Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes

Sean Escola

Center for Theoretical Neuroscience

LNP Model Overview

- Linear-nonlinear-Poisson
- Stimuli are passed through a linear filter
- The linear filter is the neuron's receptive field
- The result is passed through a nonlinearity to determine the instantaneous firing rate
- The rate defines an inhomogeneous Poisson process

$$
\lambda(t)=f_{\phi}(\vec{k} \cdot \vec{s}(t)) \quad p(\text { spike in } t, t+d t)=\lambda(t) d t, ~=p(\text { no spike })=e^{-\lambda(t) d t}
$$

LNP Model Learning

- Model parameters are learned by maximizing the log-likelihood
- If f_{ϕ} is convex and log-concave, there is a unique solution easily found by gradient ascent
- It doesn't matter your f_{ϕ} is wrong

$$
L(\theta) \sim \sum_{i \in s p i k e s} \log f_{\phi}\left(\vec{k} \cdot \vec{s}\left(t_{i}\right)\right)-\int f_{\phi}(\vec{k} \cdot \vec{s}(t)) d t
$$

HMM Overview

- Bayesian network model
- 2 events at every time-step (discrete model)
- Transition to next step (hidden)
- Emit observable (known)
- Emission probability distributions vary from state to state (in general)
- Therefore, can inferred underlying sequence of hidden states from sequence of observables
- Uses the Markov assumption
- The future is independent of the past given the present
- Graphical model:

- Markov assumption:

$$
\begin{aligned}
& \text { future } \| \text { past } \mid \text { present } \\
& p\left(q_{t} \mid q_{t-1}, q_{t-2}, \ldots, q_{1}, q_{0}\right)=p\left(q_{t} \mid q_{t-1}\right)
\end{aligned}
$$

- Factorized complete probability distribution $x_{U}=\left\{y_{(0, T)}, q_{(0, T)}\right\}$:

$$
p\left(X_{U}\right)=p\left(q_{0}\right) \prod_{t=1}^{T} p\left(q_{t} \mid q_{t-1}\right) \prod_{t=0}^{T} p\left(y_{t} \mid q_{t}\right)
$$

Improving RF estimation

- Original question:
- Can we improve receptive field estimation by categorizing spikes as either informative or not informative about the stimulus, and then only use the relevant spikes to calculate the RF?
- HMM version:
- Can we learn when the neuron is in a stimulus attentive state and when it is in some 'other' state?

A 2-state model

- State 1: Attending to stimulus
- State 2: Attending to "other" activity
- Biologically reasonability:
- UP/DOWN states
- Tonic-burst LGN neurons

- Transition matrix:
- Defined by rates is in LNP model
$-\alpha(t)=\left(\begin{array}{cc}e^{-g_{\varphi}\left(\overrightarrow{k_{1}} \cdot \vec{s} \cdot(t)\right) d t} & g_{\varphi}\left(\vec{k}_{12}^{\prime} \cdot \vec{s}(t)\right) d t \\ g_{\varphi}\left(\vec{k}_{21}^{\prime} \cdot \vec{s}(t)\right) d t & e^{-g_{\varphi}\left(\vec{k}_{1}^{\prime} \cdot \overrightarrow{-} \cdot(t)\right) d t}\end{array}\right)$
- Emission matrix:
- LNP model for state-1 (stimulus dependent)
- Homogeneous Poisson process for state-2
$-\eta(t)=\left(\begin{array}{cc}f_{\phi}\left(\vec{k}_{s} \cdot \vec{s}(t)\right) d t & e^{-f_{\phi}\left(\overrightarrow{k_{s}} \cdot \vec{s}(t) d t\right.} \\ \lambda_{o} d t & e^{-\lambda_{o} d t}\end{array}\right)$
- Model parameters:
- \vec{k}_{12}^{\prime}
- Linear filter for transitioning while in state-1
- \vec{k}_{21}^{\prime}
- Linear filter for transitioning while in state-2
$-\vec{k}_{s}$
- The neuron's receptive field

HMM Max Likelihood

- Since we don't know the hidden variables, we can't maximize the complete log-likelihood
- Incomplete likelihood:
- $L(\theta)=\log \sum_{q_{0, T)}} \pi_{q_{0}} \prod_{i=1}^{T} \alpha_{q_{i-1} q_{i}}\left(t_{i}\right) \prod_{i=0}^{T} \eta_{q_{i, ~}}\left(t_{i}\right)$
- Exponential in T
- Use Expectation-Maximization
- E-step: Guess the q_{i} 's at the current parameter settings (Baum-Welch)
- M-step: Maximize the complete log-likelihood using the guessed q_{i} 's
- EM is guaranteed to monotonically increased the incomplete log-likelihood
- M-step is concave if g_{φ} and f_{ϕ} are convex and log-concave

Algorithmic considerations

- Convergence can be slow
- EM can have linear convergence near the maximum likelihood solution
- Usually quadratic convergence
- It is possible to perform gradient ascent directly on the log-likelihood
- The exact gradient can be calculated
- This provides quadratic convergence
- The best approach is to switch between EM and GA depending on the local likelihood landscape
- Using a continuous time formulation can also help
- In discrete time the probabilities for all time-steps must be calculated
- You can easily have data with > 1e7 time-steps
- Almost all time-steps have no associated spikes
- In continuous time the probabilities are integrated from spiketime to spike-time
- This involves much less computation and memory
- Computations can be numerically unstable
- Bernoulli approximation to Poisson distribution may fail when transition and firing rates get too high
- $\lambda(t) d t+e^{-\lambda(t) d t} \neq 1$
- It's okay to use to true Poisson distribution for firing (i.e. you can have more than 1 spike in a time-step)
- $\eta\left(t_{i}\right)=\frac{\left(\lambda\left(t_{i}\right) d t\right)^{y^{i}} e^{-\lambda\left(t_{i}\right) d t}}{y_{i}!}$
- The transition probabilities must be changed since it makes no sense to have more than 1 transition in a single time-step

- To guarantee concavity of M-step, g_{φ} must grow exponentially
- A continuous time formulation also solves this problem since it guarantees that the Bernoulli approximation is correct
- As dt->0, the new discrete formulation and the continuous formulation are equivalent

Preliminary Results

- I simulated 100 seconds of data
- 1d, noisy sine-wave stimulus
- \vec{k}_{12}^{\prime} likes positive stimulus values
- $\vec{k}_{21}^{\prime}, \vec{k}_{s}$ like negative stimulus values
- Firing rate in state-1: $\sim 20 \mathrm{~Hz}$
- Firing rate in state-2: 10 Hz
- All nonlinearity were the exponential e^{u}

- The data were partitioned into ten 10 second segments.
- 10 HMMs and 10 standard LNP models were trained, 1 on each segment
- The remaining 9 segments were used to test the models
- The log-likelihoods shown are the total difference while testing from the log-likelihood achieved by the HMM trained on that segment
- All the HMMs outperformed all the LNP models on all seaments

- After training, the inferred hidden state values show that the model did learn to distinguish state-1 from state-2
- There are 4 important combinations to predict
- Trivially (since the average firing rate is higher in state-1, and state-2 is more common):
- Being in state-1 and spiking (i.e. 0.91 s)
- Being in state-2 and not-spiking (i.e. 0.97 s)
- Not-trivially:
- Being in state-2 and spiking (i.e. 0.98 s)
- Being in state-1 and not spiking (shown elsewhere)

Figure 3: Predicted and True Hidden State Values

