Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes

Sean Escola

Center for Theoretical Neuroscience

LNP Model Overview

- Linear-nonlinear-Poisson
 - Stimuli are passed through a linear filter
 - The linear filter is the neuron's receptive field
 - The result is passed through a nonlinearity to determine the instantaneous firing rate
 - The rate defines an inhomogeneous Poisson process

$$\lambda(t) = f_{\phi}\left(\vec{k} \cdot \vec{s}(t)\right)$$

$$p(spike \text{ in } t, t + dt) = \lambda(t)dt$$
$$p(no \ spike) = e^{-\lambda(t)dt}$$

LNP Model Learning

- Model parameters are learned by maximizing the log-likelihood
 - If f_{ϕ} is convex and log-concave, there is a unique solution easily found by gradient ascent
 - It doesn't matter your f_{ϕ} is wrong

$$L(\theta) \sim \sum_{i \in spikes} \log f_{\phi}\left(\vec{k} \cdot \vec{s}\left(t_{i}\right)\right) - \int f_{\phi}\left(\vec{k} \cdot \vec{s}\left(t\right)\right) dt$$

HMM Overview

- Bayesian network model
- 2 events at every time-step (discrete model)
 - Transition to next step (hidden)
 - Emit observable (known)
- Emission probability distributions vary from state to state (in general)
 - Therefore, can inferred underlying sequence of hidden states from sequence of observables
- Uses the Markov assumption
 - The future is independent of the past given the present

• Graphical model:

• Markov assumption:

$$\begin{array}{c|c|c|c|c|c|c|c|} future & \parallel past & \mid present \\ p\left(q_t \mid q_{t-1}, q_{t-2}, \dots, q_1, q_0\right) = p\left(q_t \mid q_{t-1}\right) \end{array}$$

• Factorized complete probability distribution $X_U = \{y_{(0,T)}, q_{(0,T)}\}$:

$$p\left(X_{_{U}}\right) = p\left(q_{_{0}}\right) \prod\nolimits_{_{t=1}}^{^{T}} p\left(q_{_{t}} \mid q_{_{t-1}}\right) \prod\nolimits_{_{t=0}}^{^{T}} p\left(y_{_{t}} \mid q_{_{t}}\right)$$

Images courtesy of T. Jebara, Dept. of CS, Columbia U.

Improving RF estimation

- Original question:
 - Can we improve receptive field estimation by categorizing spikes as either informative or not informative about the stimulus, and then only use the relevant spikes to calculate the RF?
- HMM version:
 - Can we learn when the neuron is in a stimulus attentive state and when it is in some 'other' state?

A 2-state model

- State 1: Attending to stimulus
- State 2: Attending to "other" activity
- Biologically reasonability:
 - UP/DOWN states
 - Tonic-burst LGN neurons

- Transition matrix:
 - Defined by rates is in LNP model

$$- \alpha(t) = \begin{pmatrix} e^{-g_{\varphi}(\vec{k}_{12}\cdot\vec{s}(t))dt} & g_{\varphi}(\vec{k}_{12}\cdot\vec{s}(t))dt \\ g_{\varphi}(\vec{k}_{21}\cdot\vec{s}(t))dt & e^{-g_{\varphi}(\vec{k}_{21}\cdot\vec{s}(t))dt} \end{pmatrix}$$

- Emission matrix:
 - LNP model for state-1 (stimulus dependent)
 - Homogeneous Poisson process for state-2

$$- \eta(t) = \begin{pmatrix} f_{\phi}(\vec{k}_{s} \cdot \vec{s}(t)) dt & e^{-f_{\phi}(\vec{k}_{s} \cdot \vec{s}(t)) dt} \\ \lambda_{o} dt & e^{-\lambda_{o} dt} \end{pmatrix}$$

- Model parameters:
 - \vec{k}'_{12}
 - Linear filter for transitioning while in state-1
 - \vec{k}'_{21}
 - Linear filter for transitioning while in state-2
 - $-\vec{k}_s$
 - The neuron's receptive field

HMM Max Likelihood

- Since we don't know the hidden variables, we can't maximize the complete log-likelihood
- Incomplete likelihood:

$$- L(\theta) = \log \sum_{q_{(0,T)}} \pi_{q_0} \prod_{i=1}^{T} \alpha_{q_{i-1}q_i}(t_i) \prod_{i=0}^{T} \eta_{q_iy_i}(t_i)$$

- Exponential in T
- Use Expectation-Maximization
 - E-step: Guess the q_i 's at the current parameter settings (Baum-Welch)
 - M-step: Maximize the complete log-likelihood using the guessed q_i 's
 - EM is guaranteed to monotonically increased the incomplete log-likelihood
 - M-step is concave if g_{φ} and f_{ϕ} are convex and log-concave

Algorithmic considerations

- Convergence can be slow
 - EM can have linear convergence near the maximum likelihood solution
 - Usually quadratic convergence
 - It is possible to perform gradient ascent directly on the log-likelihood
 - The exact gradient can be calculated
 - This provides quadratic convergence
 - The best approach is to switch between EM and GA depending on the local likelihood landscape
 - Using a continuous time formulation can also help
 - In discrete time the probabilities for all time-steps must be calculated
 - You can easily have data with > 1e7 time-steps
 - Almost all time-steps have no associated spikes
 - In continuous time the probabilities are integrated from spiketime to spike-time
 - This involves much less computation and memory

- Computations can be numerically unstable
 - Bernoulli approximation to Poisson distribution may fail when transition and firing rates get too high
 - $\lambda(t)dt + e^{-\lambda(t)dt} \neq 1$
 - It's okay to use to true Poisson distribution for firing (i.e. you can have more than 1 spike in a time-step)

•
$$\eta(t_i) = \frac{\left(\lambda(t_i)dt\right)^{y_i} e^{-\lambda(t_i)dt}}{y_i!}$$

 The transition probabilities must be changed since it makes no sense to have more than 1 transition in a single time-step

•
$$\alpha(t) = \begin{pmatrix} \frac{1}{1 + g_{\varphi}(\vec{k}'_{12} \cdot \vec{s}(t))dt} & \frac{g_{\varphi}(\vec{k}'_{12} \cdot \vec{s}(t))dt}{1 + g_{\varphi}(\vec{k}'_{12} \cdot \vec{s}(t))dt} \\ \frac{g_{\varphi}(\vec{k}'_{21} \cdot \vec{s}(t))dt}{1 + g_{\varphi}(\vec{k}'_{21} \cdot \vec{s}(t))dt} & \frac{1}{1 + g_{\varphi}(\vec{k}'_{21} \cdot \vec{s}(t))dt} \end{pmatrix}$$

- To guarantee concavity of M-step, g_{φ} must grow exponentially
- A continuous time formulation also solves this problem since it guarantees that the Bernoulli approximation is correct
- As dt->0, the new discrete formulation and the continuous formulation are equivalent

Preliminary Results

- I simulated 100 seconds of data
 - 1d, noisy sine-wave stimulus
 - \vec{k}_{12} likes positive stimulus values
 - \vec{k}_{21} , \vec{k}_s like negative stimulus values
 - Firing rate in state-1: ~20 Hz
 - Firing rate in state-2: 10 Hz
 - All nonlinearity were the exponential e^u

- The data were partitioned into ten 10 second segments.
- 10 HMMs and 10 standard LNP models were trained, 1 on each segment
- The remaining 9 segments were used to test the models
- The log-likelihoods shown are the total difference while testing from the log-likelihood achieved by the HMM trained on that segment
- All the HMMs outperformed all the LNP models on all segments

- After training, the inferred hidden state values show that the model did learn to distinguish state-1 from state-2
- There are 4 important combinations to predict
- Trivially (since the average firing rate is higher in state-1, and state-2 is more common):
 - Being in state-1 and spiking (i.e. 0.91 s)
 - Being in state-2 and not-spiking (i.e. 0.97 s)
- Not-trivially:
 - Being in state-2 and spiking (i.e. 0.98 s)
 - Being in state-1 and not spiking (shown elsewhere)

3									
			**** ***				** * **	******	

0.5				+++++++++++++++++++++++++++++++++++++++					
				+					
						** *	*** ****		
0									
-0.5									
-1									
-1.5									
-2		a sector de se	1	the state of the		N - 1997 - 285 -		1	
	0 0.5	1	1.5	2	2.5	3	3.5	4	4.5

			 	-			* *******	-
			 	 			+ ++ +=	
1					* ** ****			
0.5			 	 				-
-			 	 				
-	****		 	 	• •		+ + -	-
		*****		 	++	** ****	+ + + +-	
0					+			
	-		 	 				
-	-	***	 	 				
-			 	 				-
				 - 40 400				
0.5			 	 ****	*** *****			
0.5				 				
0.5								
0.5								
-1								
-1								
-1								
-1								
-1								