Spectral Clustering for one mic Audio Blind Separation

MarC Vinyes

Columbia University

December 18, 2006

Spectral Clustering for one mic Audio Blind Separation

Audio Blind Separation:

- Original mixed audio $out \longrightarrow$ Audio signals s_i
- Restrictions *s_i*:
 - $\sum_{i=1}^{n} s_i$ perceived similarly to *out*
 - *s_i i* = 1..*n* should mean something to a human (examples: tracks, instruments, auditory streams, physical sources, notes, chords, noises...)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Extraction of the audio signals Time Frequency Masking

- Signal splitted into overlapped frames of fixed size in time.
- 2 FFT

- IFFT
- **o** Verlap-and-add process.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Mixture and sound track waveforms available.
 'mix.wav' = 'guitar.wav' + 'kick.wav' + 'snare.wav' + 'hh.wav'
- We know that it's possible to extract each of them. We know how to generate ideal binary masks if the target sound is available.

伺下 イヨト イヨト

Example: ideal binary mask to extract 'guitar.wav'

Spectral Clustering for one mic Audio Blind Separation

Example: ideal binary mask to extract 'kick.wav'

Spectral Clustering for one mic Audio Blind Separation

Example: ideal binary mask to extract 'snare.wav'

 <</td>
 →
 <</td>
 ≥
 <</td>
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 >
 ≥
 >
 ≥

Example: ideal binary mask to extract 'hh.wav'

 <</td>
 →
 <</td>
 ≥
 <</td>
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 >
 ≥
 >
 ≥

Machine learning to cluster the time-frequency points Learning the binary mask...

- Clusters are not disjoint. We focus on extracting one single audio signal each time.
- SVM or Spectral Clustering? Spectral Clustering seem to be more appropriate when there are intersections.

Figure: Labeled hand drawings by spectral clustering. Francis R.Bach, Michael I.Jordan 06.

Spectral Clustering

Let A = (A_r)_r ∈ 1 ··· R be the R disjoint clusters of the points such that ⋃_r A_r = {p₁, p₂, ··· p_N} = V which the algorithm should output. Let W(A, B) = ∑_{i∈A} ∑_{j∈B} W_{ij} the total weight between the sets of points A and B. Let a similarity matrix W.

Finally let D be a diagonal matrix whose i-th diagonal element is the sum of the elements in the i-th row of W.

• We want to minimize the R-way normalized cut:

$$C((A_r)_{r\in(1\cdots R)}, W) = \sum_{r=1}^R \frac{W(A_r, V\setminus A_r)}{W(A_r, V)}$$

• Algorithm that solves it by computing the eigenvectors of $D^{-1/2}WD^{-1/2}$ and performing a weighted Kmeans clustering of them.

Spectral Clustering applied to audio

- W is huge! Solutions:
 - Analyze the audio in short frames.
 - Approximate W by a sparse matrix. "low-band rank decomposition" suggested by Francis R.Bach, Michael I.Jordan 06. Numerical methods that take advantage of it to find the eigenvectors of D^{-1/2}WD^{-1/2}.
- How we compute the distance between two points?
 - Use features that are related to how we group sounds. "Auditory Scene Analysis" by Bregman.
 - Automatically learn the weight of each feature. Francis R.Bach, Michael I.Jordan 06.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Simulations

Simplified implementation:

- We adapt spectral clustering used for image processing. L. Zelnik-Manor and P. Perona 04.
- We use a sparse W similarity matrix which sets a neighbourhood of 7x7 nonzero time-frequency points.
- We analyse a very limited amount frames.

Poor results:

Figure: Output of our algorithm: spectral clustering of the time-frequency points (green). Blue points are the mixture points, and red points are guitar

Bad results but there's still room for improvement:

- More emphasis on finding a good similarity matrix, by intoducing pychoacustic features like pitch, common fate (onset, offset, frequency comodulation).
- Learn automatically their weight to fit the training data.

- Title: Learning Spectral Clustering, With Application to Speech Separation Authors: Francis R.Bach, Michael I.Jordan Year: 2006
- Title: Self-Tuning Spectral Clustering Authors: L. Zelnik-Manor and P. Perona Year: 2004