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Review: SVM 
• Support vector machines are (in the simplest case) 
  linear classifiers that do structural risk minimization (SRM) 
• Directly maximize margin to reduce guaranteed risk J(θ) 
• Assume first the 2-class data is linearly separable: 

• Decision boundary or hyperplane given by 
• Note: can scale w & b  while keeping same boundary 
• Many solutions exist which have empirical error Remp(θ)=0 
• Want widest or thickest one (max margin), also it’s unique! 
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Support Vector Machines 
• Define:    w

Tx +b = 0

H+=positive margin hyperplane 
H- =negative margin hyperplane 
q  =distance from decision plane to origin 
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Support Vector Machines 
• The constraints on the SVM 
   for Remp(θ)=0 are thus: 

• Or more simply: 
• The margin of the SVM is: 

• Distance to origin: 

• Therefore:    and margin 

• Want to max margin, or equivalently minimize: 
• SVM Problem: 
• This is a quadratic program! 
• Can plug this into a matlab function called “qp()”, done! 
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SVM in Dual Form 
• We can also solve the problem via convex duality 
• Primal SVM problem LP: 
• This is a quadratic program, quadratic cost 
   function with multiple linear inequalities 
   (these carve out a convex hull) 
• Subtract from cost each inequality times an α 	


   Lagrange multiplier, take derivatives of w & b: 

• Plug back in, dual: 
• Also have constraints: 
• Above LD must be maximized! convex duality… also qp() 
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SVM Dual Solution Properties 
• We have dual convex program: 

• Solve for N alphas (one per data point) instead of D w’s 
• Still convex (qp) so unique solution, gives alphas 
• Alphas can be used to get w: 
• Support Vectors: have non-zero alphas 
  shown with thicker circles, all live on 
  the margin: 
• Solution is sparse, most alphas=0 
  these are non-support vectors 
  SVM ignores them if they move 
  (without crossing margin) or if 
  they are deleted, SVM doesn’t 
  change (stays robust) 
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SVM Dual Solution Properties 
• Primal & Dual Illustration: 

• Recall we could get w from alphas: 
• Or could use as is: 
• Karush-Kuhn-Tucker Conditions (KKT): solve value of b 
    on margin (for nonzero alphas) have: 
    using known w, compute b for each support vector  
    then… 
• Sparsity (few nonzero alphas) is useful for several reasons 
• Means SVM only uses some of training data to learn 
• Should help improve its ability to generalize to test data 
• Computationally faster when using final learned classifier 
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Non-Separable SVMs 
• What happens when non-separable? 
• There is no solution 
  and convex hull 
  shrinks to nothing 

• Not all constraints can be resolved, their alphas go to  
• Instead of perfectly classifying each point: 
  we “Relax” the problem with (positive) slack variables xi’s 
  allow data to (sometimes) fall on wrong side, for example: 

• New constraints: 

• But too much xi’s means too much slack, so penalize them 
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Non-Separable SVMs 
• This new problem is still convex, still qp()! 
• User chooses scalar C (or cross-validates) which controls 
  how much slack xi to use (how non-separable) and how 
  robust to outliers or bad points on the wrong side 

• Can now write dual problem (to maximize): 

• Same dual as before but alphas can’t grow beyond C 
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Non-Separable SVMs 
• As we try to enforce a classification for a data point 
  its Lagrange multiplier alpha keeps growing endlessly 
• Clamping alpha to stop growing at C makes SVM “give up” 
  on those non-separable points 
• The dual program is now: 
• Solve as before with 
  extra constraints that 
  alphas positive AND 
  less than C… gives alphas… from alphas get  

• Karush-Kuhn-Tucker Conditions (KKT): solve value of b 
  on margin for not=zero alphas AND not=C alphas 
  for all others have support vectors, assume          and use 
  formula                                 to get    and 
• Mechanical analogy: support vector forces & torques     
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Nonlinear SVMs 
• What if the problem is not linear? 
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Nonlinear SVMs 
• What if the problem is not linear? 
• We can use our old trick… 
• Map d-dimensional x data from L-space to high dimensional 
  H (Hilbert) feature-space via basis functions Φ(x) 
• For example, quadratic classifier: 

• Call phi’s feature vectors computed from original x inputs 
• Replace all x’s in the SVM equations with phi’s 
• Now solve the following learning problem: 

• Which gives a nonlinear classifier in original space: 
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Kernels (see http://www.youtube.com/watch?v=3liCbRZPrZA) 
• One important aspect of SVMs: all math involves only 
  the inner products between the phi features! 

• Replace all inner products with a general kernel function 
• Mercer kernel: accepts 2 inputs and outputs a scalar via: 

• Example: quadratic polynomial 
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Kernels 
• Sometimes, many Φ(x) will produce the same k(x,x’) 
• Sometimes k(x,x’) computable but features huge or infinite! 
• Example: polynomials 
  If explicit polynomial mapping, feature space Φ(x) is huge 

  d-dimensional data, p-th order polynomial, 

  images of size 16x16 with p=4 have dim(H)=183million 

  but can equivalently just use kernel: 
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Kernels 

• Replace each                   , for example: 
  P-th Order Polynomial Kernel: 

  RBF Kernel (infinite!): 

  Sigmoid (hyperbolic tan) Kernel: 

• Using kernels we get generalized inner product SVM: 

• Still qp solver, just use Gram matrix K (positive definite) 
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Kernelized SVMs 
• Polynomial kernel: 

• Radial basis function kernel: 

 Polynomial Kernel        RBF kernel 

• Least-squares, logistic-regression, perceptron are also  
kernelizable 
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SVM Demo 
• SVM Demo by Steve Gunn: 
 http://www.isis.ecs.soton.ac.uk/resources/svminfo/ 
• In svc.m replace 
   [alpha lambda how] = qp(…); 
  with 
   [alpha lambda how] = quadprog(H,c,[],[],A,b,vlb,vub,x0); 

This replaces the old 
Matlab command qp 
(quadratic programming) 
with the new one 
for more recent versions 


