
  

Computing the Permanent

David Judd
daj2105@columbia.edu

December 11, 2007



  

The permanent

● If A is a 0/1 adjacency matrix representing an n 
x n bipartite graph, per(A) is the number of 
perfect matchings in the graph.

● Exactly computing the permanent, even of 0/1 
matrix, is in general #P-complete, and so 
infeasible.

where Sn is the set of all permutations of the numbers 1, 2, ..., n.



  

An approximation algorithm
● Based on a Markov chain which generates 

perfect matchings almost uniformly at random
● Two stage
● 1) Compute weights which make Markov chain 

results almost uniform
● 2) Compute permanent using Markov chain with 

near-ideal weights
● Discovered by Jerrum, Sinclair, & Vigoda 

(2004)



  

The Markov chain
● States are perfect matchings or 'near-perfect' 

matchings, which have exactly 2 unmatched 
nodes or 'holes'

● Define 'activity' λ(u,v) for each edge, weight 
w(u,v) for each possible pair of holes, and 
activity Λ(m) for each matching m, where...

● Λ(m) is the product of the activities of all edges 
in m, times w(u,v) if m is missing nodes u and v

● So, at each step, pick a random edge, if it's in 
the matching remove it, otherwise add it

● But only actually move from state m to the new 
state m' with probability Λ(m') / Λ(m)



  

Computing the weights
● By simulated annealing
● Activities λ(u,v) start uniformly, so that weights 

are easy to calculate, at λ(u,v) = max(A), and 
decrease to A(u,v), which we

● Process is slow so that weights which are close 
to ideal for activities at step t remain close for 
activities at step t+1

● Each weight w(u,v) is updated at each step by 
the ratio of perfect matchings to matchings with 
holes at u and v in a sample from the Markov 
chain



  

Weights to permanent
● We know that  at initialization the sum Λ(Ω) of 

Λ(m) over all matchings m in the Markov chain 
state space Ω is (n2 +1)n!(Amax/Amin)n

● We know that at termination the sum Λ*(Ω) is 
approximately (n2 +1)Λ*(P) where P is the set of 
all perfect matchings

● We can estimate the ratio Λt+1(Ω) / Λt(Ω) with a 
sampling from the Markov chain and the 
weights from simulated annealing

● So, we can estimate |P| as a product of ratios



  

Complexity
● Upper bounds from Bezakova, Stefancovik, 

Vazirani & Vigoda (2005)
● Markov chain running time = O(n4 log n)
● Sample sizes = O(n2 log n) or O(n log n) in 

different stages
● Phases of simulated annealing = Θ(n log2 n)
● Total, neglecting ε, O(n7 log4 n)
● But none of these bounds is tight...



  

Estimating the constants
● This 'JSV' algorithm is slow – each step of the 

Markov chain takes constant time, but several 
logical & floating point operations – and on my 
laptop, any permanent feasibly computed by 
JSV can be found exactly and faster

● So, for varying exponents and constants, can 
calculate the root-mean-square error of JSV, 
and determine the values required for accuracy

● Need constants for the Markov chain, and for 
the sizes of samples taken at 3 separate places 
in the algorithm... 



  

Markov chain constants
scaled RMSE (red) and correlation (blue) versus n, over 30 runs

T = O(n) T = O(n log n)

T = O(n2) T = O(n2 log n)



  

Simulated annealing sample constants
scaled RMSE (red) and correlation (blue) versus n, over 30 runs

S1 = O(n) S1 = O(n log n)

S1 = O(n2) S1 = O(n2 log n)



  

Product initialization sample constants
scaled RMSE (red) and correlation (blue) versus n, over 30 runs

S2 = O(n) S2 = O(n log n)

S2 = O(n2) S2 = O(n2 log n)



  

Product update sample constants
scaled RMSE (red) and correlation (blue) versus n, over 30 runs

S3 = O(1) S3 = O(log n)

S3 = O(n) S3 = O(n log n)



  

Best estimated values

● Steps in the Markov chain: O (n2)
● Matchings per sample during simulated 

annealing: O (n2 log n)
● Matchings per sample initializing the permanent 

as a product of ratios: O (n2 log n)
● Matchings per sample for each ratio in updating 

the permanent as a product: O (n log n)
● Overall algorithm running time: O (n5log3(n))
● Sample sizes cannot be reduced, but Markov 

chain running time can


