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LNP Model Overview

• Linear-nonlinear-Poisson
– Stimuli are passed through a linear filter

• The linear filter is the neuron’s receptive field
– The result is passed through a nonlinearity

to determine the instantaneous firing rate
– The rate defines an inhomogeneous

Poisson process
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LNP Model Learning

• Model parameters are learned by
maximizing the log-likelihood
– If      is convex and log-concave, there is a

unique solution easily found by gradient
ascent

– It doesn’t matter your      is wrong
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HMM Overview

• Bayesian network model
• 2 events at every time-step (discrete model)

– Transition to next step (hidden)
– Emit observable (known)

• Emission probability distributions vary from
state to state (in general)
– Therefore, can inferred underlying sequence of

hidden states from sequence of observables
• Uses the Markov assumption

– The future is independent of the past given the
present



• Graphical model:

• Markov assumption:

• Factorized complete probability distribution                 :
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Improving RF estimation

• Original question:
– Can we improve receptive field estimation by

categorizing spikes as either informative or
not informative about the stimulus, and then
only use the relevant spikes to calculate the
RF?

• HMM version:
– Can we learn when the neuron is in a stimulus

attentive state and when it is in some ‘other’
state?



A 2-state model
• State 1: Attending to stimulus
• State 2: Attending to “other” activity
• Biologically reasonability:

– UP/DOWN states
– Tonic-burst LGN neurons
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• Transition matrix:
– Defined by rates is in LNP model

–

• Emission matrix:
– LNP model for state-1 (stimulus dependent)
– Homogeneous Poisson process for state-2

–

• Model parameters:
–

• Linear filter for transitioning while in state-1
–

• Linear filter for transitioning while in state-2
–

• The neuron’s receptive field
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HMM Max Likelihood
• Since we don’t know the hidden variables, we can’t maximize

the complete log-likelihood
• Incomplete likelihood:

–

– Exponential in T

• Use Expectation-Maximization
– E-step: Guess the qi’s at the current parameter settings (Baum-Welch)
– M-step: Maximize the complete log-likelihood using the guessed qi’s
– EM is guaranteed to monotonically increased the incomplete

log-likelihood
– M-step is concave if       and       are convex and log-concave
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Algorithmic considerations
• Convergence can be slow

– EM can have linear convergence near the maximum
likelihood solution

• Usually quadratic convergence
– It is possible to perform gradient ascent directly on the

log-likelihood
• The exact gradient can be calculated
• This provides quadratic convergence

– The best approach is to switch between EM and GA
depending on the local likelihood landscape

– Using a continuous time formulation can also help
• In discrete time the probabilities for all time-steps must be

calculated
– You can easily have data with > 1e7 time-steps
– Almost all time-steps have no associated spikes

• In continuous time the probabilities are integrated from spike-
time to spike-time

– This involves much less computation and memory



• Computations can be numerically unstable
– Bernoulli approximation to Poisson distribution may fail when

transition and firing rates get too high

•

– It’s okay to use to true Poisson distribution for firing (i.e. you
can have more than 1 spike in a time-step)

•

– The transition probabilities must be changed since it makes
no sense to have more than 1 transition in a single time-step

•

• To guarantee concavity of M-step,      must grow exponentially
– A continuous time formulation also solves this problem since

it guarantees that the Bernoulli approximation is correct
– As dt->0, the new discrete formulation and the continuous

formulation are equivalent
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Preliminary Results

• I simulated 100 seconds of data
– 1d, noisy sine-wave stimulus
–     likes positive stimulus values
–     ,     like negative stimulus values
– Firing rate in state-1: ~20 Hz
– Firing rate in state-2: 10 Hz
– All nonlinearity were the exponential
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• The data were partitioned into ten 10 second segments.
• 10 HMMs and 10 standard LNP models were trained, 1 on each

segment
• The remaining 9 segments were used to test the models
• The log-likelihoods shown are the total difference while testing

from the log-likelihood achieved by the HMM trained on that
segment

• All the HMMs outperformed all the LNP models on all segments

 



• After training, the inferred hidden state values show that the model did learn to
distinguish state-1 from state-2

• There are 4 important combinations to predict
• Trivially (since the average firing rate is higher in state-1, and state-2 is more

common):
– Being in state-1 and spiking (i.e. 0.91 s)
– Being in state-2 and not-spiking (i.e. 0.97 s)

• Not-trivially:
– Being in state-2 and spiking (i.e. 0.98 s)
– Being in state-1 and not spiking (shown elsewhere)

 














