
Tony Jebara, Columbia University 

Machine Learning 
4771     

  
Instructor: Tony Jebara 



Tony Jebara, Columbia University 

Topic 6 
• Review: Support Vector Machines 

• Primal & Dual Solution 

• Non-separable SVMs 

• Kernels 

• SVM Demo 



Tony Jebara, Columbia University 

Review: SVM 
• Support vector machines are (in the simplest case) 
  linear classifiers that do structural risk minimization (SRM) 
• Directly maximize margin to reduce guaranteed risk J(θ) 
• Assume first the 2-class data is linearly separable: 

• Decision boundary or hyperplane given by 
• Note: can scale w & b  while keeping same boundary 
• Many solutions exist which have empirical error Remp(θ)=0 
• Want widest or thickest one (max margin), also it’s unique! 

    
have x

1
,y

1( ),…, x
N
,y

N( ){ } where x
i
∈ D and y

i
∈ −1,1{ }

   
f x;θ( ) = sign wTx +b( )

   w
Tx +b = 0

 ⇒



Tony Jebara, Columbia University 

Support Vector Machines 
• Define:    w

Tx +b = 0

H+=positive margin hyperplane 
H- =negative margin hyperplane 
q  =distance from decision plane to origin 

    
q = min

x


x −

0 subject to wTx +b = 0

    
min

x
1
2


x −

0

2
−λ wTx +b( )

   

∂
∂x

1
2
xTx −λ wTx +b( )( ) = 0

x −λw = 0
x = λw

2) plug into 
constraint 

   

wTx +b = 0

wT λw( ) +b = 0

λ = − b
wTw

1) grad 

3) Sol’n 
   
x̂ = − b

wTw( )w
4) distance 

    

q = x̂ −

0 = − b

wTw
w =

b

wTw
wTw =

b

w
5) Define without 
     loss of generality 
     since can scale b & w 

   
H → wTx +b = 0

   H+
→ wTx +b = +1

   H− → wTx +b = −1



Tony Jebara, Columbia University 

Support Vector Machines 
• The constraints on the SVM 
   for Remp(θ)=0 are thus: 

• Or more simply: 
• The margin of the SVM is: 

• Distance to origin: 

• Therefore:    and margin 

• Want to max margin, or equivalently minimize: 
• SVM Problem: 
• This is a quadratic program! 
• Can plug this into a matlab function called “qp()”, done! 

  d+

  d−

  H+

  H−

 H

   H+
→ wTx +b = +1

   H− → wTx +b = −1

   w
Tx

i
+b ≥+1 ∀y

i
= +1

   w
Tx

i
+b ≤−1 ∀y

i
= −1

   
y

i
wTx

i
+b( )−1≥ 0

  m = d
+

+d
−

  
H → q =

b

w    
H

+
→ q

+
=

b−1

w    
H
−
→ q

−
=

−1−b

w

   
d

+
= d

−
= 1

w

   

m =
2

w

  
w or w

2

   
min 1

2
w

2
subject to y

i
wTx

i
+b( )−1≥ 0



Tony Jebara, Columbia University 

SVM in Dual Form 
• We can also solve the problem via convex duality 
• Primal SVM problem LP: 
• This is a quadratic program, quadratic cost 
   function with multiple linear inequalities 
   (these carve out a convex hull) 
• Subtract from cost each inequality times an α 	


   Lagrange multiplier, take derivatives of w & b: 

• Plug back in, dual: 
• Also have constraints: 
• Above LD must be maximized! convex duality… also qp() 

   
min 1

2
w

2
subject to y

i
wTx

i
+b( )−1≥ 0

   
L

P
= min

w,b
max

α≥0
1
2

w
2
− α

i
y

i
wTx

i
+b( )−1( )i∑

   
∂
∂w

L
P

= w− α
i
y

i
x

i
= 0 →

i∑ w = α
i
y

i
x

ii∑
   
∂
∂b

L
P

=− α
i
y

i
= 0

i∑
   
L

D
= α

ii∑ − 1
2

α
i
α

j
y

i
y

j
x

i
Tx

jj∑i∑
   
α

i
y

i
= 0

i∑ & α
i
≥ 0



Tony Jebara, Columbia University 

SVM Dual Solution Properties 
• We have dual convex program: 

• Solve for N alphas (one per data point) instead of D w’s 
• Still convex (qp) so unique solution, gives alphas 
• Alphas can be used to get w: 
• Support Vectors: have non-zero alphas 
  shown with thicker circles, all live on 
  the margin: 
• Solution is sparse, most alphas=0 
  these are non-support vectors 
  SVM ignores them if they move 
  (without crossing margin) or if 
  they are deleted, SVM doesn’t 
  change (stays robust) 

   
α

ii∑ − 1
2

α
i
α

j
y

i
y

j
x

i
Tx

ji, j∑ subject to α
i
y

i
= 0

i∑ & α
i
≥ 0

   w
Tx

i
+b = ±1

  
w = α

i
y

i
x

ii∑



Tony Jebara, Columbia University 

SVM Dual Solution Properties 
• Primal & Dual Illustration: 

• Recall we could get w from alphas: 
• Or could use as is: 
• Karush-Kuhn-Tucker Conditions (KKT): solve value of b 
    on margin (for nonzero alphas) have: 
    using known w, compute b for each support vector  
    then… 
• Sparsity (few nonzero alphas) is useful for several reasons 
• Means SVM only uses some of training data to learn 
• Should help improve its ability to generalize to test data 
• Computationally faster when using final learned classifier 

  
w = α

i
y

i
x

ii∑
  
f x( ) = sign xTw +b( ) = sign α

i
y

i
xTx

ii∑ +b( )

   w
Tx

i
+b ≥±1

  w
Tx

i
+b = y

i

    
b
i

= y
i
−wTx

i
∀i : α

i
> 0

   
b = average b

i( )



Tony Jebara, Columbia University 

Non-Separable SVMs 
• What happens when non-separable? 
• There is no solution 
  and convex hull 
  shrinks to nothing 

• Not all constraints can be resolved, their alphas go to  
• Instead of perfectly classifying each point: 
  we “Relax” the problem with (positive) slack variables xi’s 
  allow data to (sometimes) fall on wrong side, for example: 

• New constraints: 

• But too much xi’s means too much slack, so penalize them 

 ∞

   w
Tx

i
+b ≥+1−ξ

i
if y

i
= +1 where ξ

i
≥ 0

   w
Tx

i
+b ≤−1 + ξ

i
if y

i
= −1 where ξ

i
≥ 0

   
L

P
: min 1

2
w

2
+C ξ

ii∑ subject to y
i

wTx
i

+b( )−1 + ξ
i
≥ 0

   w
Tx

i
+b ≥−0.03 if y

i
= +1

   
y

i
wTx

i
+b( )≥ 1



Tony Jebara, Columbia University 

Non-Separable SVMs 
• This new problem is still convex, still qp()! 
• User chooses scalar C (or cross-validates) which controls 
  how much slack xi to use (how non-separable) and how 
  robust to outliers or bad points on the wrong side 

• Can now write dual problem (to maximize): 

• Same dual as before but alphas can’t grow beyond C 

   
L

P
: min 1

2
w

2
+C ξ

ii∑ − α
i

y
i

wTx
i

+b( )−1 + ξ
i( )i∑ − β

i
ξ

ii∑

   
∂
∂b

L
P
and ∂

∂w
L

P
asbefore...

   
∂
∂ξi

L
P

= C −α
i
−β

i
= 0

   αi
= C −β

i
but... α

i
& β

i
≥ 0

   ∴ 0 ≤ α
i
≤C

For xi positivity Large margin Low slack On right side 

   
L

D
: max α

ii∑ − 1
2

α
i
α

j
y

i
y

j
x

i
Tx

ji, j∑ subject to α
i
y

i
= 0

i∑ and α
i
∈ 0,C⎡⎣⎢

⎤
⎦⎥



Tony Jebara, Columbia University 

Non-Separable SVMs 
• As we try to enforce a classification for a data point 
  its Lagrange multiplier alpha keeps growing endlessly 
• Clamping alpha to stop growing at C makes SVM “give up” 
  on those non-separable points 
• The dual program is now: 
• Solve as before with 
  extra constraints that 
  alphas positive AND 
  less than C… gives alphas… from alphas get  

• Karush-Kuhn-Tucker Conditions (KKT): solve value of b 
  on margin for not=zero alphas AND not=C alphas 
  for all others have support vectors, assume          and use 
  formula                                 to get    and 
• Mechanical analogy: support vector forces & torques     

y
i

wTx
i

+ b
i( )−1 + ξ

i
= 0

  
w = α

i
y

i
x

ii∑

   
b = average b

i( )  
b
i

   ξi = 0



Tony Jebara, Columbia University 

Nonlinear SVMs 
• What if the problem is not linear? 



Tony Jebara, Columbia University 

Nonlinear SVMs 
• What if the problem is not linear? 
• We can use our old trick… 
• Map d-dimensional x data from L-space to high dimensional 
  H (Hilbert) feature-space via basis functions Φ(x) 
• For example, quadratic classifier: 

• Call phi’s feature vectors computed from original x inputs 
• Replace all x’s in the SVM equations with phi’s 
• Now solve the following learning problem: 

• Which gives a nonlinear classifier in original space: 

 L

 Η

   

x
i
→Φ x

i( ) via Φ

x( ) =


x

vec

x

xT( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   
L

D
: max α

ii∑ − 1
2

α
i
α

j
y

i
y

j
φ x

i( )T φ x
j( )i, j∑ s.t. α

i
∈ 0,C⎡⎣⎢

⎤
⎦⎥ , α

i
y

i
= 0

i∑

  
f x( ) = sign α

i
y

i
φ x( )T φ x

i( )i∑ +b
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟



Tony Jebara, Columbia University 

Kernels (see http://www.youtube.com/watch?v=3liCbRZPrZA) 
• One important aspect of SVMs: all math involves only 
  the inner products between the phi features! 

• Replace all inner products with a general kernel function 
• Mercer kernel: accepts 2 inputs and outputs a scalar via: 

• Example: quadratic polynomial 

  
f x( ) = sign α

i
y

i
φ x( )T φ x

i( )i∑ +b
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

    

k x, x( ) = φ x( ),φ x( ) =
φ x( )T φ x( ) for finite φ

φ x,t( )φ x,t( )dt
t∫ otherwise

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

   
φ x( ) = x

1
2 2x

1
x

2
x

2
2⎡

⎣
⎢

⎤
⎦
⎥
T

    

k x, x( ) = φ x( )T φ x( )
= x

1
2x

1
2 + 2x

1
x

1
x

2
x

2
+ x

2
2x

2
2

= x
1
x

1
+ x

2
x

2( )2



Tony Jebara, Columbia University 

Kernels 
• Sometimes, many Φ(x) will produce the same k(x,x’) 
• Sometimes k(x,x’) computable but features huge or infinite! 
• Example: polynomials 
  If explicit polynomial mapping, feature space Φ(x) is huge 

  d-dimensional data, p-th order polynomial, 

  images of size 16x16 with p=4 have dim(H)=183million 

  but can equivalently just use kernel: 

   

dim Η( ) =
d + p−1

p

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

   
k x,y( ) = xTy( )p

    

k x, x( ) = xT x( )p
= x

i
x

ii∑( )p

∝
p !

r
1
!r

2
!r

3
!… p−r

1
−r

2
−…( )!

x
1

r1x
2

r2x
d

rd

r
∑ x

1

r1 x
2

r2x
d

rd

∝ w
r
x

1

r1x
2

r2x
d

rd( )
r
∑ w

r
x

1

r1 x
2

r2x
d

rd( )
∝ φ x( )φ x( )

Multinomial Theorem 

w=weight on term 

Equivalent! 



Tony Jebara, Columbia University 

Kernels 

• Replace each                   , for example: 
  P-th Order Polynomial Kernel: 

  RBF Kernel (infinite!): 

  Sigmoid (hyperbolic tan) Kernel: 

• Using kernels we get generalized inner product SVM: 

• Still qp solver, just use Gram matrix K (positive definite) 

   
L

D
: max α

ii∑ − 1
2

α
i
α

j
y

i
y

j
k x

i
,x

j( )i, j∑ s.t. α
i
∈ 0,C⎡⎣⎢

⎤
⎦⎥ , α

i
y

i
= 0

i∑

   
K

ij
= k x

i
,x

j( )

   

K =

k x
1
,x

1( ) k x
1
,x

2( ) k x
1
,x

3( )
k x

1
,x

2( ) k x
2
,x

2( ) k x
2
,x

3( )
k x

1
,x

3( ) k x
2
,x

3( ) k x
3
,x

3( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

    
k x, x( ) = xT x +1( )p

    
k x, x( ) = exp − 1

2σ2 x − x
2⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

    
k x, x( ) = tanh κxT x −δ( )

   
f x( ) = sign α

i
y

i
k x

i
,x( )i∑ +b( )

   
x

i
Tx

j
→ k x

i
,x

j( )



Tony Jebara, Columbia University 

Kernelized SVMs 
• Polynomial kernel: 

• Radial basis function kernel: 

 Polynomial Kernel        RBF kernel 

• Least-squares, logistic-regression, perceptron are also  
kernelizable 

   

k x
i
,x

j( ) = x
i
Tx

j
+1( )p

k x
i
,x

j( ) = exp − 1
2σ2 x

i
−x

j

2⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟



Tony Jebara, Columbia University 

SVM Demo 
• SVM Demo by Steve Gunn: 
 http://www.isis.ecs.soton.ac.uk/resources/svminfo/ 
• In svc.m replace 
   [alpha lambda how] = qp(…); 
  with 
   [alpha lambda how] = quadprog(H,c,[],[],A,b,vlb,vub,x0); 

This replaces the old 
Matlab command qp 
(quadratic programming) 
with the new one 
for more recent versions 


