Tony Jebara, Columbia University

Advanced Machine Learning & Perception

Instructor: Tony Jebara

Topic 1

- •Introduction, researchy course, latest papers
- •Going beyond simple machine learning
- •Perception, strange spaces, images, time, behavior
- •Info, policies, texts, web page
- •Syllabus, Overview, Review
- Gaussian Distributions
- Representation & Appearance Based Methods
- •Least Squares, Correlation, Gaussians, Bases
- Principal Components Analysis and its Shortcomings

About me

- •Tony Jebara, Associate Professor in Computer Science
- •Started at Columbia in 2002
- •PhD from MIT in Machine Learning
 - •Thesis: Discriminative, Generative and Imitative Learning (2001)
- Research Areas: (Columbia Machine Learning Lab, CEPSR 6LE5)
 - •www.cs.columbia.edu/learning
 - Machine Learning
 - Some Computer Vision

Course Web Page

http://www.cs.columbia.edu/~jebara/4772

http://www.cs.columbia.edu/~jebara/6772

Some material & announcements will be online

But, many things will be handed out in class such as photocopies of papers for readings, etc.

Check NEWS link to see deadlines, homework, etc.

Available online, see TA info, etc.

Follow the policies, homework, deadlines, readings closely please!

Syllabus

Week 1: Introduction, Review of Basic Concepts, Representation Issues, Vector and Appearance-Based Models, Correlation and Least Squared Error Methods, Bases, Eigenspace Recognition, Principal Components Analysis

Week 2: Nonlinear Dimensionality Reduction, Manifolds, Kernel PCA, Locally Linear Embedding, Maximum Variance Unfolding, Minimum Volume Embedding

Week 3: Maximum Entropy, Exponential Families, Maximum Entropy Discrimination, Large Margin Probability Models

Week 4: Conditional Random Fields and Linear Models, Iterative Scaling and Majorization

Week 5: Graphical Models, Multi-Class Support Vector Machines, Structured Support Vector Machines, Cutting Plane Algorithms

Week 6: Kernels and Probabilistic Kernels

Syllabus

Week 7: Feature Selection and Kernel Selection, Support Vector Machine Extensions

Week 8: Meta-Learning and Multi-Task Support Vector Machines

Week 9: Semi-Supervised Learning and Graph-Based Semi-Supervised Learning

Week 10: High-Tree Width Graphical Models, Approximate Inference, Graph Structure Learning

Week 11: Clustering, Spectral Clustering, Normalized Cuts.

Week 12: Boosting, Mixtures of Experts, AdaBoost, Online Learning

Week 13: Project Presentations

Week 14: Project Presentations

Beyond Canned Learning

Latest research methods, high dimensions, nonlinearities, dynamics, manifolds, invariance, unlabeled, feature selection
Modeling Images / People / Activity / Time Series / MoCAP

Representation & Vectorization

- •How to represent our data? Images, time series, genes...
- Vectorization: the poor man's representation
- •Almost anything can be written as a long vector
- •E.g. image is read lexicographically RGB of eachpixel is added to a vector
- •Or, a gene sequence can be written as a binary vector

 $GATACAC = [0100 \ 0001 \ 1000 \ 0001 \ 0010 \ 0001 \ 0010]$

For images, this is called "Appearance Based" representation
But, we lose many important properties this way

- •We will fix this in later lectures
- •For now, it is an easy way to proceed

Least Squares Detection

How to find a face in an image given a template?
Template Matching and Sum-Squares-Difference (SSD)
Naïve: try all positions/scales, find least squares distance

•Correlation and Normalized Correlation Could normalize length of all vectors (fixes lighting) $\hat{\mu} = \frac{\mu}{\|\mu\|} \qquad i^* = \arg\min_{i \in [1,T]} \frac{1}{2} \left(\hat{\mu}^T \hat{\mu} - 2\hat{\mu}^T \hat{x}_i + \hat{x}_i^T \hat{x}_i \right)$ $= \arg\max_{i \in [1,T]} \hat{\mu}^T \hat{x}_i$

Least Squares as Gaussian Model

•Minimum squared error is equivalent to maximum likelihood under a Gaussian

2

$${}^{*} = \arg\min_{i \in [1,T]} \frac{1}{2} \left\| \mu - x_{i} \right\|^{2}$$
$$= \arg\max_{i \in [1,T]} \log \left(\frac{1}{(2\pi)^{D/2}} \exp\left(-\frac{1}{2} \left\| \mu - x_{i} \right\|^{2} \right) \right)$$

•Can now treat it as a probabilistic problem

- •Trying to find the most likely position x_i (or sub-image) in search image given the Gaussian model $\theta = \mu$ of the template
- •Define the log of the likelihood as: $\log p(x | \theta)$ •For a Gaussian probability or likelihood is:

$$p\left(x_{i} \mid \theta\right) = \frac{1}{\left(2\pi\right)^{D/2}} \exp\left(-\frac{1}{2}\left\|\mu - x_{i}\right\|^{2}\right)$$

Multivariate Gaussian

•Gaussian extend to D-dimensions and have 2 parameters:

•Mean vector μ vector (translates)

•Covariance matrix Σ (stretches and rotates)

$$p\left(x \mid \mu, \Sigma\right) = \frac{1}{\left(2\pi\right)^{D/2} \sqrt{|\Sigma|}} \exp\left(-\frac{1}{2} \left(x - \mu\right)^T \Sigma^{-1} \left(x - \mu\right)\right) \quad \mu$$
$$x, \mu \in \Re^D, \ \Sigma \in \Re^{D \times D}$$

•Max and expectation = μ

•Mean is any real vector, variance is now Σ matrix

•Covariance matrix is positive semi-definite

- •Covariance matrix is symmetric
- •Need matrix inverse (inv)
- •Need matrix determinant (det)
- •Need matrix trace operator (trace)

Max Likelihood Gaussian

How to make face detector to work on all faces?
Why use a template? How can we use many templates?
Have IID samples of template vectors i=1..N: x¹, x², x³,...,x^N

•Represent IID samples with parameters as network:

Let us get a good Gaussian from these many templates.Standard approach: Max Likelihood

$$\sum_{i=1}^{N} \log p\left(x^{i} \mid \mu, \Sigma\right) = \sum_{i=1}^{N} \log \frac{1}{\left(2\pi\right)^{D/2} \sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}\left(x^{i} - \mu\right)^{T} \Sigma^{-1}\left(x^{i} - \mu\right)\right)$$

Max Likelihood Gaussian

•Max over
$$\mu$$
 $\frac{\partial}{\partial \mu} \sum_{i=1}^{N} \log \frac{1}{(2\pi)^{D/2} \sqrt{|\Sigma|}} \exp \left(-\frac{1}{2} \left(x^{i} - \mu \right)^{T} \Sigma^{-1} \left(x^{i} - \mu \right) \right) = 0$
 $\frac{\partial}{\partial \mu} \sum_{i=1}^{N} -\frac{D}{2} \log 2\pi - \frac{1}{2} \log \left| \Sigma \right| - \frac{1}{2} \left(x^{i} - \mu \right)^{T} \Sigma^{-1} \left(x^{i} - \mu \right) = 0$
 $\frac{\partial x^{T} x}{\partial x} = 2x^{T}$ $\sum_{i=1}^{N} \left(x^{i} - \mu \right)^{T} \Sigma^{-1} = 0$

see Jordan Ch. 12, get sample mean...

 $\mu = \frac{1}{N} \sum_{i=1}^{N} x^{i}$

•For Σ need Trace operator:

and several properties:

$$tr(A) = tr(A^{T}) = \sum_{d=1}^{D} A_{dd}$$
$$tr(AB) = tr(BA)$$
$$tr(BAB^{-1}) = tr(A)$$
$$tr(xx^{T}A) = tr(x^{T}Ax) = x^{T}Ax$$

Max Likelihood Gaussian

 Likelihood rewritten in trace notation: $l = \sum_{i=1}^{N} -\frac{D}{2} \log 2\pi - \frac{1}{2} \log \left| \Sigma \right| - \frac{1}{2} \left(x^{i} - \mu \right)^{T} \Sigma^{-1} \left(x^{i} - \mu \right)$ $= -\frac{ND}{2}\log 2\pi + \frac{N}{2}\log \left|\Sigma^{-1}\right| - \frac{1}{2}\sum_{i=1}^{N} tr\left|\left(x^{i} - \mu\right)^{T}\Sigma^{-1}\left(x^{i} - \mu\right)\right|$ $= -\frac{ND}{2}\log 2\pi + \frac{N}{2}\log \left|\Sigma^{-1}\right| - \frac{1}{2}\sum_{i=1}^{N} tr \left| (x^{i} - \mu)(x^{i} - \mu)^{T} \Sigma^{-1} \right|$ $= -\frac{ND}{2}\log 2\pi + \frac{N}{2}\log \left|A\right| - \frac{1}{2}\sum_{i=1}^{N} tr\left[\left(x^{i} - \mu\right)\left(x^{i} - \mu\right)^{T}A\right]$ •Max over $A = \Sigma^{-1}$ use properties: $\frac{\partial \log |A|}{\partial A} = (A^{-1})^T$ $\frac{\partial tr[BA]}{\partial A} = B^T$ $\frac{\partial l}{\partial A} = -0 + \frac{N}{2} \left(A^{-1} \right)^T - \frac{1}{2} \sum_{i=1}^N \left| \left(x^i - \mu \right) \left(x^i - \mu \right)^T \right|^T$ $= \frac{N}{2} \sum_{i=1}^{N} \sum_{i=1}^{N} (x^{i} - \mu) (x^{i} - \mu)^{T}$ •Get sample covariance: $\frac{\partial l}{\partial A} = 0 \rightarrow \Sigma = \frac{1}{N} \sum_{i=1}^{N} (x^{i} - \mu) (x^{i} - \mu)^{T}$

Principal Components Analysis

Problem: for high dimensional data, D is large
Storing Σ, inverting Σ⁻¹ and determining |Σ| are expensive!
Idea: limit Gaussian model to directions of high variance
Use Principal Components Analysis to mimic Σ

Principal Components Analysis

•PCA approximates each datapoint as a mean vector plus steps along eigenvector directions. E.g. c_i steps along v

•More generally, PCA uses a set of eigenvectors M (where M<<D)

$$\vec{x}_i pprox \hat{x}_i = \vec{\mu} + \sum_{j=1}^M c_{ij} \vec{v}_j$$

•PCA selects $\{\vec{\mu}, c_{ij}, \vec{v}_j\}$ to minimize $\sum_{i=1}^{N} \|\vec{x}_i - \hat{x}_i\|^2 - \hat{x}_i\|^2$ •The optimal directions are eigenvectors of covariance •Which directions to keep: highest eigenvalues (variances)

Principal Components Analysis

•Use eigenvectors, mean & coefficients to approximate data $\vec{x}_i \approx \vec{\mu} + \sum_{i=1}^M c_{ii} \vec{v}_i$

$$\begin{split} \boldsymbol{\Sigma} &= \boldsymbol{V}\boldsymbol{\Lambda}\boldsymbol{V}^{T} = \sum_{i=1}^{D} \lambda_{i} \vec{v}_{i} \vec{v}_{i}^{T} \\ \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} & \boldsymbol{\Sigma}_{13} \\ \boldsymbol{\Sigma}_{12} & \boldsymbol{\Sigma}_{22} & \boldsymbol{\Sigma}_{23} \\ \boldsymbol{\Sigma}_{13} & \boldsymbol{\Sigma}_{23} & \boldsymbol{\Sigma}_{33} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \vec{v}_{1} \end{bmatrix} \begin{bmatrix} \vec{v}_{2} \end{bmatrix} \begin{bmatrix} \vec{v}_{3} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \vec{v}_{1} \end{bmatrix} \begin{bmatrix} \vec{v}_{2} \end{bmatrix} \begin{bmatrix} \vec{v}_{3} \end{bmatrix} \end{bmatrix}^{T} \end{split}$$

•Eigenvectors are orthonormal: $\vec{v}_i^T \vec{v}_j = \delta_{ij}$ •Eigenvalues are non-negative and non-increasing

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_D \ge 0$$

•PCA selects the M eigenvectors with largest eigenvalues •Truncating gives an approximate covariance: $\hat{\Sigma} = \sum_{i=1}^{M} \lambda_i \vec{v}_i \vec{v}_i^T$ •PCA finds coefficients by: $c_{ij} = (\vec{x}_i - \vec{\mu})^T \vec{v}_j$

PCA via the Snapshot Method

Careful... how big is the covariance matrix?
Assume 1000 images each containing D=20,000 pixels

- It is DxD pixels, that's unstoreable!
 Also, finding the eigenvectors or inverting DxD, requires O(D³)!
- First compute mean of all data (easy) and subtract it from each point

Instead of:
$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} x_i x_i^T$$
 compute Φ where $\Phi_{i,j} = x_i^T x_j$

Then find eigendecomposition of Gram matrix $\Phi = \tilde{V} \Lambda \tilde{V}^T$

Eigenvectors of Σ are then: $v_i \propto \sum_{j=1}^N x_j \tilde{v}_i(j)$

Tony Jebara, Columbia University

PCA via the Snapshot Method

Truncated Gaussian Detection

Truncated Gaussian Detection

•Instead of minimizing squared error, use Gaussian model $p(x \mid \mu, \hat{\Sigma}) = \frac{1}{(2\pi)^{D/2}\sqrt{|\hat{\Sigma}|}} \exp\left(-\frac{1}{2}(x-\mu)^T \hat{\Sigma}^{-1}(x-\mu)\right)$ •Use Snapshot PCA to efficiently store the big covariance •This maximum likelihood Gaussian model achieved state of the art face finding as evaluated by NIST/DARPA (Moghaddam et al., 2000)

•Top performer after 2000 is Viola-Jones (boosted cascade)

Gaussian Face Recognition

- Instead of modeling face images with Gaussian model the difference of two face images with a Gaussian
 Each difference of all pairs of images in our data is represented as a D-dimensional vector x
- •Also have a binary label y, y=1 same person same, y=0 not $x \in R^D$ $u \in \{0,1\}$

$$y_i = 1, x_i =$$

•One Gaussian for same-face deltas another for different people deltas

Gaussian Classification

•Have two classes, each with their own Gaussian: $\begin{cases}
\left(x_{1}, y_{1}\right), \dots, \left(x_{N}, y_{N}\right)\right\} & x \in R^{D} \ y \in \left\{0, 1\right\} \\
 & & & & \\ & & & & \\ & & & \\ & & &$

•Generation: 1) flip a coin, get y

2) pick Gaussian y, sample x from it

Maximum Likelihood:

$$\begin{split} l &= \sum_{i=1}^{N} \log p\left(x_{i}, y_{i} \mid \alpha, \mu, \Sigma\right) \\ &= \sum_{i=1}^{N} \log p\left(y_{i} \mid \alpha\right) + \sum_{i=1}^{N} \log p\left(x_{i} \mid y_{i}, \mu, \Sigma\right) \\ &= \sum_{i=1}^{N} \log p\left(y_{i} \mid \alpha\right) + \sum_{y_{i} \in 0} \log p\left(x_{i} \mid \mu_{0}, \Sigma_{0}\right) + \sum_{y_{i} \in 1} \log p\left(x_{i} \mid \mu_{1}, \Sigma_{1}\right) \end{split}$$

Gaussian Classification

Max Likelihood can be done separately for the 3 terms

$$l = \sum\nolimits_{i=1}^{N} \log p\left(\boldsymbol{y}_{i} \mid \boldsymbol{\alpha}\right) + \sum\nolimits_{\boldsymbol{y}_{i} \in \boldsymbol{0}} \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{\boldsymbol{0}}, \boldsymbol{\Sigma}_{\boldsymbol{0}}\right) + \sum\nolimits_{\boldsymbol{y}_{i} \in \boldsymbol{1}} \log p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{\boldsymbol{1}}, \boldsymbol{\Sigma}_{\boldsymbol{1}}\right)$$

•Count # of pos & neg examples (class prior): $\alpha = \frac{N_1}{N_0 + N_1}$ •Get mean & cov of negatives and mean & cov of positives:

$$\begin{split} \mu_0 &= \frac{1}{N_0} \sum_{y_{i\in 0}} x_i \qquad \sum_0 = \frac{1}{N_0} \sum_{y_{i\in 0}} \left(x_i - \mu_0 \right) \left(x_i - \mu_0 \right)^T \\ \mu_1 &= \frac{1}{N_1} \sum_{y_{i\in 1}} x_i \qquad \sum_1 = \frac{1}{N_1} \sum_{y_{i\in 1}} \left(x_i - \mu_1 \right) \left(x_i - \mu_1 \right)^T \\ \bullet \text{Given (x,y) pair, can now compute likelihood} \quad p(x,y) \\ \bullet \text{To make classification, a bit of Decision Theory} \\ \bullet \text{Without x, can compute prior guess for y} \quad p(y) \\ \bullet \text{Give me x, want y, I need posterior} \quad p(y \mid x) \\ \bullet \text{Bayes Optimal Decision:} \qquad \hat{y} = \arg \max_{y = \{0,1\}} p(y \mid x) \\ \bullet \text{Optimal iff we have true probability} \end{split}$$

Gaussian Classification

•Example cases, plotting decision boundary when = 0.5 $p(y = 1 \mid x) = \frac{p(x, y = 1)}{p(x, y = 0) + p(x, y = 1)}$ $= \frac{\alpha N(x \mid \mu_1, \Sigma_1)}{(1 - \alpha) N(x \mid \mu_0, \Sigma_0) + \alpha N(x \mid \mu_1, \Sigma_1)}$

•If covariances are equal:

linear decision

•If covariances are different:

quadratic decision

Intra-Extra Personal Gaussians

•Intrapersonal Gaussian model

$$N(x \mid \mu_1, \Sigma_1)$$

 $N(x \mid \mu_0, \Sigma_0)$

- •Covariance is approximated by these eigenvectors:
- •Extrapersonal Gaussian model
- •Covariances is approximated by these eigenvectors:

•Question: what are the Gaussian means? •Probability a pair is the same person: $p(y = 1 \mid x) = \frac{\alpha N(x \mid \mu_1, \Sigma_1)}{(1 - \alpha)N(x \mid \mu_0, \Sigma_0) + \alpha N(x \mid \mu_1, \Sigma_1)}$

Other Standard Bases

There are other choices for the eigenvectors, not just PCA
Could pick eigenvectors without looking at the data
Just for their interesting properties

$$\vec{x}_i \approx \vec{\mu} + \sum_{j=1}^C c_{ij} \vec{v}_j$$

•Fourier basis: denoises, only keeps smooth parts of image

$[\Lambda] = I$		Λ Λ		$\Lambda = \Lambda$
11	1 1 1	$1 \leq 1 \leq 1$	1	
1				
L				1
		\downarrow	$\Lambda / \dots \Lambda /$	$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
	-V + V		V IV	$\square V \square V$

•Wavelet basis: localized or windowed Fourier

•PCA: optimal least squares linear dataset reconstruction

 \vec{x}_{i}

Basis for Natural Images

•What happens if we do PCA on all natural images instead of just faces?

•Get difference of Gaussian bases

- •Like Gabor or Wavelet basis
- Not specific like faces
- •Multi-scale & orientation
- •Also called steerable filters
- •Similar to visual cortex

 G_1

G,

Problems with Linear Bases

- •Coefficient representation changes wildly if image rotates and so does p(x)
- •The eigenspace is sensitive to rotations, translations and transformations of the image
- •Simple linear/Gaussian/PCA models are not enough
- •What worked for aligned faces breaks for general image datasets
- •Most of the PCA eigenvectors and spectrum energy is wasted due to NONLINEAR EFFECTS...

$$c_{_{ij}} = \left(\vec{x}_{_i} - \vec{\mu}\right)^T \vec{v}_{_j}$$

