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Topic 7/

eUnsupervised Learning

eStatistical Perspective

eProbability Models

eDiscrete & Continuous: Gaussian, Bernoulli, Multinomial
eMaximum Likelihood - Logistic Regression
eConditioning, Marginalizing, Bayes Rule, Expectations
Classification, Regression, Detection
eDependence/Independence

eMaximum Likelihood - Naive Bayes
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Unsupervised Learning

Classification Regression, f(x)=y
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Statistical Perspective

eSeveral problems with framework so far:
Only have input-output approaches (SVM, Neural Net)
Pulled non-linear squashing functions out of a hat
Pulled loss functions (squared error, etc.) out of a hat

eBetter approach for classification?

o\What if we have multi-class classification?

o\What if other problems, i.e. unobserved values of x,y,etc...

eAlso, what if we don't have a true function?

eExample of Projectile Cannon (c.f. Distal Learning)

e\Would like to train a regression function to control
a cannon’s angle of fire (y) given target distance (x)
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Statistical Perspective

eExample of Projectile Cannon
(45 degree problem)
X = input target distance
y = output cannon angle

T = Uf)? Sin(Qy) + noise
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e\What does least squares do?
eConditional statistical models

address this problem...
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Probability Models

eInstead of deterministic functions, output is g probability
ePreviously: our output was a scalar § = f(z)=0"z+b

eNow: our output is a probability p(y)
e.d. a probability bump: p(y) / A\

y oy

° p(y) subsumes or is a superset of ¥
eWhy is this representation for our answer more general?
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Probability Models

eInstead of deterministic functions, output is g probability
ePreviously: our output was a scalar § = f(z)=0"z+b

eNow: our output is a probability p(y)
e.d. a probability bump: p(y) / A\

Yy oy

° p(y) subsumes or is a superset of ¥

eWhy is this representation for our answer more general?

- A deterministic answer §¥ with complete confidence is
like putting a probability p(y) where all the mass is at ¥ |

z?@p(y)zﬁ(y—:&) p(v)
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Probability Models

eNow: our output is a probability density function (pdf) p(y)
eProbability Model: a family of pdf’s with adjustable
parameters which lets us select one of many

p(y)— p(y©)

eE.g.: 1-dim Gaussian distribution '
‘given’ ‘mean’ parameter p: b <y)J
_ _ 1 _§<y_“)2 =
plyln)=N(ylp) == v

o\Want mean centered on f(x)’s value p(y) =N (y | f (:z:))
eNow, linear regression is:

N (y|f (x)):ﬁeé(“(x)f j | L;ﬁ%ﬁf
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Probability Models

oTo fit to data, we typically "maximize likelihood” of the
probability model

o[ og-likelihood = objective function (i.e. negative of cost)
for probability models which we want to maximize

eDefine (conditional) likelihood as L(@) — vazlp(yz, | az)
or log-Likelihood as l(@) = log(L(@)) = zleogp(yi | 5’3@)
1=1
eFor Gaussian p(y|x), maximum likelihood is least squares!

Z’]Ll 1ng(yi ‘ x@) — 211 lOgN(yz ‘ f($z>) — Zj\;l log ﬁeﬁ(yi_f(mi))?
— —Nlog(\/Q_) —Zjvlé(yl _ f(xz))2
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Probability Models
eCan extend probability model to 2 bumps:
p(y1©)=L1N(ylw)+LN(yn,) -\

eEach mean can be a linear regression fn.
plv|20) = 1Nyl £(s))+ 1N v1 4 (o)
=LN(y |07z +b)+ LN (y|0]z+0,)
eTherefore the (conditional) log-likelihood to maximize is:
(©) = D" log(1N [y, |0]z, +b )+ 1Ny, |0z +b,))

eNicely handles the “cannon firing” data .
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Probability Models

eNow classification: can also go beyond deterministic!

ePreviously: wanted output to be binary ¢ = {0,1}

eNow: our output is a probability p(y)
e.g. a probability table: y=0 | y=1 o

0.73 | 0. 271/
eThis subsumes or is a superset again...
eConsider probability over binary events (coin flips!):

e.g. Bernoulli distribution (i.e 1x2 probability table)
with parameter o
(y|0¢)—0c (1 oa)l_y OLE[O 1]
eLinear classification can be done by setting o equal to f(x):

plylo) = (o) (1=1(z)) " s(s)efo]
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Probability Models

eNow linear classification is:
p(y | x) — f(x)y (1 — f(:ﬁ)gly f(x) =€ [0,1]
[ 0g-likelihood is (negative of cost function):
S logp(y, 1) =30 oaf(«) (1 £(x))
=37 v logf(z,)+(1-y, Jlog(1— f(z)
=3 aalogf(z)+>0 . log (1 _f (x))

eBut, need a squashing function since f(x) in [0,1]
eUse sigmoid or IoﬁiStiC again...

f(x) = sigmoid (0" x + b) e [0,1]

eCalled logistic regression - new loss function
eDo gradient descent, similar to logistic output neural net!
eCan also handle multi-layer f(x) and do backprop again!
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Generative Probability Models

e]dea: Extend probability to describe both X and Y
eFind probability density function over both: p(x,y)

) ‘et B : :
E.g. describedata o N
with Multi-Dim. : ﬁ@* | ¥
Gaussian (later...) o W G

2 0 2 4 e
eCalled a ‘Generative Model’ because we can use
it to synthesize or re-generate data similar

to the training data we learned from

4

eRegression models & classification boundaries -
are not as flexible T
don't keep info about X A ]
don’t model noise/uncertainty s
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Properties of PDFs

o[ et’s review some basics of probability theory
oFirst, pdf is a function, multiple inputs, one output:

p(xl,...,xn) p(xle.S,...,xnzl):O.Q
eFunction’s output is always non-negative:
p(azl,...,xn) >0

eCan have discrete or continuous or both inputs:
p(az1 =1z, = 0,2, = 0,2, = 3.1415)

eSumming over the domain of all inputs gives unity:

=1 04 | 0.1

Continuous~>integral, Discrete>sum
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Properties of PDFs

eMarginalizing: integrate/sum out a variable leaves a
marginal distribution over the remaining ones...

>, p(w) =p(s)
eConditioning: if a variable 'y’ is ‘given’ we get a
conditional distribution ((ver)the remaining ones...
T,y

p
eBayes Rule: mathematically ju(gt> redo conditioning
but has a deeper meaning (1764)... if we
have X being data and 6 being a model
likelihood

posterior \’p(e ’ 35) :?(BE ‘ O)p(e).\ prior
P (%)\ evidence

p(ﬂf|y)=
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Properties of PDFs

eExpectation: can use pdf p(x) to compute averages and
expected values for quantities, denoted by:

Byt (o)t = [ ple)r(a)ds or =32 p(z)1(o

eProperties: E{cf(x)} — ¢E {f(x)} example: speeding ticket
Fine=0$ | Fine=203
B (o) +ef = B{f(a)} +c o8 T oz
E {E { f (:c)}} =F { f (:c)} expected cost of speeding?
*Mean: expected value for x ;‘(’;;‘2,);‘3_;‘,";,13320_2

Bfeh= [ rle)wds
e\/ariance: e>{pected Vﬂlue of (x-mean)2, how. much X varies

Var{o} = Bi(z - B{a}) | = E{a:2 2 {u} + E{x}Q}
gle)—2p{c}Bls}+ B{s} = E{*} - B{s}
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Properties of PDFs

«Covariance: how strongly x and y vary together

cona} = (e £{e] - 51} = B -
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eConditional Expectation: E{yy:z:}— f p(yy )ydy

E{E{yIl} = [ ple) [ olvle)ydyie = E{y}

eSample Expectation: If we don't have pdf p(x,y) can
approximate expectations using samples of data

Ep(:l:) {f (:E)} = %Z;N:lf(xz)
eSample Mean:E{x} ~7=15" g

eSample Var: E{(a:—E(:z:)f ~ %Zjvl T —f)

«Sample Cov: E{ :z;—E(:z:))(y —E(y))} ~ %ZL( |
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More Properties of PDFs

e[ndependence: probabilities of independent variables
multiply. Denote with the following notation:

vy = p(ny)=p(s)p(y)
iy = plelv)=p()
also note in this case:

B, fou} = [ [ o(e)o()eydoay
= [ ple)ade [ plv)vis = By, {«} B, ) {o}

eConditional independence: when two variables become
independent only if another is observed

vlylz = plelyz)=p(e]2)
z|ylz — p(:v!y)ip(cv)
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The IID Assumption

eMost of the time, we will assume that a dataset
independent and identically distributed (IID)

eIn many real situations, data is generated by some
black box phenomenon in an arbitrary order.

eAssume we are given a dataset:

X =1{%,..., T,

“Independent” means that (given the model 6) the
probability of our data multiplies:

p(xl,...,asN | @) = HLPZ- (33@ | @)

“Identically distributed” means that each marginal
probability is the same for each data point

p(xl,...,xN | @) = Hjilpi (xz | @) = HLP(% | @)
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The IID Assumption

eBayes rule says likelihood is probability of data given model
likelihood

posterior \’p(e | %) :?(»% ‘ O)p(@).\ prior
P (f)\ evidence

*The likelihood of & = {z,,...,z,} under IID assumptions is:

p(}f | @) = p(xl,...,xN | @) = Hilpi (mz | @) = HLP(% | @)

eLearn joint distribution p(z | ©) by maximum likelihood:

© = arg max Hjilp(xi | @) = argmax, ZL log p|z, | @)
eLearn conditional p(y | 2, @) by max conditional likelihood:

O = arg max, Hjilp(yi | xi,@) = argmax, ZL logp(yi | xi,@)
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Uses of PDFs

oClassification: have p(x,y) and given x. Asked .,
for discrete y output, give most probable one . A

0.1

p(x,y)—>p(y|:c)—>gj:argmaxmp(y:m|x) /R N AL |

eRegression: have p(X,y) and given x. Asked for a
scalar y output, give most probable or expected one

R ) | arg max p(y | :1:)
) j— |
el Tl | (Y

esAnomaly Detection: if have p(x,y) and given
both x,y. Asked if it is similar = threshold

p(x,y) > threshold — {normal, anOmaly}




