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Topic 7 
• Unsupervised Learning 

• Statistical Perspective 

• Probability Models 

• Discrete & Continuous: Gaussian, Bernoulli, Multinomial 

• Maximum Likelihood  Logistic Regression 

• Conditioning, Marginalizing, Bayes Rule, Expectations 

• Classification, Regression, Detection 

• Dependence/Independence 

• Maximum Likelihood  Naïve Bayes 
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Classification              Regression, f(x)=y 

Density/Structure Estimation   Clustering 

Feature Selection       Anomaly Detection 

Unsupervised Learning 
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Statistical Perspective 
• Several problems with framework so far: 
 Only have input-output approaches (SVM, Neural Net) 
 Pulled non-linear squashing functions out of a hat 
 Pulled loss functions (squared error, etc.) out of a hat 
• Better approach for classification? 
• What if we have multi-class classification? 
• What if other problems, i.e. unobserved values of x,y,etc… 
• Also, what if we don’t have a true function? 
• Example of Projectile Cannon (c.f. Distal Learning) 

• Would like to train a regression function to control 
  a cannon’s angle of fire (y) given target distance (x) 
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• Example of Projectile Cannon 
  (45 degree problem) 
  x = input target distance 
  y = output cannon angle 

• What does least squares do? 
• Conditional statistical models 
 address this problem… 

Statistical Perspective 
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Probability Models 
• Instead of deterministic functions, output is a probability 
• Previously: our output was a scalar   

• Now: our output is a probability 

 e.g. a probability bump: 

•         subsumes or is a superset of  
• Why is this representation for our answer more general? 

  
p y( )

   
ŷ = f x( ) = θTx +b

  
p y( )

  
p y( )
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Probability Models 
• Instead of deterministic functions, output is a probability 
• Previously: our output was a scalar   

• Now: our output is a probability 

 e.g. a probability bump: 

•         subsumes or is a superset of  
• Why is this representation for our answer more general? 
  A deterministic answer     with complete confidence is 
     like putting a probability        where all the mass is at    !  

  
p y( )

   
ŷ = f x( ) = θTx +b

  
p y( )

  
p y( )

  
p y( )

   
ŷ ⇔ p y( ) = δ y − ŷ( )   

p y( )
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Probability Models 
• Now: our output is a probability density function (pdf)   
• Probability Model: a family of pdf’s with adjustable 
 parameters which lets us select one of many                
  

• E.g.: 1-dim Gaussian distribution 
 ‘given’ ‘mean’ parameter µ: 

• Want mean centered on f(x)’s value 

• Now, linear regression is: 

   

N y | f x( )( ) = 1

2π
e
−1

2
y−f x( )( )2

= 1

2π
e
−1

2
y−θT x−b( )2

   
p y | µ( ) = N y | µ( ) = 1

2π
e
−1

2
y−µ( )2

  
p y( )

   
p y( ) = N y | f x( )( )

  
p y( )

   
p y( )→ p y |Θ( )
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Probability Models 
• To fit to data, we typically “maximize likelihood” of the 
 probability model 

• Log-likelihood = objective function (i.e. negative of cost) 
 for probability models which we want to maximize 

• Define (conditional) likelihood as  

  or log-Likelihood as  

• For Gaussian p(y|x), maximum likelihood is least squares! 

   
L Θ( ) = p y

i
| x

i( )i=1

N∏

   
l Θ( ) = log L Θ( )( ) = log p y

i
| x

i( )
i=1

N

∑

   

log p y
i
| x

i( )i=1

N∑ = logN y
i
| f x

i( )( )i=1

N∑ = log 1

2πi=1

N∑ e
−1

2
yi−f xi( )( )2

= −N log 2π( )− 1
2

y
i
− f x

i( )( )2

i=1

N∑
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Probability Models 
• Can extend probability model to 2 bumps: 

• Each mean can be a linear regression fn. 

• Therefore the (conditional) log-likelihood to maximize is: 

• Maximize l(θ) using gradient ascent 
• Nicely handles the “cannon firing” data 

   
p y |Θ( ) = 1

2
N y | µ

1( ) + 1
2
N y | µ

2( )

   

p y | x,Θ( ) = 1
2
N y | f

1
x( )( ) + 1

2
N y | f

2
x( )( )

= 1
2
N y | θ

1
Tx +b

1( ) + 1
2
N y | θ

2
Tx +b

2( )

   
l Θ( ) = log 1

2
N y

i
| θ

1
Tx

i
+b

1( ) + 1
2
N y

i
| θ

2
Tx

i
+b

2( )( )i=1

N∑
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Probability Models 
• Now classification: can also go beyond deterministic! 
• Previously: wanted output to be binary   

• Now: our output is a probability 

 e.g. a probability table: 

• This subsumes or is a superset again… 
• Consider probability over binary events (coin flips!): 

 e.g. Bernoulli distribution (i.e 1x2 probability table) 
        with parameter α	


• Linear classification can be done by setting α equal to f(x): 

  
p y( )

y=0 y=1 

0.73 0.27 

   
p y | α( ) = αy 1−α( )1−y

α ∈ 0,1⎡⎣⎢
⎤
⎦⎥

   
p y | x( ) = f x( )y

1− f x( )( )1−y
f x( )∈ 0,1⎡⎣⎢

⎤
⎦⎥

 α
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Probability Models 
• Now linear classification is: 

• Log-likelihood is (negative of cost function): 

• But, need a squashing function since f(x) in [0,1] 
• Use sigmoid or logistic again… 

• Called logistic regression  new loss function 
• Do gradient descent, similar to logistic output neural net! 
• Can also handle multi-layer f(x) and do backprop again! 

   
p y | x( ) = f x( )y

1− f x( )( )1−y
f x( )≡ α ∈ 0,1⎡⎣⎢

⎤
⎦⎥

   

log p y
i
| x

i( )i=1

N∑ = log
i=1

N∑ f x
i( )yi 1− f x

i( )( )1−yi

= y
i
log

i=1

N∑ f x
i( ) + 1−y

i( ) log 1− f x
i( )( )

= log f x
i( )i∈class1∑ + log 1− f x

i( )( )i∈class0∑

   
f x( ) = sigmoid θTx +b( )∈ [0,1]
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Generative Probability Models 
• Idea: Extend probability to describe both X and Y 
• Find probability density function over both: 

   E.g. describe data 
   with Multi-Dim. 
   Gaussian (later…) 

• Called a ‘Generative Model’ because we can use 
 it to synthesize or re-generate data similar 
 to the training data we learned from 

• Regression models & classification boundaries 
 are not as flexible 
 don’t keep info about X 
   don’t model noise/uncertainty 

   
p x,y( )

? 
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Properties of PDFs 
• Let’s review some basics of probability theory 

• First, pdf is a function, multiple inputs, one output: 

• Function’s output is always non-negative: 

• Can have discrete or continuous or both inputs: 

• Summing over the domain of all inputs gives unity: 

    
p x

1
,…,x

n( )
    
p x

1
= 0.3,…,x

n
= 1( ) = 0.2

    
p x

1
,…,x

n( )≥ 0

   
p x

1
= 1,x

2
= 0,x

3
= 0,x

4
= 3.1415( )

   

p x,y( )
x=−∞

∞

∫
y=−∞

∞

∫ dxdy = 1
   

p x,y( )
x
∑

y
∑ = 1 0.4 0.1 

0.3 0.2 

Continuousintegral,   Discretesum 
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Properties of PDFs 
• Marginalizing: integrate/sum out a variable leaves a 
 marginal distribution over the remaining ones… 

• Conditioning: if a variable ‘y’ is ‘given’ we get a 
 conditional distribution over the remaining ones… 

• Bayes Rule:  mathematically just redo conditioning 
 but has a deeper meaning (1764)… if we 
 have X being data and θ being a model 

   
p x,y( )y∑ = p x( )

   

p x | y( ) =
p x,y( )
p y( )

    

p θ | X( ) =
p X | θ( )p θ( )

p X( )
posterior 

likelihood 

evidence 

prior 
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Properties of PDFs 
• Expectation: can use pdf p(x) to compute averages and 
    expected values for quantities, denoted by: 

• Properties: 

• Mean: expected value for x 

• Variance: expected value of (x-mean)2, how much x varies  
  
E

p x( ) x{ } = p x( )x
−∞

∞

∫ dx

Fine=0$ Fine=20$ 

0.8 0.2 

example: speeding ticket 

expected cost of speeding? 
f(x=0)=0, f(x=1)=20 
p(x=0)=0.8, p(x=1)=0.2 

  
E

p x( ) f x( ){ } = p x( ) f x( )
x∫ dx or = p x( ) f x( )x∑

   

Var x{ } = E x −E x{ }( )2⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

= E x 2 − 2xE x{ } + E x{ }2{ }
= E x 2{ }− 2E x{ }E x{ } + E x{ }2

= E x 2{ }−E x{ }2

  

E cf x( ){ } = cE f x( ){ }
E f x( ) +c{ } = E f x( ){ } +c

E E f x( ){ }{ } = E f x( ){ }



• Covariance: how strongly x and y vary together 

• Conditional Expectation: 

• Sample Expectation: If we don’t have pdf p(x,y) can 
    approximate expectations using samples of data 

• Sample Mean: 

• Sample Var: 

• Sample Cov: 
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Properties of PDFs 

    
E

p x( ) f x( ){ } 1
N

f x
i( )i=1

N∑

   
Cov x,y{ } = E x −E x{ }( ) y −E y{ }( ){ } = E xy{ }−E x{ }E y{ }

    
E x{ } x = 1

N
x

ii=1

N∑

    
E x −E x( )( )2⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪
 1

N
x

i
−x( )2

i=1

N∑

    
E x −E x( )( ) y −E y( )( ){ } 1

N
x

i
−x( ) y

i
−y( )i=1

N∑

   
E y | x{ } = p y | x( )y

y∫ dy

   
E E y | x{ }{ } = p x( ) p y | x( )y

y∫ dydx
x∫ = E y{ }
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More Properties of PDFs 
• Independence: probabilities of independent variables 
 multiply. Denote with the following notation: 

 also note in this case: 

• Conditional independence: when two variables become 
 independent only if another is observed 

    
x  y → p x,y( ) = p x( )p y( )
    
x  y → p x | y( ) = p x( )

   

E
p x ,y( ) xy{ } = p x( )p y( )xydx dy

y∫x∫
= p x( )x dx

x∫ p y( )ydy
y∫ = E

p x( ) x{ }E
p y( ) y{ }

    
x  y |z → p x | y,z( ) = p x | z( )
    
x  y |z → p x | y( )≠ p x( )
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The IID Assumption 
• Most of the time, we will assume that a dataset 
 independent and identically distributed (IID) 

• In many real situations, data is generated by some 
 black box phenomenon in an arbitrary order. 
• Assume we are given a dataset: 

 “Independent” means that (given the model θ) the 
 probability of our data multiplies: 

 “Identically distributed” means that each marginal 
 probability is the same for each data point 

    
p x

1
,…,x

N
|Θ( ) = p

i
x

i
|Θ( )i=1

N∏

     
X = x

1
,…,x

N{ }

    
p x

1
,…,x

N
|Θ( ) = p

i
x

i
|Θ( )i=1

N∏ = p x
i
|Θ( )i=1

N∏
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The IID Assumption 
• Bayes rule says likelihood is probability of data given model 

• The likelihood of                       under IID assumptions is: 

• Learn joint distribution            by maximum likelihood: 

• Learn conditional               by max conditional likelihood: 

     
p X |Θ( ) = p x

1
,…,x

N
|Θ( ) = p

i
x

i
|Θ( )i=1

N∏ = p x
i
|Θ( )i=1

N∏
     
X = x

1
,…,x

N{ }

   
Θ* = arg max

Θ
p x

i
|Θ( )i=1

N∏ = arg max
Θ

log p x
i
|Θ( )i=1

N∑

    

p θ | X( ) =
p X | θ( )p θ( )

p X( )
posterior 

likelihood 

evidence 

prior 

   
p x |Θ( )

   
p y | x,Θ( )

   
Θ* = arg max

Θ
p y

i
| x

i
,Θ( )i=1

N∏ = arg max
Θ

log p y
i
| x

i
,Θ( )i=1

N∑
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Uses of PDFs 
• Classification: have p(x,y) and given x. Asked 
  for discrete y output, give most probable one 

• Regression: have p(x,y) and given x. Asked for a 
  scalar y output, give most probable or expected one 

• Anomaly Detection: if have p(x,y) and given 
  both x,y. Asked if it is similar  threshold 

   
p x,y( )→ p y | x( )→ ŷ = arg max

m
p y = m | x( )

   
x

i
,y

i( ){ } → p x,y( ) → p y | x( )
   

ŷ =
arg max

y
p y | x( )

E
p y|x( ) y{ }

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

   
p x,y( )≥ threshold → normal,anomaly{ }


