Binaural Localization Inference

Michael Mandel 12/6/05

Binaural Localization

- Determine directions sounds are coming from
- Hard because of noise, simultaneity
- But only need reliable "glimpses" of single sources, even in dense mixtures
- Useful for
 - pointing directional mics, video cameras
 - classifying auditory scene (number of sources, etc)
 - cuing source separation

System

- Filterbank the two channels
- Break each band into small frames
- Assume one source dominates each frame
- $L_{\omega}(t) \approx a_{\omega,t} R_{\omega}(t \tau_{\omega,t})$
- Compute likelihood of direction $p(\theta_{\omega}(t)|L_{\omega}(t),R_{\omega}(t))$
- Use sequential Monte Carlo to combine estimates over time and across frequencies

Likelihood Model

$$\begin{split} p(\theta|L,R) &= \int\limits_{a,\tau} p(\theta|a,\tau,L,R) \, p(a,\tau|L,R) \, da \, d\tau \\ &= \int\limits_{a,\tau} p(\theta|a,\tau) \, p(a,\tau|L,R) \, da \, d\tau \\ &= E_{a,\tau|L,R} [\, p(\theta|a,\tau)] \\ p(\theta|L,R) &\approx \frac{1}{N} \sum_{a_i,\tau_i} p(\theta|a_i,\tau_i) \quad (a_i,\tau_i) \sim p(a,\tau|L,R) \\ p(\theta|L,R) &\approx p(\theta|a_{ml}\tau_{ml}) \end{split}$$

Thank you

Questions?

Model

- a lognormal: $p(\ln a|L,R)=N(\mu,\rho)$
- tau has pseudo-likelihood from cross-correlation: $p(\tau|L,R) \propto \exp(b \ phat(\tau))$
- $phat(\tau) = \int \frac{1}{|L(\omega)\overline{R}(\omega)|} L(\omega)\overline{R}(\omega)e^{j\omega\tau}d\omega$ $p(\theta|a,\tau)$ measured empirically from ground
- truth, anechoic data for each frequency band