Recent Developments in Clustering

- Ben London (bal2123@columbia.edu)
- COMS W4772
- Prof. Tony Jebara
Abstract

- Part 1: Unsupervised
 - Implement / test \texttt{k-means++} algo
 - Extend \texttt{k-means++} technique to EM
 - Theoretical results?
 - Empirical results: improves EM
- Part 2: Semi-supervised
 - Implement / test \texttt{BoostCluster} algo
 - Empirical results: better than spectral?
Clustering

- Given set of N points in \mathbb{R}^d, partition into k clusters (groups/classes)
- Deterministic solution is in NP
- Many heuristics
- We have seen
 - Gradient descent: k-means, EM
 - Graph theory: spectral
- New!
 - Initialization (seeding)?
 - Boosting?
Initializing k-means

- Traditional approach: RANDOM
 - PRO: simple, efficient
 - CON: centroids sometimes overlap
 - Can we do better?

- Deterministic approach: Farthest-point heuristic
 - PRO: good for well-formed clusters
 - CON: sensitive to noise (outliers)

- Can we combine these two techniques?
k-means++

- Approximation method:
 - Heuristic algo
 - \(O(\log k)\)-competitive with optimal

- Minimize potential function:
 \[\phi = \sum_{x \in X} \min_{c \in C} \| x - c \|^2 \]

- Algorithm:
 1) Initialize k clusters with \(D^2\) seeding
 2) Run **k-means**
D² Seeding

1) Select first centroid c_1 uniformly at random from X.
2) Calculate $D^2(x)$, for all x in X. $D^2(x) = \|x - c_{closest}\|^2$
3) Select each successive centroid c_i with probability

$$Pr[x \text{ chosen}] = \frac{D^2(x)}{\sum_{x \in X} D^2(x)}$$

4) Repeat steps 2 and 3 until all k centroids have been selected
Initializing EM

- Can we apply D^2 seeding to EM?
- Empirical results:
 - Improves convergence time
 - Improves quality of converged solution (higher log-likelihood)
- Theoretical analysis is difficult
Semi-supervised

- Extremely relevant
- Partially labeled data
- Can be represented in the form of pairwise clustering constraints (NxN matrix)
 BoostCluster

- Semi-supervised clustering using boosting methodology
- Assumption: if a clustering satisfies the known pairwise constraints, then it is likely to satisfy the unknown pairwise constraints
- Uses iterative boosting technique to satisfy constraints
- Algorithm agnostic
 - Could use kNN, k-means, spectral, etc.
- Does not return classifier; only pairwise clusterings
Input
- X: $d \times n$ matrix for the input data
- \mathcal{A}: the given clustering algorithm
- s: the number of principal eigenvectors used for projection
- S^+: matrix for must-link pairs
- S^-: matrix for cannot-link pairs

Output: cluster memberships

Algorithm
- Initialize $K_{i,j} = 0$ for any $i, j = 1, 2, \ldots, n$.
- For $t = 1, 2, \ldots, T$
 - Compute $p_{i,j}$ and $q_{i,j}$ using (5) and (6).
 - Compute matrix T using (10).
 - Compute the top s eigenvectors and eigenvalues $\{(\lambda_i, v_i)\}_{i=1}^s$ of T.
 - Construct the projection matrix P using (11), and generate the new data representation X' by projecting the input data X onto P.
 - Run the clustering algorithm \mathcal{A} using the new data representation X'. Compute the matrix Δ with $\Delta_{i,j} = 1$ when x_i and x_j are grouped into the same cluster by \mathcal{A}, and zero otherwise.
 - Compute α using (13).
 - Update the kernel similarity matrix K as $K + \alpha\Delta \rightarrow K$
- Run the clustering algorithm \mathcal{A} with the kernel matrix K (if \mathcal{A} does not take a kernel similarity matrix as input, a data representation can be generated by the first $s + 1$ eigenvectors of the matrix K).
BoostCluster: High-level

- Loss function:
 \[L = \left(\sum_{i,j} S_{i,j}^+ \exp(-K_{i,j}) \right) \left(\sum_{a,b} S_{a,b}^- \exp(K_{a,b}) \right) \]

- Calculate kernel similarity matrix \(K \)

- At each stage of boosting,
 - Use loss to calculate a new data representation that will allow the algo to better satisfy the constraints on which it is performing poorly
 - Use eigen decomposition, find greatest inconsistencies
 - Project data onto new space
 - Cluster in new space; get pairwise clusterings
 - Compute performance and update \(K \) accordingly
 - Repeat until either all constraints satisfied or convergence

- Eigen decomp on \(K \), cluster with algo, return pairwise clusterings
Results

- BoostCluster is consistent: ave accuracy very close to max accuracy
- BoostKmeans < Spectral < BoostSpectral
- BoostCluster with spectral algo kicks ass!