Log-Linear Models, Logistic Regression and Conditional Random Fields

February 19, 2013
Generative, Conditional and Discriminative

- Given $\mathcal{D} = (x_t, y_t)_{t=1}^T$ sampled iid from unknown $P(x, y)$
- Generative Learning (maximum likelihood Gaussians)
 - Choose family of functions $p_\theta(x, y)$ parametrized by θ
 - Find θ by maximizing likelihood: $\prod_{t=1}^T p_\theta(x_i, y_i)$
 - Given x, output $\hat{y} = \arg\max_y \frac{p_\theta(x,y)}{\sum_y p_\theta(x,y)}$
- Conditional Learning (logistic regression)
 - Choose family of functions $p_\theta(y|x)$ parametrized by θ
 - Find θ by maximizing conditional likelihood: $\prod_{t=1}^T p_\theta(y_i|x_i)$
 - Given x, output $\hat{y} = \arg\max_y p_\theta(y|x)$
- Discriminative Learning (support vector machines)
 - Choose family of functions $y = f_\theta(x)$ parametrized by θ
 - Find θ by minimizing classification error $\sum_{t=1}^T \ell(y_i, f_\theta(x_i))$
 - Given x, output $\hat{y} = f_\theta(x)$
Generative, Conditional and Discriminative
Generative: Maximum Entropy

Maximum entropy (or generally) minimum relative entropy
\[
\mathcal{RE}(p \parallel h) = \sum_y p(y) \ln \frac{p(y)}{h(y)} \quad \text{subject to linear constraints}
\]

\[
\min_p \mathcal{RE}(p \parallel h) \quad \text{s.t.} \quad \sum_y p(y) f(y) = 0, \quad \sum_y p(y) g(y) \geq 0
\]

Solution distribution looks like an exponential family model
\[
p(y) = h(y) \exp \left(\theta^\top f(y) + \vartheta^\top g(y) \right) / Z(\theta, \vartheta)
\]

Maximize the dual (the negative log-partition) to get \(\theta, \vartheta\).
\[
\max_{\theta, \vartheta \geq 0} - \ln Z(\theta, \vartheta) = \max_{\theta, \vartheta \geq 0} - \ln \sum_y h(y) \exp \left(\theta^\top f(y) + \vartheta^\top g(y) \right)
\]
All maximum entropy models give an exponential family form:

\[p(y) = h(y) \exp(\theta^\top f(y) - a(\theta)) \]

This is also a log-linear model over discrete \(y \in \Omega \) where \(|\Omega| = n\)

\[p(y|\theta) = \frac{1}{Z(\theta)} h(y) \exp \left(\theta^\top f(y) \right) \]

- Parameters are vector \(\theta \in \mathbb{R}^d \)
- Features are \(f : \Omega \mapsto \mathbb{R}^d \) mapping each \(y \) to some vector
- Prior is \(h : \Omega \mapsto \mathbb{R}^+ \) a fixed non-negative measure
- Partition function ensures that \(p(y|\theta) \) normalizes

\[Z(\theta) = \sum_y h(y) \exp(\theta^\top f(y)) \]
We are given some \(iid\) data \(y_1, \ldots, y_T\) where \(y \in \{0, 1\}\). If we wanted to find the best parameters of an exponential family distribution known as the Bernoulli distribution:

\[
p(y|\theta) = h(y) \exp(\theta^\top f(y) - a(\theta)) \\
= \theta^y (1 - \theta)^{1-y}
\]

This is unsupervised generative learning.
We simply find the \(\theta\) that maximizes the likelihood

\[
L(\theta) = \prod_{t=1}^{T} p(y_t|\theta) = \theta^{\sum_t y_t} (1 - \theta)^{T - \sum_t y_t}
\]

Taking log then derivatives and setting to zero gives \(\theta = \frac{1}{T} \sum_t y_t\).
Given input-output *iid* data \((x_1, y_1), \ldots, (x_T, y_T)\) where \(y \in \{0, 1\}\). Binary logistic regression computes a probability for \(y = 1\) by

\[
p(y = 1|x, \theta) = \frac{1}{1 + \exp(-\theta^\top \phi(x))}.
\]

And the probability for \(p(y = 0|x, \theta) = 1 - p(y = 1|x, \theta)\). This is supervised conditional learning.

We find the \(\theta\) that maximizes the *conditional* likelihood

\[
L(\theta) = \prod_{t=1}^{T} p(y_t|x_t, \theta)
\]

We can maximize this by doing gradient ascent. Logistic regression is an example of a *log-linear model*.
Conditional: Log-linear Models

Like an exponential family, but allow Z, h and f also depend on x

$$p(y|x, \theta) = \frac{1}{Z(x, \theta)} h(x, y) \exp \left(\theta^\top f(x, y) \right)$$

- Parameters are just one long vector $\theta \in \mathbb{R}^d$
- Functions $f : \Omega_x \times \Omega_y \mapsto \mathbb{R}^d$ map x, y to a vector
- Prior is $h : \Omega_x \times \Omega_y \mapsto \mathbb{R}^+$ a fixed non-negative measure
- Partition function ensures that $p(y|x, \theta)$ normalizes

To make a prediction, we simply output

$$\hat{y} = \arg \max_y p(y|x, \theta).$$

Let's mimic (multi-class) logistic regression with this form.
In multi-class logistic regression, we have $y \in \{1, \ldots, n\}$.

$$p(y|x, \theta) = \frac{1}{Z(x, \theta)} h(x, y) \exp \left(\theta^\top f(x, y) \right)$$

If $\phi(x) \in \mathbb{R}^k$, then $f(x, y) \in \mathbb{R}^{kn}$. Choose the following for the feature function

$$f(x, y) = \left[\delta[y = 1] \phi(x)^\top \ \delta[y = 2] \phi(x)^\top \ \ldots \ \delta[y = n] \phi(x)^\top \right]^\top.$$

If $n = 2$ and $h(x, y) = 1$, get traditional binary logistic regression!
Rewrite binary logistic regression \(p(y = 1| x, \vartheta) = \frac{1}{1 + \exp(-\vartheta^\top \phi(x))} \) as a log-linear model with \(n = 2, h(x, y) = 1 \) and \(f(x, y) \) as before.

\[
p(y| x, \theta) = \frac{h(x, y) \exp (\theta^\top f(x, y))}{Z(x, \theta)} = \frac{\exp (f(x, y)^\top \theta)}{\sum_{y=0}^{1} \exp (f(x, y)^\top \theta)}
\]

\[
p(y = 1| x, \theta) = \frac{\exp ([0 \phi(x)^\top] \theta)}{\exp ([\phi(x)^\top 0] \theta) + \exp ([0 \phi(x)^\top] \theta)} = \frac{1}{1 + \exp ([\phi(x)^\top 0] \theta - [0 \phi(x)^\top] \theta)}
\]

Can you see how to write \(\vartheta \) in terms of \(\theta \)?
Conditional Random Fields (CRFs)

- Conditional random fields generalize maximum entropy
- Trained on iid data $\{(x_1, y_1), \ldots, (x_t, y_t)\}$
- A CRF is just a log-linear model with big n

$$p(y|x_j, \theta) = \frac{1}{Z(x_j, \theta)} h(x_j, y) \exp(\theta^T f(x_j, y))$$

- Maximum conditional log-likelihood objective function is

$$J(\theta) = \sum_{j=1}^{t} \ln \frac{h(x_j, y_j)}{Z(x_j, \theta)} + \theta^T f(x_j, y_j) \quad (1)$$

- Regularized conditional maximum likelihood is

$$J(\theta) = \sum_{j=1}^{t} \ln \frac{h(x_j, y_j)}{Z(x_j, \theta)} + \theta^T f(x_j, y_j) - \frac{t\lambda}{2} \|\theta\|^2 \quad (2)$$
Conditional Random Fields (CRFs)

- To train a CRF, we maximize (regularized) conditional likelihood
- Traditionally, maximum entropy, log-linear models and CRFs were trained using *majorization* (the EM algorithm is a majorization method)
- The algorithms were called *improved iterative scaling (IIS)* or *generalized iterative scaling (GIS)*
 - Maximum entropy [Jaynes ’57]
 - Conditional random fields [Lafferty, et al. ’01]
 - Log-linear models [Darroch & Ratcliff ’72]
Majorization

If cost function $\theta^* = \arg \min_{\theta} C(\theta)$ has no closed form solution, Majorization uses with a surrogate Q with closed form update to monotonically minimize the cost from an initial θ_0

- Find bound $Q(\theta, \theta_i) \geq C(\theta)$ where $Q(\theta_i, \theta_i) = C(\theta_i)$
- Update $\theta_{i+1} = \arg \min_{\theta} Q(\theta, \theta_i)$
- Repeat until converged
Majorization

If cost function $\theta^* = \arg\min_{\theta} C(\theta)$ has no closed form solution Majorization uses with a surrogate Q with closed form update to monotonically minimize the cost from an initial θ_0

- Find bound $Q(\theta, \theta_i) \geq C(\theta)$ where $Q(\theta_i, \theta_i) = C(\theta_i)$
- Update $\theta_{i+1} = \arg\min_{\theta} Q(\theta, \theta_i)$
- Repeat until converged
Majorization

If cost function $\theta^* = \arg \min_{\theta} C(\theta)$ has no closed form solution, Majorization uses with a surrogate Q with closed form update to monotonically minimize the cost from an initial θ_0

- Find bound $Q(\theta, \theta_i) \geq C(\theta)$ where $Q(\theta_i, \theta_i) = C(\theta_i)$
- Update $\theta_{i+1} = \arg \min_{\theta} Q(\theta, \theta_i)$
- Repeat until converged
IIS and GIS were preferred until [Wallach '03, Andrew & Gao ’07]

<table>
<thead>
<tr>
<th>Method</th>
<th>Iterations</th>
<th>LL Evaluations</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIS</td>
<td>≥ 150</td>
<td>≥ 150</td>
<td>≥ 188.65</td>
</tr>
<tr>
<td>Conjugate gradient (FR)</td>
<td>19</td>
<td>99</td>
<td>124.67</td>
</tr>
<tr>
<td>Conjugate gradient (PRP)</td>
<td>27</td>
<td>140</td>
<td>176.55</td>
</tr>
<tr>
<td>L-BFGS</td>
<td>22</td>
<td>22</td>
<td>29.72</td>
</tr>
</tbody>
</table>

Gradient descent appears to be faster
But newer majorization methods are faster still
Gradient Ascent for CRFs

We have the following model

\[
p(y|x, \theta) = \frac{1}{Z(x, \theta)} h(x, y) \exp \left(\theta^\top f(x, y) \right)
\]

We want to maximize the conditional (log) likelihood:

\[
\log L(\theta) = \sum_{t=1}^{T} \log p(y_t|x_t, \theta)
\]

\[
= \sum_{t=1}^{T} -\log Z(x_t, \theta) + \log(h(x_t, y_t)) + \theta^\top f(x_t, y_t)
\]

\[
= \text{const} - \sum_{t=1}^{T} \log Z(x_t, \theta) + \theta^\top \sum_{t=1}^{T} f(x_t, y_t)
\]

Same as minimizing the sum of log partition functions plus linear!
Gradient Ascent for CRFs

\[
\frac{\partial \log L}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\Theta^\top \sum_{t=1}^{T} f(x_t, y_t) - \sum_{t=1}^{T} \log Z(x_t, \theta) \right) \\
= \sum_{t=1}^{T} f(x_t, y_t) - \sum_{t=1}^{T} \frac{1}{Z(x_t, \theta)} \sum_{y} h(x_t, y) \frac{\partial}{\partial \theta} \exp \left(\Theta^\top f(x_t, y) \right) \\
= \sum_{t=1}^{T} f(x_t, y_t) - \sum_{t=1}^{T} \sum_{y} \frac{h(x_t, y)}{Z(x_t, \theta)} \exp \left(\Theta^\top f(x_t, y) \right) f(x_t, y) \\
= \sum_{t=1}^{T} f(x_t, y_t) - \sum_{t=1}^{T} \sum_{y} f(x_t, y) p(y | x_t, \theta)
\]

The gradient is the difference between the feature vectors at the true labels minus the expected feature vectors under the current distribution. To update, \(\theta \leftarrow \theta + \eta \frac{\partial \log L}{\partial \theta} \).
Experiments

Stochastic Gradient Ascent for CRFs

Given current θ, update by taking a small step along the gradient

$$\theta \leftarrow \theta + \eta \frac{\partial \log L}{\partial \theta}.$$

We can use the full derivative:

$$\frac{\partial \log L}{\partial \theta} = \sum_{t=1}^{T} f(x_t, y_t) - \sum_{t=1}^{T} \sum_{y} f(x_t, y)p(y|x_t, \theta)$$

Or do stochastic gradient with only a single random datapoint t:

$$\frac{\partial \log L}{\partial \theta} = f(x_t, y_t) - \sum_{y} f(x_t, y)p(y|x_t, \theta)$$
Recall log-linear model over discrete $y \in \Omega$ where $|\Omega| = n$

$$p(y|\theta) = \frac{1}{Z(\theta)} h(y) \exp(\theta^\top f(y))$$

- Parameters are vector $\theta \in \mathbb{R}^d$
- Features are $f: \Omega \mapsto \mathbb{R}^d$ mapping each y to some vector
- Prior is $h: \Omega \mapsto \mathbb{R}^+$ a fixed non-negative measure
- Partition function ensures that $p(y|\theta)$ normalizes

$$Z(\theta) = \sum_y h(y) \exp(\theta^\top f(y))$$

Problem: it’s ugly to minimize (unlike a quadratic function)
Better Majorization for CRFs

The bound \(\ln Z(\theta) \leq \ln z + \frac{1}{2}(\theta - \tilde{\theta})^\top \Sigma(\theta - \tilde{\theta}) + (\theta - \tilde{\theta})^\top \mu \) is tight at \(\tilde{\theta} \) and holds for parameters given by

\[
\begin{align*}
\text{Input } & \tilde{\theta}, f(y), h(y) \forall y \in \Omega \\
\text{Init } & z \rightarrow 0^+, \mu = 0, \Sigma = zI \\
\text{For each } & y \in \Omega \{ \\
\alpha &= h(y) \exp(\tilde{\theta}^\top f(y)) \\
l &= f(y) - \mu \\
\Sigma &= \frac{\tanh\left(\frac{1}{2} \ln(\alpha/z)\right)}{2 \ln(\alpha/z)} I^\top \\
\mu &= \frac{\alpha}{z + \alpha} I \\
z &= \alpha \\
\text{Output } & z, \mu, \Sigma
\end{align*}
\]

log(Z) and Bounds
Better Majorization for CRFs

Bound Proof.

1) Start with bound $\log(e^{\theta} + e^{-\theta}) \leq c\theta^2$ [Jaakkola & Jordan '99]
2) Prove scalar bound via Fenchel dual using $\theta = \sqrt{\vartheta}$
3) Make bound multivariate $\log(e^{\theta^T 1} + e^{-\theta^T 1})$
4) Handle scaling of exponentials $\log(h_1 e^{\theta^T f_1} + h_2 e^{-\theta^T f_2})$
5) Add one term $\log(h_1 e^{\theta^T f_1} + h_2 e^{-\theta^T f_2} + h_3 e^{-\theta^T f_3})$
6) Repeat extension for n terms
Better Majorization for CRFs (Bound also Finds Gradient)

| Init $z \to 0^+, \mu = 0, \Sigma = zI$ |
| For each $y \in \Omega$ |
| $\alpha = h(y) \exp(\tilde{\theta}^T f(y))$ |
| $l = f(y) - \mu$ |
| $\Sigma + = \frac{\tanh(\frac{1}{2} \ln(\alpha/z))}{2 \ln(\alpha/z)} l^T$ |
| $\mu + = \frac{\alpha}{z + \alpha} l$ |
| $z + = \alpha$ |

Output z, μ, Σ

Recall gradient $\frac{\partial \log L}{\partial \theta} = \sum_{t=1}^{T} f(x_t, y_t) - \sum_{t=1}^{T} \sum_{y} f(x_t, y) p(y|x_t, \theta)$

The bound’s μ give part of gradient (can skip Σ updates).

$\mu = \sum_{y} f(x_t, y) p(y|x_t, \theta)$
Better Majorization for CRFs

Input x_j, y_j and functions h_{x_j}, f_{x_j} for $j = 1, \ldots, t$
Input regularizer $\lambda \in \mathbb{R}^+$

Initialize θ_0 anywhere and set $\tilde{\theta} = \theta_0$
While not converged
 For $j = 1$ to t compute bound for μ_j, Σ_j from $h_{x_j}, f_{x_j}, \tilde{\theta}$
 Set $\tilde{\theta} = \arg \min_{\theta} \sum_j \frac{1}{2} (\theta - \tilde{\theta})^\top (\Sigma_j + \lambda I)(\theta - \tilde{\theta}) + \sum_j \theta^\top (\mu_j - f_{x_j}(y_j) + \lambda \tilde{\theta})$

Output $\hat{\theta} = \tilde{\theta}$

Theorem

If $\|f(x_j, y)\| \leq r$ get $J(\hat{\theta}) - J(\theta_0) \geq (1 - \epsilon) \max_\theta (J(\theta) - J(\theta_0))$ within $\left\lceil \ln \left(\frac{1}{\epsilon} \right) / \ln \left(1 + \frac{\lambda \log n}{2r^2 n} \right) \right\rceil$ steps
Convergence Proof

Proof.

Figure: Quadratic bounding sandwich. Compare upper and lower bound curvatures to bound maximum # of iterations.
Table: Time in seconds and iterations to match LBFGS solution for multi-class logistic regression (on SRBCT, Tumors, Text and SecStr data-sets where \(n \) is the number of classes) and Markov CRFs (on CoNLL and PennTree data-sets, where \(m \) is the number of classes). Here, \(t \) is the number of samples, \(d \) is the dimensionality of the feature vector and \(\lambda \) is the cross-validated regularization setting.
Experiments - Linear Chains

<table>
<thead>
<tr>
<th>Model</th>
<th>Error</th>
<th>oov Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidden Markov Model</td>
<td>5.69%</td>
<td>45.59%</td>
</tr>
<tr>
<td>Maximum Entropy Markov Model</td>
<td>6.37%</td>
<td>54.61%</td>
</tr>
<tr>
<td>Conditional Random Field</td>
<td>5.55%</td>
<td>48.05%</td>
</tr>
</tbody>
</table>

Table: Accuracy on Penn tree-bank data-set for parts-of-speech tagging with training on half of the 1.1 million word corpus. Note, the oov rate is the error rate on out-of-vocabulary words.

Parts of speech data-set where there are 45 labels per word, e.g.

<table>
<thead>
<tr>
<th>PRP</th>
<th>VBD</th>
<th>DT</th>
<th>NN</th>
<th>IN</th>
<th>DT</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>saw</td>
<td>the</td>
<td>man</td>
<td>with</td>
<td>the</td>
<td>telescope</td>
</tr>
</tbody>
</table>

\[p(y|x, \theta) = \frac{1}{Z} \psi(y_1, y_2) \psi(y_2, y_3) \psi(y_3, y_4) \psi(y_4, y_5) \psi(y_5, y_6) \psi(y_6, y_7) \]

How big is \(y \)? Recall graphical models for large spaces...
Experiments

Bounding Graphical Models with Large n

- Each iteration is $O(tn)$, but what if n is large?
- Graphical model: a bipartite factor graph G representing a distribution $p(Y)$ where $Y = \{y_1, \ldots, y_n\}$ and $y_i \in \mathbb{Z}$
- $p(Y)$ factorizes as product of $\{\psi_1, \ldots, \psi_C\}$ functions (squares) over $\{Y_1, \ldots, Y_C\}$ subsets of variables (circles)

$$p(y_1, \ldots, y_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(Y_c)$$

- E.g. $p(y_1, \ldots, y_6) = \psi(y_1, y_2)\psi(y_2, y_3)\psi(y_3, y_4, y_5)\psi(y_4, y_5, y_6)$
Bounding Graphical Models with Large n

- Instead of enumerating over all n, exploit graphical model
- Build junction tree and run a Collect algorithm
- Useful for computing $Z(\theta)$, $\frac{\partial \log Z(\theta)}{\partial \theta}$ and Σ efficiently
- Bound needs $O(t \sum_c |Y_c|)$ rather than $O(tn)$
- For an HMM, this is $O(TM^2)$ instead of $O(M^T)$
Experiments

Bounding Graphical Models with Large n

for $c = 1, \ldots, m$

$Y_{both} = Y_c \cap Y_{pa(c)}$; $Y_{solo} = Y_c \setminus Y_{pa(c)}$

for each $u \in Y_{both}$

initialize $z_{c|x} \leftarrow 0^+$, $\mu_{c|x} = 0$, $\Sigma_{c|x} = z_{c|x} I$

for each $v \in Y_{solo}$

$$w = u \otimes v; \quad \alpha_w = h_c(w)e^{\bar{\theta}^T f_c(w)} \prod_{b \in ch(c)} z_{b|w}$$

$$l_w = f_c(w) - \mu_{c|u} + \sum_{b \in ch(c)} \mu_{b|w}$$

$$\Sigma_{c|u} + = \sum_{b \in ch(c)} \Sigma_{b|w} + \frac{\tanh(\frac{1}{2} \ln(\frac{\alpha_w}{z_{c|u}}))}{2 \ln(\frac{\alpha_w}{z_{c|u}})} l_w l_w^T$$

$$\mu_{c|u} + = \frac{\alpha_w}{z_{c|u} + \alpha_w} l_w; \quad z_{c|u} + = \alpha_w \} \} \}$$