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Topic 1 
• Introduction, researchy course, latest papers 

• Going beyond simple machine learning 

• Perception, strange spaces, images, time, behavior 

• Info, policies, texts, web page 

• Syllabus, Overview, Review 

• Gaussian Distributions 

• Representation & Appearance Based Methods 

• Least Squares, Correlation, Gaussians, Bases 

• Principal Components Analysis and its Shortcomings 
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About me 
• Tony Jebara, Associate Professor in Computer Science 

• Started at Columbia in 2002 

• PhD from MIT in Machine Learning 
• Thesis: Discriminative, Generative and Imitative Learning (2001) 

• Research Areas: (Columbia Machine Learning Lab, CEPSR 6LE5) 
• www.cs.columbia.edu/learning 

• Machine Learning 

• Some Computer Vision 
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Course Web Page 
http://www.cs.columbia.edu/~jebara/4772 

http://www.cs.columbia.edu/~jebara/6772 

Some material & announcements will be online 

But, many things will be handed out in class such as 
photocopies of papers for readings, etc. 

Check NEWS link to see deadlines, homework, etc. 

Available online, see TA info, etc. 

Follow the policies, homework, deadlines, readings 
closely please! 
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Syllabus 
Week 1: Introduction, Review of Basic Concepts, Representation Issues, Vector 
and Appearance-Based Models, Correlation and Least Squared Error Methods, 
Bases, Eigenspace Recognition, Principal Components Analysis 

Week 2: Nonlinear Dimensionality Reduction, Manifolds, Kernel PCA, Locally 
Linear Embedding, Maximum Variance Unfolding, Minimum Volume Embedding 

Week 3: Maximum Entropy, Exponential Families, Maximum Entropy 
Discrimination, Large Margin Probability Models  

Week 4: Conditional Random Fields and Linear Models, Iterative Scaling and 
Majorization 

Week 5: Graphical Models, Multi-Class Support Vector Machines, Structured 
Support Vector Machines, Cutting Plane Algorithms 

Week 6: Kernels and Probabilistic Kernels 
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Syllabus 
Week 7: Feature Selection and Kernel Selection, Support Vector Machine 
Extensions 

Week 8: Meta-Learning and Multi-Task Support Vector Machines 

Week 9: Semi-Supervised Learning and Graph-Based Semi-Supervised Learning 

Week 10: High-Tree Width Graphical Models, Approximate Inference, Graph 
Structure Learning 

Week 11: Clustering, Spectral Clustering, Normalized Cuts. 

Week 12: Boosting, Mixtures of Experts, AdaBoost, Online Learning 

Week 13: Project Presentations 

Week 14: Project Presentations  
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Beyond Canned Learning 
• Latest research methods, high dimensions, nonlinearities, 
dynamics, manifolds, invariance, unlabeled, feature selection 
• Modeling Images / People / Activity / Time Series / MoCAP  
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Representation & Vectorization 
• How to represent our data? Images, time series, genes… 
• Vectorization: the poor man’s representation 
• Almost anything can be written as a long vector 
• E.g. image is read lexicographically 
   RGB of eachpixel is added to a vector 

• Or, a gene sequence can be written 
   as a binary vector 

     GATACAC = [0100 0001 1000 0001 0010 0001 0010] 

• For images, this is called “Appearance Based” representation 
• But, we lose many important properties this way 
• We will fix this in later lectures 
• For now, it is an easy way to proceed 
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Least Squares Detection 
• How to find a face in an image given a template? 
• Template Matching and Sum-Squares-Difference (SSD) 
• Naïve: try all positions/scales, find least squares distance 

• Correlation and Normalized Correlation 
  Could normalize length of all vectors (fixes lighting) 
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Least Squares as Gaussian Model 
• Minimum squared error is equivalent to 
 maximum likelihood under a Gaussian 

• Can now treat it as a probabilistic problem 
• Trying to find the most likely position      (or sub-image) 
  in search image given the Gaussian model  
  of the template 
• Define the log of the likelihood as: 
• For a Gaussian probability or likelihood is: 
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• Gaussian extend to D-dimensions and have 2 parameters: 

• Mean vector µ vector (translates) 
• Covariance matrix Σ (stretches and rotates)	


• Max and expectation = µ 
• Mean is any real vector, variance is now Σ matrix 
• Covariance matrix is positive semi-definite 
• Covariance matrix is symmetric 
• Need matrix inverse (inv) 
• Need matrix determinant (det) 
• Need matrix trace operator (trace) 

Multivariate Gaussian 
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Max Likelihood Gaussian 
• How to make face detector to work on all faces?  
• Why use a template? How can we use many templates? 
• Have IID samples of template vectors i=1..N: 

• Represent IID samples 
 with parameters as network: 

• Let us get a good Gaussian from these many templates. 
• Standard approach: Max Likelihood 
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Max Likelihood Gaussian 

   

∂
∂µ

log 1

2π( )D/2
Σ

exp − 1
2

xi − µ( )T Σ−1 xi − µ( )⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

i=1

N

∑ = 0

∂
∂µ

− D
2
log 2π− 1

2
log Σ − 1

2
xi − µ( )T Σ−1 xi − µ( )

i=1

N

∑ = 0

xi − µ( )T Σ−1

i=1

N

∑ = 0

µ = 1
N

xi

i=1

N

∑

• Max over µ	


  see Jordan Ch. 12, get sample mean… 

• For Σ need Trace operator: 

  and several properties: 
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Max Likelihood Gaussian 
• Likelihood rewritten in trace notation:	


• Max over A=Σ-1 
  use properties: 

• Get sample covariance: 
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Principal Components Analysis 
• Problem: for high dimensional data, D is large 
• Storing Σ, inverting Σ-1 and determining |Σ| are expensive! 
• Idea: limit Gaussian model to directions of high variance 
• Use Principal Components Analysis to mimic Σ  
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Principal Components Analysis 
• PCA approximates each datapoint as a mean vector plus 
  steps along eigenvector directions. E.g. ci steps along v  

• More generally, PCA uses a set of 
  eigenvectors M (where M<<D) 

• PCA selects              to minimize  
• The optimal directions are eigenvectors of covariance 
• Which directions to keep: highest eigenvalues (variances) 

x 

    


x

i
1( )


x

i
2( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
≈


µ 1( )

µ 2( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
+c

i


v 1( )

v 2( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

    

x

i
≈ x̂

i
=

µ + c

ij


v

jj =1

M∑

    

µ,c

ij
,

v

j{ }
    


x

i
− x̂

i

2

i=1

N∑



Tony Jebara, Columbia University 

Principal Components Analysis 
• Use eigenvectors, mean & coefficients to approximate data 

• PCA finds eigenvectors by decomposing covariance matrix: 

• Eigenvectors are orthonormal:  
• Eigenvalues are non-negative and non-increasing 

• PCA selects the M eigenvectors with largest eigenvalues 
• Truncating gives an approximate covariance: 
• PCA finds coefficients by: 
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PCA via the Snapshot Method 
• Careful… how big is the covariance matrix? 
• Assume 1000 images each containing D=20,000 pixels 
• It is DxD pixels, that’s unstoreable! 
• Also, finding the eigenvectors or 
  inverting DxD, requires O(D3)! 

• First compute mean of all data (easy) 
  and subtract it from each point 

Instead of:      compute 

Then find eigendecomposition of Gram matrix  

Eigenvectors of Σ are then: 
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PCA via the Snapshot Method 
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Truncated Gaussian Detection 
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• Approximate Σ with PCA plus spherical term via 

Eigenvalues 

Specific 
Eigenvalues & 
Eigenvectors 

Spherical 
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Truncated Gaussian Detection 
• Instead of minimizing squared error, use Gaussian model 

• Use Snapshot PCA to efficiently store the big covariance 
• This maximum likelihood Gaussian model achieved 
  state of the art face finding as evaluated by NIST/DARPA   
 (Moghaddam et al., 2000) 

        

• Top performer after 2000 is Viola-Jones (boosted cascade) 
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Gaussian Face Recognition 
• Instead of modeling face images with Gaussian 
  model the difference of two face images with a Gaussian 
• Each difference of all pairs of images in our data is 
  represented as a D-dimensional vector x 
• Also have a binary label y, y=1 same person same, y=0 not 

• One Gaussian for 
  same-face deltas 
  another for different 
  people deltas 
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Gaussian Classification 
• Have two classes, each with their own Gaussian: 

• Generation: 1) flip a coin, get y 
  2) pick Gaussian y, sample x from it 

• Maximum Likelihood: 

    i = 1…N
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Gaussian Classification 
• Max Likelihood can be done separately for the 3 terms 

• Count # of pos & neg examples (class prior): 
• Get mean & cov of negatives and mean & cov of positives: 

• Given (x,y) pair, can now compute likelihood 
• To make classification, a bit of Decision Theory 
• Without x, can compute prior guess for y 
• Give me x, want y, I need posterior 
• Bayes Optimal Decision: 
• Optimal iff we have true probability 
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Gaussian Classification 
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• Example cases, plotting decision boundary when = 0.5 

• If covariances are equal: 

   linear decision 

• If covariances are different: 

   quadratic decision 
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Intra-Extra Personal Gaussians 
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• Covariance is approximated 
  by these eigenvectors: 

• Extrapersonal Gaussian model 

• Covariances is approximated 
  by these eigenvectors: 

• Question: what are the Gaussian means? 
• Probability a pair is the same person: 
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Other Standard Bases 
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• There are other choices for the eigenvectors, not just PCA 
• Could pick eigenvectors without looking at the data 
• Just for their interesting properties 

• Fourier basis: denoises, only keeps smooth parts of image 

• Wavelet basis: localized or windowed Fourier 

• PCA: optimal least squares linear dataset reconstruction 
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Basis for Natural Images 
• What happens if we 
  do PCA on all natural 
  images instead of 
  just faces? 

• Get difference of Gaussian bases 
• Like Gabor or Wavelet basis 
• Not specific like faces 
• Multi-scale & 
  orientation 
• Also called steerable 
  filters 
• Similar to visual cortex 
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Problems with Linear Bases 
• Coefficient representation 
  changes wildly if image 
  rotates and so does p(x) 

• The eigenspace is sensitive 
  to rotations, translations and 
  transformations of the image 

• Simple linear/Gaussian/PCA models 
  are not enough 
• What worked for aligned faces 
  breaks for general image datasets 
• Most of the PCA eigenvectors and 
  spectrum energy is wasted due to 
  NONLINEAR EFFECTS… 
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