Computing the Permanent

David Judd
daj2105@columbia.edu
December 11, 2007

The permanent

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)}
$$

where S_{n} is the set of all permutations of the numbers $1,2, \ldots, n$.

- If A is a $0 / 1$ adjacency matrix representing an n $\mathrm{x} n$ bipartite $\operatorname{graph}, \operatorname{per}(\mathrm{A})$ is the number of perfect matchings in the graph.
- Exactly computing the permanent, even of $0 / 1$ matrix, is in general \#P-complete, and so infeasible.

An approximation algorithm

- Based on a Markov chain which generates perfect matchings almost uniformly at random
- Two stage
- 1) Compute weights which make Markov chain results almost uniform
- 2) Compute permanent using Markov chain with near-ideal weights
- Discovered by Jerrum, Sinclair, \& Vigoda (2004)

The Markov chain

- States are perfect matchings or 'near-perfect' matchings, which have exactly 2 unmatched nodes or 'holes'
- Define 'activity' $\lambda(u, v)$ for each edge, weight $\mathrm{w}(\mathrm{u}, \mathrm{v})$ for each possible pair of holes, and activity $\Lambda(m)$ for each matching m, where...
- $\Lambda(m)$ is the product of the activities of all edges in m, times $w(u, v)$ if m is missing nodes u and v
- So, at each step, pick a random edge, if it's in the matching remove it, otherwise add it
- But only actually move from state m to the new state m^{\prime} with probability $\wedge\left(m^{\prime}\right) / \wedge(m)$

Computing the weights

- By simulated annealing
- Activities $\lambda(u, v)$ start uniformly, so that weights are easy to calculate, at $\lambda(u, v)=\max (\mathbf{A})$, and decrease to $\mathbf{A}(u, v)$, which we
- Process is slow so that weights which are close to ideal for activities at step t remain close for activities at step $t+1$
- Each weight $w(u, v)$ is updated at each step by the ratio of perfect matchings to matchings with holes at u and v in a sample from the Markov chain

Weights to permanent

- We know that at initialization the sum $\Lambda(\Omega)$ of $\Lambda(m)$ over all matchings m in the Markov chain state space Ω is $\left(n^{2}+1\right) n!\left(\mathrm{A}_{\max } / \mathrm{A}_{\min }\right)^{n}$
- We know that at termination the sum $\Lambda^{*}(\Omega)$ is approximately $\left(n^{2}+1\right) \wedge^{*}(\mathrm{P})$ where P is the set of all perfect matchings
- We can estimate the ratio $\Lambda_{t+1}(\Omega) / \Lambda_{t}(\Omega)$ with a sampling from the Markov chain and the weights from simulated annealing
- So, we can estimate $|\mathrm{P}|$ as a product of ratios

Complexity

- Upper bounds from Bezakova, Stefancovik, Vazirani \& Vigoda (2005)
- Markov chain running time $=\mathrm{O}\left(n^{4} \log n\right)$
- Sample sizes $=\mathrm{O}\left(n^{2} \log n\right)$ or $\mathrm{O}(n \log n)$ in different stages
- Phases of simulated annealing $=\Theta\left(n \log ^{2} n\right)$
- Total, neglecting $\varepsilon, O\left(n^{7} \log ^{4} n\right)$
- But none of these bounds is tight...

Estimating the constants

- This 'JSV' algorithm is slow - each step of the Markov chain takes constant time, but several logical \& floating point operations - and on my laptop, any permanent feasibly computed by JSV can be found exactly and faster
- So, for varying exponents and constants, can calculate the root-mean-square error of JSV, and determine the values required for accuracy
- Need constants for the Markov chain, and for the sizes of samples taken at 3 separate places in the algorithm...

Markov chain constants

scaled RMSE (red) and correlation (blue) versus n, over 30 runs

Simulated annealing sample constants

scaled RMSE (red) and correlation (blue) versus n, over 30 runs

Product initialization sample constants

scaled RMSE (red) and correlation (blue) versus n, over 30 runs

Product update sample constants
 scaled RMSE (red) and correlation (blue) versus n, over 30 runs

Best estimated values

- Steps in the Markov chain: O $\left(n^{2}\right)$
- Matchings per sample during simulated annealing: $\mathrm{O}\left(n^{2} \log n\right)$
- Matchings per sample initializing the permanent as a product of ratios: $\mathrm{O}\left(n^{2} \log n\right)$
- Matchings per sample for each ratio in updating the permanent as a product: $\mathrm{O}(n \log n)$
- Overall algorithm running time: $\mathrm{O}\left(n^{5} \log ^{3}(n)\right)$
- Sample sizes cannot be reduced, but Markov chain running time can

