, y_n\}$.

$$\beta = \min_{y_1, \ldots, y_n} \sum_{ij} W_{ij} \|y_i - y_j\|^2$$

s.t. $\|y_i - y_j\|^2 + \|y_j - y_k\|^2 \geq \|y_i - y_k\|^2$, $\sum_{i<j} \|y_i - y_j\|^2 = 1$.

ARV\textsc{Cut}: Input embedding $\{y_1, \ldots, y_n\}$. Output cut \hat{S}.

1. Sample $\bar{u} \in \mathbb{R}^d$ from a zero mean, identity covariance Gaussian.
2. Find $m = \frac{1}{n} \sum_i y_i^\top \bar{u}$ and $v = \frac{1}{n} \sum_i (y_i^\top \bar{u} - m)^2$.
3. Let $P = \{i : y_i^\top \bar{u} \geq m + \sqrt{v}\}$ and $N = \{i : y_i^\top \bar{u} \leq m - \sqrt{v}\}$.
4. Discard pairs $y \in P$ and $\tilde{y} \in N$ such that $\|y - \tilde{y}\|^2 \leq 1/\sqrt{\log(n)}$.
5. Choose random $0 \leq r \leq 1/\sqrt{\log(n)}$.
6. Output $\hat{S} = \{i : \|y_i - \hat{y}\|^2 \leq r\}$ for some $\hat{y} \in P$.

Theorem (Arora et al. 2004)

Given a graph with n vertices, algorithm ARV\textsc{Embed} followed by ARV\textsc{Cut} produces a cut \hat{S} satisfying $\phi(\hat{S}) \leq O(\sqrt{\log(n)})\phi^*$.
SDP Graph Partition with $O(\sqrt{\log n})$

- ARV’s semidefinite program requires $O(n^{4.5})$ time
- SDP-LR version improves social network partition (Lang 2006)
- Otherwise, still too slow for many problems
Conclusions

- Clustering can be studied as graph partition
- Most interesting cost functions are NP-hard
- Spectral methods work well but only have $O(\sqrt{n})$ guarantees
- Spectral methods can do better if input graph is regular
- Can find closest regular graph quickly via b-matching
- Semidefinite methods get $O(\sqrt{\log n})$ guarantees
- Via ℓ^2_2 property, get a better graph embedding