Computing the Permanent

David Judd
daj2105@columbia.edu
December 11, 2007
The permanent

\[\text{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i, \sigma(i)} \]

where \(S_n \) is the set of all permutations of the numbers 1, 2, ..., \(n \).

- If \(A \) is a 0/1 adjacency matrix representing an \(n \times n \) bipartite graph, \(\text{per}(A) \) is the number of perfect matchings in the graph.
- Exactly computing the permanent, even of 0/1 matrix, is in general \#P-complete, and so infeasible.
An approximation algorithm

- Based on a Markov chain which generates perfect matchings almost uniformly at random
- Two stage
 1) Compute weights which make Markov chain results almost uniform
 2) Compute permanent using Markov chain with near-ideal weights
The Markov chain

• States are perfect matchings or 'near-perfect' matchings, which have exactly 2 unmatched nodes or 'holes'.

• Define 'activity' $\lambda(u,v)$ for each edge, weight $w(u,v)$ for each possible pair of holes, and activity $\Lambda(m)$ for each matching m, where...

• $\Lambda(m)$ is the product of the activities of all edges in m, times $w(u,v)$ if m is missing nodes u and v.

• So, at each step, pick a random edge, if it's in the matching remove it, otherwise add it.

• But only actually move from state m to the new state m' with probability $\Lambda(m') / \Lambda(m)$.
Computing the weights

- By simulated annealing
- Activities $\lambda(u,v)$ start uniformly, so that weights are easy to calculate, at $\lambda(u,v) = \max(A)$, and decrease to $A(u,v)$, which we
- Process is slow so that weights which are close to ideal for activities at step t remain close for activities at step $t+1$
- Each weight $w(u,v)$ is updated at each step by the ratio of perfect matchings to matchings with holes at u and v in a sample from the Markov chain
Weights to permanent

- We know that at initialization the sum $\Lambda(\Omega)$ of $\Lambda(m)$ over all matchings m in the Markov chain state space Ω is $(n^2 + 1)n!(A_{\text{max}}/A_{\text{min}})^n$.

- We know that at termination the sum $\Lambda^*(\Omega)$ is approximately $(n^2 + 1)\Lambda^*(P)$ where P is the set of all perfect matchings.

- We can estimate the ratio $\Lambda_{t+1}(\Omega) / \Lambda_t(\Omega)$ with a sampling from the Markov chain and the weights from simulated annealing.

- So, we can estimate $|P|$ as a product of ratios.
Complexity

• Upper bounds from Bezakova, Stefancovik, Vazirani & Vigoda (2005)
• Markov chain running time = $O(n^4 \log n)$
• Sample sizes = $O(n^2 \log n)$ or $O(n \log n)$ in different stages
• Phases of simulated annealing = $\Theta(n \log^2 n)$
• Total, neglecting ϵ, $O(n^7 \log^4 n)$
• But none of these bounds is tight...
Estimating the constants

- This 'JSV' algorithm is slow – each step of the Markov chain takes constant time, but several logical & floating point operations – and on my laptop, any permanent feasibly computed by JSV can be found exactly and faster

- So, for varying exponents and constants, can calculate the root-mean-square error of JSV, and determine the values required for accuracy

- Need constants for the Markov chain, and for the sizes of samples taken at 3 separate places in the algorithm...
Markov chain constants

scaled RMSE (red) and correlation (blue) versus n, over 30 runs

\[T = O(n) \]

\[T = O(n \log n) \]

\[T = O(n^2) \]

\[T = O(n^2 \log n) \]
Simulated annealing sample constants
scaled RMSE (red) and correlation (blue) versus n, over 30 runs

$S_1 = O(n)$

$S_1 = O(n \log n)$

$S_1 = O(n^2)$

$S_1 = O(n^2 \log n)$
Product initialization sample constants
scaled RMSE (red) and correlation (blue) versus n, over 30 runs

$S_2 = O(n)$

$S_2 = O(n \log n)$

$S_2 = O(n^2)$

$S_2 = O(n^2 \log n)$
Product update sample constants
scaled RMSE (red) and correlation (blue) versus n, over 30 runs

$S_3 = O(1)$

$S_3 = O(\log n)$

$S_3 = O(n)$

$S_3 = O(n \log n)$
Best estimated values

- Steps in the Markov chain: \(O(n^2) \)
- Matchings per sample during simulated annealing: \(O(n^2 \log n) \)
- Matchings per sample initializing the permanent as a product of ratios: \(O(n^2 \log n) \)
- Matchings per sample for each ratio in updating the permanent as a product: \(O(n \log n) \)
- Overall algorithm running time: \(O(n^5 \log^3(n)) \)
- Sample sizes cannot be reduced, but Markov chain running time can