
Tony Jebara, Columbia University

Advanced Machine
Learning & Perception

Instructor: Tony Jebara

Tony Jebara, Columbia University

Topic 1
• Introduction, researchy course, latest papers

• Going beyond simple machine learning

• Perception, strange spaces, images, time, behavior

• Info, policies, texts, web page

• Syllabus, Overview, Review

• Gaussian Distributions

• Representation & Appearance Based Methods

• Least Squares, Correlation, Gaussians, Bases

• Principal Components Analysis and its Shortcomings

Tony Jebara, Columbia University

About me
• Tony Jebara, Associate Professor in Computer Science

• Started at Columbia in 2002

• PhD from MIT in Machine Learning
• Thesis: Discriminative, Generative and Imitative Learning (2001)

• Research Areas: (Columbia Machine Learning Lab, CEPSR 6LE5)
• www.cs.columbia.edu/learning

• Machine Learning

• Some Computer Vision

Tony Jebara, Columbia University

Course Web Page
http://www.cs.columbia.edu/~jebara/4772

http://www.cs.columbia.edu/~jebara/6772

Some material & announcements will be online

But, many things will be handed out in class such as
photocopies of papers for readings, etc.

Check NEWS link to see deadlines, homework, etc.

Available online, see TA info, etc.

Follow the policies, homework, deadlines, readings
closely please!

Tony Jebara, Columbia University

Syllabus
Week 1: Introduction, Review of Basic Concepts, Representation Issues, Vector
and Appearance-Based Models, Correlation and Least Squared Error Methods,
Bases, Eigenspace Recognition, Principal Components Analysis

Week 2: Nonlinear Dimensionality Reduction, Manifolds, Kernel PCA, Locally
Linear Embedding, Maximum Variance Unfolding, Minimum Volume Embedding

Week 3: Maximum Entropy, Exponential Families, Maximum Entropy
Discrimination, Large Margin Probability Models

Week 4: Conditional Random Fields and Linear Models, Iterative Scaling and
Majorization

Week 5: Graphical Models, Multi-Class Support Vector Machines, Structured
Support Vector Machines, Cutting Plane Algorithms

Week 6: Kernels and Probabilistic Kernels

Tony Jebara, Columbia University

Syllabus
Week 7: Feature Selection and Kernel Selection, Support Vector Machine
Extensions

Week 8: Meta-Learning and Multi-Task Support Vector Machines

Week 9: Semi-Supervised Learning and Graph-Based Semi-Supervised Learning

Week 10: High-Tree Width Graphical Models, Approximate Inference, Graph
Structure Learning

Week 11: Clustering, Spectral Clustering, Normalized Cuts.

Week 12: Boosting, Mixtures of Experts, AdaBoost, Online Learning

Week 13: Project Presentations

Week 14: Project Presentations

Tony Jebara, Columbia University

Beyond Canned Learning
• Latest research methods, high dimensions, nonlinearities,
dynamics, manifolds, invariance, unlabeled, feature selection
• Modeling Images / People / Activity / Time Series / MoCAP

Tony Jebara, Columbia University

Representation & Vectorization
• How to represent our data? Images, time series, genes…
• Vectorization: the poor man’s representation
• Almost anything can be written as a long vector
• E.g. image is read lexicographically
 RGB of eachpixel is added to a vector

• Or, a gene sequence can be written
 as a binary vector

 GATACAC = [0100 0001 1000 0001 0010 0001 0010]

• For images, this is called “Appearance Based” representation
• But, we lose many important properties this way
• We will fix this in later lectures
• For now, it is an easy way to proceed

→

1
3
0
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Tony Jebara, Columbia University

Least Squares Detection
• How to find a face in an image given a template?
• Template Matching and Sum-Squares-Difference (SSD)
• Naïve: try all positions/scales, find least squares distance

• Correlation and Normalized Correlation
 Could normalize length of all vectors (fixes lighting)

i* = arg min

i∈ 1,T⎡⎣⎢
⎤
⎦⎥

1
2

µ−x
i

2

µ̂ =
µ

µ

i* = arg min
i∈ 1,T⎡⎣⎢

⎤
⎦⎥

1
2

µ̂T µ̂− 2µ̂Tx̂
i

+ x̂
i
Tx̂

i()
= arg max

i∈ 1,T⎡⎣⎢
⎤
⎦⎥
µ̂Tx̂

i

i* = arg min

i∈ 1,T⎡⎣⎢
⎤
⎦⎥

1
2

µ−x
i()T µ−x

i()

Tony Jebara, Columbia University

Least Squares as Gaussian Model
• Minimum squared error is equivalent to
 maximum likelihood under a Gaussian

• Can now treat it as a probabilistic problem
• Trying to find the most likely position (or sub-image)
 in search image given the Gaussian model
 of the template
• Define the log of the likelihood as:
• For a Gaussian probability or likelihood is:

i* = arg min
i∈ 1,T⎡⎣⎢

⎤
⎦⎥

1
2

µ−x
i

2

= arg max
i∈ 1,T⎡⎣⎢

⎤
⎦⎥
log 1

2π()D/2
exp − 1

2
µ−x

i

2⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

log p x | θ()

p x

i
| θ() = 1

2π()D/2
exp − 1

2
µ−x

i

2⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

Tony Jebara, Columbia University

• Gaussian extend to D-dimensions and have 2 parameters:

• Mean vector µ vector (translates)
• Covariance matrix Σ (stretches and rotates)	

• Max and expectation = µ
• Mean is any real vector, variance is now Σ matrix
• Covariance matrix is positive semi-definite
• Covariance matrix is symmetric
• Need matrix inverse (inv)
• Need matrix determinant (det)
• Need matrix trace operator (trace)

Multivariate Gaussian

p x | µ,Σ() = 1

2π()D/2
Σ

exp − 1
2

x − µ()T Σ−1 x − µ()⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 x,µ ∈ ℜD, Σ ∈ ℜD×D

Tony Jebara, Columbia University

Max Likelihood Gaussian
• How to make face detector to work on all faces?
• Why use a template? How can we use many templates?
• Have IID samples of template vectors i=1..N:

• Represent IID samples
 with parameters as network:

• Let us get a good Gaussian from these many templates.
• Standard approach: Max Likelihood

 i = 1…N

 x
1,x 2,x 3,…,xN

log p xi | µ,Σ()

i=1

N

∑ = log 1

2π()D/2
Σ

exp − 1
2

xi − µ()T Σ−1 xi − µ()⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

i=1

N

∑

More efficiently drawn using
Replicator Plate

Tony Jebara, Columbia University

Max Likelihood Gaussian

∂
∂µ

log 1

2π()D/2
Σ

exp − 1
2

xi − µ()T Σ−1 xi − µ()⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

i=1

N

∑ = 0

∂
∂µ

− D
2
log 2π− 1

2
log Σ − 1

2
xi − µ()T Σ−1 xi − µ()

i=1

N

∑ = 0

xi − µ()T Σ−1

i=1

N

∑ = 0

µ = 1
N

xi

i=1

N

∑

• Max over µ	

 see Jordan Ch. 12, get sample mean…

• For Σ need Trace operator:

 and several properties:

∂xTx
∂x

= 2xT

tr A() = tr AT() = A
ddd=1

D∑
tr AB() = tr BA()
tr BAB−1() = tr A()
tr xxTA() = tr xTAx() = xTAx

Tony Jebara, Columbia University

Max Likelihood Gaussian
• Likelihood rewritten in trace notation:	

• Max over A=Σ-1
 use properties:

• Get sample covariance:

l = − D
2
log 2π− 1

2
log Σ − 1

2
xi − µ()T Σ−1 xi − µ()i=1

N∑
= − ND

2
log 2π+ N

2
log Σ−1 − 1

2
tr xi − µ()T Σ−1 xi − µ()⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

N∑

= − ND
2

log 2π+ N
2
log Σ−1 − 1

2
tr xi − µ() xi − µ()T Σ−1⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

N∑

= − ND
2

log 2π+ N
2
log A − 1

2
tr xi − µ() xi − µ()T A
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

N∑

∂ log A

∂A
= A−1()T

∂tr BA⎡⎣⎢
⎤
⎦⎥

∂A
= BT

∂l
∂A

= −0 + N
2

A−1()T − 1
2

xi − µ() xi − µ()T⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

i=1

N∑

= N
2
Σ− 1

2
xi − µ() xi − µ()Ti=1

N∑

∂l
∂A

= 0 → Σ = 1
N

xi − µ() xi − µ()Ti=1

N∑

Tony Jebara, Columbia University

Principal Components Analysis
• Problem: for high dimensional data, D is large
• Storing Σ, inverting Σ-1 and determining |Σ| are expensive!
• Idea: limit Gaussian model to directions of high variance
• Use Principal Components Analysis to mimic Σ

Tony Jebara, Columbia University

Principal Components Analysis
• PCA approximates each datapoint as a mean vector plus
 steps along eigenvector directions. E.g. ci steps along v

• More generally, PCA uses a set of
 eigenvectors M (where M<<D)

• PCA selects to minimize
• The optimal directions are eigenvectors of covariance
• Which directions to keep: highest eigenvalues (variances)

x

x

i
1()

x

i
2()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
≈

µ 1()

µ 2()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
+c

i

v 1()

v 2()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

i
≈ x̂

i
=

µ + c

ij

v

jj =1

M∑

µ,c

ij
,

v

j{ }

x

i
− x̂

i

2

i=1

N∑

Tony Jebara, Columbia University

Principal Components Analysis
• Use eigenvectors, mean & coefficients to approximate data

• PCA finds eigenvectors by decomposing covariance matrix:

• Eigenvectors are orthonormal:
• Eigenvalues are non-negative and non-increasing

• PCA selects the M eigenvectors with largest eigenvalues
• Truncating gives an approximate covariance:
• PCA finds coefficients by:

x

i
≈

µ + c

ij

v

jj =1

M∑

Σ =VΛVT = λ
i

v

i

v

i
T

i=1

D∑
Σ

11
Σ

12
Σ

13

Σ
12
Σ

22
Σ

23

Σ
13
Σ

23
Σ

33

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

v

1
⎡
⎣⎢
⎤
⎦⎥

v

2
⎡
⎣⎢
⎤
⎦⎥

v

3
⎡
⎣⎢
⎤
⎦⎥

⎡
⎣
⎢

⎤
⎦
⎥

λ
1

0 0

0 λ
2

0

0 0 λ
3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

v

1
⎡
⎣⎢
⎤
⎦⎥

v

2
⎡
⎣⎢
⎤
⎦⎥

v

3
⎡
⎣⎢
⎤
⎦⎥

⎡
⎣
⎢

⎤
⎦
⎥
T

c

ij
=

x

i
−

µ()T vj

v

i
T v

j
= δ

ij

 λ1
≥ λ

2
≥≥ λ

D
≥ 0

Σ̂ = λ

i

v

i

v

i
T

i=1

M∑

Tony Jebara, Columbia University

PCA via the Snapshot Method
• Careful… how big is the covariance matrix?
• Assume 1000 images each containing D=20,000 pixels
• It is DxD pixels, that’s unstoreable!
• Also, finding the eigenvectors or
 inverting DxD, requires O(D3)!

• First compute mean of all data (easy)
 and subtract it from each point

Instead of: compute

Then find eigendecomposition of Gram matrix

Eigenvectors of Σ are then:

Σ = 1

N
x

i
x

i
T

i=1

N∑
Φ where Φ

i, j
= x

i
Tx

j

 Φ= VΛ VT

v

i
∝ x

j
v
i

j()j =1

N∑

Tony Jebara, Columbia University

PCA via the Snapshot Method

µ

x

1
,…,x

N{ } =

µ + c∑ 1j

v

j
,…{ } =

Tony Jebara, Columbia University

Truncated Gaussian Detection

Σ = λ
k
v

k
v

k
T ≈

k=1

D∑ Σ̂

Σ̂ = λ
k
v

k
v

k
T +

k=1

M∑ ρv
k
v

k
T

k=M +1

D∑
Σ̂−1 = 1

λk

v
k
v

k
T +

k=1

M∑ 1
ρ
v

k
v

k
T

k=M +1

D∑
Σ̂−1 = 1

λk

− 1
ρ()vk

v
k
T +

k=1

M∑ 1
ρ
I

Σ̂ = λ
kk=1

M∏ ρ
k=M +1

D∏

• Approximate Σ with PCA plus spherical term via

Eigenvalues

Specific
Eigenvalues &
Eigenvectors

Spherical

ρ = 1
D−M

λ
kk=M +1

D∑
= 1

D−M
λ

kk=1

D∑ − λ
kk=1

M∑()
= 1

D−M
Σ

kkk=1

D∑ − λ
kk=1

M∑()
Σ

kk
= 1

N
x

i
k()− µ k()()2

i=1

N∑

p x | µ,Σ̂()

Tony Jebara, Columbia University

Truncated Gaussian Detection
• Instead of minimizing squared error, use Gaussian model

• Use Snapshot PCA to efficiently store the big covariance
• This maximum likelihood Gaussian model achieved
 state of the art face finding as evaluated by NIST/DARPA
 (Moghaddam et al., 2000)

• Top performer after 2000 is Viola-Jones (boosted cascade)

p x | µ,Σ̂() = 1

2π()D/2
Σ̂

exp − 1
2

x − µ()T Σ̂−1 x − µ()⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

Tony Jebara, Columbia University

Gaussian Face Recognition
• Instead of modeling face images with Gaussian
 model the difference of two face images with a Gaussian
• Each difference of all pairs of images in our data is
 represented as a D-dimensional vector x
• Also have a binary label y, y=1 same person same, y=0 not

• One Gaussian for
 same-face deltas
 another for different
 people deltas

 yi
= 1,x

i
=

x ∈ RD y ∈ 0,1{ }

y

j
= 0,x

j
=- -

Tony Jebara, Columbia University

Gaussian Classification
• Have two classes, each with their own Gaussian:

• Generation: 1) flip a coin, get y
 2) pick Gaussian y, sample x from it

• Maximum Likelihood:

 i = 1…N

p x | µ,Σ,y() = N x | µ

y
,Σ

y()
p y | α() = αy 1−α()1−y
p α()p µ()p Σ()p y | α()p x | y,µ,Σ()

l = log p x
i
,y

i
| α,µ,Σ()i=1

N∑
= log p y

i
| α() +

i=1

N∑ log p x
i
| y

i
,µ,Σ()i=1

N∑
= log p y

i
| α() +

i=1

N∑ log p x
i
| µ

0
,Σ

0() + log p x
i
| µ

1
,Σ

1()yi ∈1
∑yi ∈0∑

x

1
,y

1(),…, x
N
,y

N(){ } x ∈ RD y ∈ 0,1{ }

Tony Jebara, Columbia University

Gaussian Classification
• Max Likelihood can be done separately for the 3 terms

• Count # of pos & neg examples (class prior):
• Get mean & cov of negatives and mean & cov of positives:

• Given (x,y) pair, can now compute likelihood
• To make classification, a bit of Decision Theory
• Without x, can compute prior guess for y
• Give me x, want y, I need posterior
• Bayes Optimal Decision:
• Optimal iff we have true probability

l = log p y

i
| α() +

i=1

N∑ log p x
i
| µ

0
,Σ

0() + log p x
i
| µ

1
,Σ

1()yi ∈1
∑yi ∈0∑

p x,y()

p y | x()

ŷ = arg max

y= 0,1{ } p y | x()

α = N1

N0 +N1

µ

0
= 1

N0

x
iyi∈0

∑

Σ

0
= 1

N0

x
i
− µ

0() x
i
− µ

0()yi∈0
∑

T

µ

1
= 1

N1

x
iyi∈1

∑

Σ

1
= 1

N1

x
i
− µ

1() x
i
− µ

1()yi∈1
∑

T

p y()

Tony Jebara, Columbia University

Gaussian Classification

p y = 1 | x() =
p x,y = 1()

p x,y = 0() + p x,y = 1()

=
αN x | µ

1
,Σ

1()
1−α()N x | µ

0
,Σ

0() +αN x | µ
1
,Σ

1()

• Example cases, plotting decision boundary when = 0.5

• If covariances are equal:

 linear decision

• If covariances are different:

 quadratic decision

Tony Jebara, Columbia University

Intra-Extra Personal Gaussians

p y = 1 | x() =
αN x | µ

1
,Σ

1()
1−α()N x | µ

0
,Σ

0() +αN x | µ
1
,Σ

1()

N x | µ

1
,Σ

1()• Intrapersonal Gaussian model

• Covariance is approximated
 by these eigenvectors:

• Extrapersonal Gaussian model

• Covariances is approximated
 by these eigenvectors:

• Question: what are the Gaussian means?
• Probability a pair is the same person:

N x | µ

0
,Σ

0()

Tony Jebara, Columbia University

Other Standard Bases

x

i
≈

µ + c

ij

v

jj =1

C∑

• There are other choices for the eigenvectors, not just PCA
• Could pick eigenvectors without looking at the data
• Just for their interesting properties

• Fourier basis: denoises, only keeps smooth parts of image

• Wavelet basis: localized or windowed Fourier

• PCA: optimal least squares linear dataset reconstruction

Tony Jebara, Columbia University

Basis for Natural Images
• What happens if we
 do PCA on all natural
 images instead of
 just faces?

• Get difference of Gaussian bases
• Like Gabor or Wavelet basis
• Not specific like faces
• Multi-scale &
 orientation
• Also called steerable
 filters
• Similar to visual cortex

Tony Jebara, Columbia University

Problems with Linear Bases
• Coefficient representation
 changes wildly if image
 rotates and so does p(x)

• The eigenspace is sensitive
 to rotations, translations and
 transformations of the image

• Simple linear/Gaussian/PCA models
 are not enough
• What worked for aligned faces
 breaks for general image datasets
• Most of the PCA eigenvectors and
 spectrum energy is wasted due to
 NONLINEAR EFFECTS…

c

ij
=

x

i
−

µ()T vj

