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eReview: Support Vector Machines
ePrimal & Dual Solution
eNon-separable SVMs

eKernels

*SVM Demo
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Review: SVM

eSupport vector machines are (in the simplest case)

linear classifiers that do structural risk minimization (SRM)
eDirectly maximize margin to reduce guaranteed risk J(0)
eAssume first the 2-class data is linearly separable:

have {(xl,yl),...,(a:N,yN)} where x, € R” and Y. € {—1,1}

f(x; 6) = sz’gn(g’wa + b)
eDecision boundary or hyperplane given by 'z +5 =0
eNote: can scale w & b while keeping same boundary
eMany solutions exist which have empirical error R,,,,(6)=0
eWant widest or thickest one (max margin), also it's unique!
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Support Vector Machines , . 7

eDefine: w'z+b=0

H, =positive margin hyperplane
H_ =negative margin hyperplane
q =distance from decision plane to origin

¢ = min_ Hz?:’ —0|| subjectto w'z+b=0 q

nﬂnx§§?—62-—X(wﬂv+b)

1) grad % %azTa: — >\(wa + b)) =0 2)plug i_nto wrz+b=0
constraint ! (Xw) Lh=0

xr—xw =0
= \W = —-L
3)Soln & =—(-L)w b‘ o
4) distance ¢ = H;i: _ 6H _ ‘_ wgw w‘ _ w\i\w ' — ‘_
5) Define without H —wzo+b= HwH
loss of generality H - waz+b=+1

i T
since can scaleb & w C—wTrt+b=—
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Support Vector Machines

eThe constraints on the SVM

for Remp(e)—O are thus: H+o
w z +b>+1 Vy =+1 ‘ /
w' z+b< -1 Vy =-1 \
«Or more simply: y(w z, +b) 1>0 g HwaM:H
eThe margin of the SVM is:
m=d, +d

4

eDistance to origin: H —¢=p H, —q¢ =55 H —q¢ =7
2

+

eTherefore: d_=d_ _H and margin m = wH

e\Want to max margin, or equwalently minimize: H“’H or
oSVM Problem:  mint wa‘ subjectto y. (’w T +b) 1>0
eThis is a quadratic programI

eCan plug this into a matlab function called “gp()”, done!
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SVM in Dual Form

o\We can also solve the problem via convex duality

*Primal SVM problem Lp: min? wH2 subject to y,(w'z, +b)—1>0

eThis is a quadratic program, quadratic cost
function with multiple linear inequalities
(these carve out a convex hull)

eSubtract from cost each inequality times an o

Lagrange multiplier, take derivatives of w & b:
oo el =2 0w (v, +0) 1)

Ly =w=) ayz =0 sw=> ayz
0 _ _
o Le = oy, =0
*Plug back in, dual: L, :Ziui—lzizjuu Yyrw

2

t ] J v 7
eAlso have constraints: > oy =0 & a >0 /
eAbove L, must be maximized! convex duality... also qp()

LP = min , max
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SVM Dual Solution Properties

e\We have dual convex program:
Zioci — %Zi’joaiocjyiijij subject to Ziociyz, =0 & a >0

eSolve for N alphas (one per data point) instead of D w's

oStill convex (gp) so unique solution, gives alphas

Alphas can be used to getw: w=)>_ ayz,

eSupport Vectors: have non-zero alphas
shown with thicker circles, all live on
the margin: 'z +b = +1

eSolution is sparse, most alphas=0
these are non-support vectors

SVM ignores them if they move
(without crossing margin) or if
they are deleted, SVM doesn’t

change (stays robust)
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SVM Dual Solution Propertles

0,/

*Recall we could get w from alphas: w=>_ ayz
*Or could use as is: f(z) = sign(z"w+b) = sign(}_ o y.2"s, +b)
eKarush-Kuhn-Tucker Conditions (KKT): solve value of b
on margin (for nonzero alphas) have: w'z +b=y
using known w, compute b for each support vector
b_y—wx Vi:a, >0 then... b—average(b)

eSparsity (few nonzero alphas) is useful for several reasons
eMeans SVM only uses some of training data to learn
eShould help improve its ability to generalize to test data
eComputationally faster when using final learned classifier

ePrimal & Dual Illustration: Ly

wT:cZ, +b>+1
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Non-Separable SVMs | .o

eWhat happens when non-separable?  H +C)/
eThere is no solution 1 ) /
and convex hull Pﬁ I
shrinks to nothing v };/? W, ‘
eNot all constraints can be resolved, their alphas go to «
eInstead of perfectly classifying each point: . (’wTazZ. + b) > 1
we “"Relax” the problem with (positive) slack variables xi’s
allow data to (sometimes) fall on wrong side, for example:
we+b>-0.03 ify =+1
eNew constraints: w'z, +b>+1—-¢ if y =+1 where§ >0
wTa:Z. +o<-1+& iy =-1 whereg >0
eBut too much xi's means too much slack, so penalize them
L : min%HwH2 + C’Zigi subject to y. (’waz. + b) —1+¢ >0

P
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Non-Separable SVMs

eThis new problem is still convex, still gp()!

eUser chooses scalar C (or cross-validates) which controls
how much slack xi to use (how non-separable) and how
robust to outliers or bad points on the wrong side

Large margm—) Low slack—) On right S|de—) For xi positivity—)

L, mln Z (yz(w L, +b)_1+gi)_2i6igi
0 — _ _ _

% L, and% L, asbefore... %, L, =C—-a —03 =0
a =C—0, but..c &B. >0
S 0<a <C

eCan now write dual problem (to maximize):
L_: max ,oc,—lzw Z jyy:l: z sub]ecttoz ay =0and o, € [O C’]

D 7 1 2

eSame dual as before but alphas can’t grow beyond C
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Non-Separable SVMs

eAs we try to enforce a classification for a data point
its Lagrange multiplier alpha keeps growing endlessly
eClamping alpha to stop growing at C makes SVM “give up”
on those non-separable points C
eThe dual program is now: L
eSolve as before with
extra constraints that ¢
alphas positive AND
less than C... gives alphas... from alphas get w=>" aysz
eKarush-Kuhn-Tucker Conditions (KKT): solve value of b
on margin for not=zero alphas AND not=C alphas
for all others have support vectors, assume ¢ =0 and use
formula Y, (waZ. + EZ) —1+€ =0 to get 5@ and b = avemge(gi)
eMechanical analogy: support vector forces & torques




Tony Jebara, Columbia University

Nonlinear SVMs °° o
O ®
e\What if the problem is not linear? ce? 8_.
“lo
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Nonlinear SVMs oL o

o
© @)

eWhat if the problem is not linear? _ © %CO -
e\We can use our old trick... O
eMap d-dimensional x data from L-space to high dimensional

H (Hilbert) feature-space via basis functions ®(x)
*For example, quadratic classifier: b, (2)

—

a:i—><I>(a:Z_) via CID(:E): vec(xz_ﬁ:?:’T)

£

| b, (1)
eCall phi’s feature vectors computed from original x inputs
eReplace all x's in the SVM equations with phi’s
eNow solve the following learning problem:
L, : max Zioci —%Zm ociocjyiyﬁ(xi)T d)(zcj) st. o, € [O, C],Ziuiyi =0
*Which gives a nonlinear classifier in original space:

f(x) = Sign [Ziaiyid)(x) d)(%) + bT



Tony Jebara, Columbia University

Ke 'ne I S (see http://www.youtube.com/watch?v=3liCbRZPrZA)

eOne important aspect of SVMs: all math involves only
the inner projucts between the pLhi features!

f(x) = Sign Ziaiyid)(az)T (i)(il?z. L—I— b

eReplace all inner products with a general kernel function
eMercer kernel: accepts 2 inputs and outputs a scalar via:

N N d)(x)T d)(iﬁ) for finite &
k(% 517) - <d) (37)743(517» N ftd)(x, t)d)(fé,t> dt otherwise
sExample: quadratic polynomial ofa)=| 7 Vang, o

dg(:r:ﬁ 5 k(z,8) = ¢(z) o(3)

=/ = N+ 20503, + 0
O, () 1 (

T

|
8
8
8
X
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Kernels

eSometimes, many ®(x) will produce the same k(x,x")
eSometimes k(x,x") computable but features huge or infinite!
eExample: polynomials

If explicit polynomial mapping, feature space ®(x) is huge
d-dimensional data, p-th order polynomial,dim (i) = d+p-1
images of size 16x16 with p=4 have dim(H)=183miIIio§
but can eﬂugvalentlyjtﬁst use kernel: k(z,y) = (xTy)p

k(x’ x) B <x x) B (Zxx) ’_7Multinomial Theorem

ocz (pp'

g g
[ ':BI'CBZ xdxle md
Cornininlhodp—r—r—..])

v r v oy J w=weight on term
ocz w rtr?eeex ’LUrleBQ“':L’d

r 1 2 d 1 72 d

< o(z)o(z) <+ Equivalent!




Kernels

*Replace eachz]s, — k(z,z,), for example:
P-th Order Polynomial Kernel:

RBF Kernel (infinite!):
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k() = (xT:’f; n 1),,

k(:c, i) = exp[— %02 Hx — ]

2

Sigmoid (hyperbolic tan) Kernel: k(z,z) = tanh 2"z — )

eUsing kernels we get generalized inner product SVM:
L, : maxzi(xi—%Zijuiocjyiyjk(xi,xj) st. o € [O,C],Ziuiyi =0

f(x) = sz’gn(ziuiyik (xl,a:) + b)

oStill gp solver, just use Gram matrix K (positive definite)

K =

k

k
k

5131, 5131

k
k
k

T,

)k

1171,333

sz = k(a:i,:cj)
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Kernelized SVMs

ePolynomial kernel: b(o,2,) = (a2, +1)

Polynomial Kernel

eLeast-squares, logistic-regression, perceptron are also
kernelizable
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SVM Demo

*SVM Demo by Steve Gunn:
http://www.isis.ecs.soton.ac.uk/resources/svminfo/
eIn svc.m replace
[alpha lambda how] = gp(...);
with
[alpha lambda how] = quad

prog(H,c,[],[],A,b,vIb,vub,x0);

x| Deges [z [ Separable

This replaces the old
Matlab command gp
(quadratic programming)
with the new one

for more recent versions




