Tony Jebara, Columbia University

Machine Learning 4771

Instructor: Tony Jebara

Topic 5

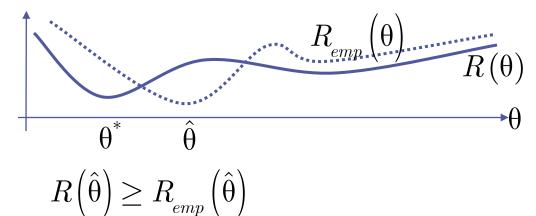
- •Generalization Guarantees
- VC-Dimension
- •Nearest Neighbor Classification (infinite VC dimension)
- •Structural Risk Minimization
- •Support Vector Machines

Empirical Risk Minimization

•Example: non-pdf linear classifiers $f(x;\theta) = sign(\theta^T x + \theta_0) \in \{-1,1\}$ •Recall ERM: $R_{emp}\left(\theta\right) = \frac{1}{N} \sum_{i=1}^{N} L\left(y_i, f\left(x_i; \theta\right)\right) \in [0,1]$ •Have loss function: quadratic: $L\left(y, x, \theta\right) = \frac{1}{2} \left(y - f\left(x; \theta\right)\right)^2$ linear: $L\left(y, x, \theta\right) = \left|y - f\left(x; \theta\right)\right|$ binary: $L\left(y, x, \theta\right) = step\left(-yf\left(x; \theta\right)\right)$ •Empirical $R_{emp}(\theta)$ approximates the true risk (expected error) $R(\theta) = E_{P}\left\{L(x, y, \theta)\right\} = \int_{X \lor V} P(x, y) L(x, y, \theta) dx dy \in [0, 1]$ •But, we don't know the true P(x,y)! •If infinite data, *law of large numbers* says: $\lim_{N \to \infty} \ \min_{\theta} R_{emp}(\theta) = \min_{\theta} R(\theta)$ •But, in general, can't make guarantees for ERM solution: $\arg \min_{\theta} R_{emp}(\theta) \neq \arg \min_{\theta} R(\theta)$

Bounding the True Risk

•ERM is inconsistent not guaranteed may do better on training than on test!



•Idea: add a prior or regularizer to $R_{emp}(\theta)$ •Define capacity or confidence = $C(\theta)$ which favors simpler θ

$$J(\theta) = R_{emp}(\theta) + C(\theta)$$

$$J(\theta)$$

$$R(\theta)$$

$$R(\theta)$$

$$\theta^* \hat{\theta}$$

$$If, R(\theta) \le J(\theta) \text{ we have bound } J(\theta) \text{ is a guaranteed risk}$$

$$After train, can guarantee future error rate is \le \min_{\theta} J(\theta)$$

Bound the True Risk with VC

But, how to find a guarantee? Difficult, but there is one...
Theorem (Vapnik): with probability 1-η where η is a number between [0,1], the following bound holds:

$$R\left(\theta\right) \leq J\left(\theta\right) = R_{emp}\left(\theta\right) + \frac{2h\log\left(\frac{2eN}{h}\right) + 2\log\left(\frac{4}{\eta}\right)}{N} \left(1 + \sqrt{1 + \frac{NR_{emp}\left(\theta\right)}{h\log\left(\frac{2eN}{h}\right) + \log\left(\frac{4}{\eta}\right)}}\right)$$

N = number of data points

h = Vapnik-Chervonenkis (VC) dimension (1970's)

= capacity of the classifier class $f(.;\theta)$

•Note, above is independent of the true P(x,y)

•A *worst-case scenario* bound, guaranteed for all P(x,y)

•VC dimension not just the # of parameters a classifier has

•VC measures # of different datasets it can classify perfectly

•Structural Risk Minimization: minimize risk bound J(θ)

VC Dimension & Shattering

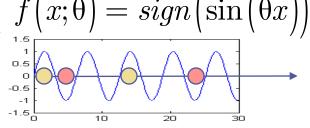
•How to compute h or VC for a family of functions $f(.;\theta)$ h = # of training points that can be shattered •Recall, classifier maps input to output $f(x;\theta) \rightarrow y \in \{-1,1\}$ •Shattering: I pick h points & place them at $x_1, ..., x_h$ You challenge me with 2^h possible labelings $y_1, ..., y_h \in \{\pm 1\}^h$ VC dimension is maximum # of points I can place which a $f(x;\theta)$ can correctly classify for arbitrary labeling y_1, \dots, y_h •Example: for 2d linear classifier h=3 $f(x;\theta) = x_1\theta_1 + x_2\theta_2 + \theta_0$

can't ever shatter 4 points! or 3 points on a straight line...

VC Dimension & Shattering

- •More generally for higher dimensional linear classifiers, a hyperplane in \mathbb{R}^d shatters any set of linearly independent points. Can choose d+1 linearly indep. points so h=d+1
- •Note: VC is *not necessarily proportional* to # of parameters •Example: sinusoidal 1d classifier $f(x;\theta) = sign(sin(\theta x))$

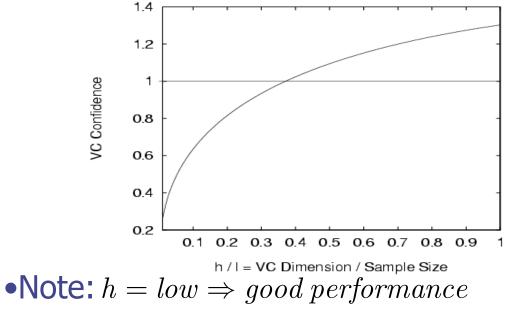
number of parameters=1
...but... h=infinity!



since I can choose: $x_i = 10^{-i}$ i = 1, ..., hno matter what labeling you challenge: $y_1, ..., y_h \in \{\pm 1\}^h$ using $\theta = \pi \left(1 + \sum_{i=1}^h \frac{1}{2} (1 - y_i) 10^{-i}\right)$ shatters perfectly But, as a side note, if I choose 4 equally spaced x's then cannot shatter

VC Dimension & Shattering

- •Recall that VC dimension gives an upper bound
- •We want to minimize h since that minimizes $C(\theta) \& J(\theta)$
- •If can't compute h exactly but can compute h⁺ can plug in h⁺ in bound & still guarantee
- •Also, sometimes bound is trivial
- •Need h/N = 0.3 before C(θ)<1 (recall R(θ) in [0,1])

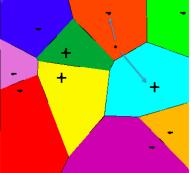


 $h = \infty \not impose poor performance$

Nearest Neighbors & VC

•Consider Nearest Neighbors classification algorithm:

Input a query example x Find training example x_i in $\{x_1, ..., x_N\}$ closest to x Predict label for x as y_i of neighbor



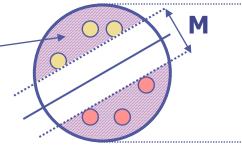
•Often use Euclidean distance $||x - x_i||$ to measure closeness •Nearest neighbors shatters any set of points!

So VC=infinity, C(θ)=infinity, guaranteed risk=infinity
But still works well in practice

 $h = \infty \Join poor performance$ $h = low \Rightarrow good performance$

VC Dimension & Large Margins

- Linear classifiers are too big a function class since h=d+1
 Can reduce VC dimension if we restrict them
- Constrain linear classifiers to data living inside a sphere
 Gap-Tolerant classifiers: a linear classifier whose activity is constrained to a sphere & outside a margin
 - Only count errors in shaded region Elsewhere have L(x,y,θ)=0



M=margin D=diameter d=dimensionality

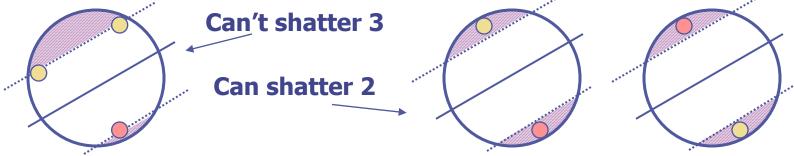
D

•If M is small relative to D, can still shatter 3 points:

and a second and a s

VC Dimension & Large Margins

•But, as M grows relative to D, can only shatter 2 points!



•For hyperplanes, as M grows vs. D, shatter fewer points! •VC dimension h goes down if gap-tolerant classifier has larger margin, general formula is: $h \le \min \left\{ ceil \left[\frac{D^2}{M^2} \right], d \right\} + 1$

- •Before, just had h=d+1. Now we have a smaller h
- •If data is anywhere, D is infinite and back to h=d+1
- •Typically real data is bounded (by sphere), D is fixed
- •Maximizing M reduces h, improving guaranteed risk $J(\theta)$
- •Note: $R(\theta)$ doesn't count errors in margin or outside sphere

Structural Risk Minimization

 Structural Risk Minimization: minimize risk bound J(θ) reducing empirical error & reduce VC dimension h

 $R\left(\theta\right) \leq J\left(\theta\right) = R_{emp}\left(\theta\right) + \frac{2h\log\left(\frac{2eN}{h}\right) + 2\log\left(\frac{4}{\eta}\right)}{N} \left(1 + \sqrt{1 + \frac{NR_{emp}\left(\theta\right)}{h\log\left(\frac{2eN}{h}\right) + \log\left(\frac{2eN}{h}\right)}}\right)$

- for each model i in list of hypothesis
 - 1) compute its $h=h_i$

2) $\theta^* = \arg \min_{\theta} R_{emp}(\theta)$ 3) compute $J(\theta^*, h_i)$ choose model with lowest $J(\theta^*, h_i)$

Space of different Classifiers or Hypotheses

Or, directly optimize over both (θ*, h) = arg min_{θ,h} J(θ, h)
If possible, min empirical error while also minimizing VC
For gap-tolerant linear classifiers, minimize R_{emp}(θ) while maximizing margin, support vector machines do just that!

Support Vector Machines

Support vector machines are (in the simplest case) linear classifiers that do structural risk minimization (SRM)
Directly maximize margin to reduce guaranteed risk J(θ)
Assume first the 2-class data is linearly separable:

$$\begin{array}{l} have \ \left\{ \left(x_{1}, y_{1}\right), \dots, \left(x_{N}, y_{N}\right) \right\} & where \ x_{i} \in \mathbb{R}^{D} \ and \ y_{i} \in \left\{-1, 1\right\} \\ f\left(x; \theta\right) = sign\left(w^{T}x + b\right) \end{array}$$

Decision boundary or hyperplane given by w^Tx + b = 0
Note: can scale w & b while keeping same boundary
Many solutions exist which have empirical error R_{emp}(θ)=0
Want widest or thickest one (max margin), also it's unique!

Side Note: Constraints

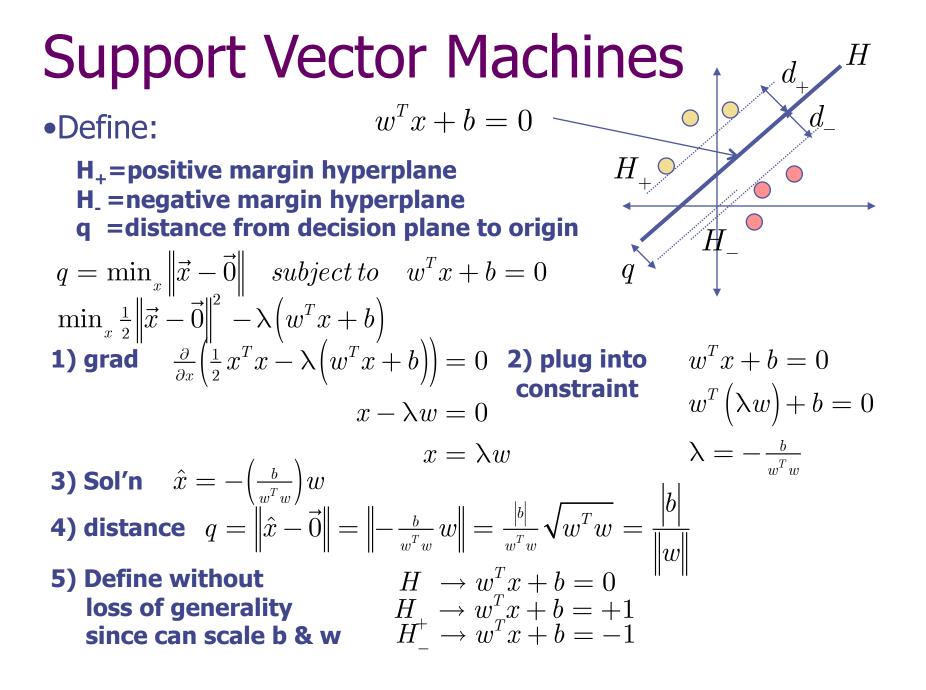
- •How to minimize a function subject to equality constraints? $\min_{x_1, x_2} f(\vec{x}) = \min_{x_1, x_2} b_1 x_1 + b_2 x_2 + \frac{1}{2} H_{11} x_1^2 + H_{12} x_1 x_2 + \frac{1}{2} H_{22} x_2^2$ $= \min_{\vec{x}} \vec{b}^T \vec{x} + \frac{1}{2} \vec{x}^T H \vec{x}$ $\Rightarrow \frac{\partial f}{\partial \vec{x}} = \vec{b} + H \vec{x} = 0$ $\Rightarrow \vec{x} = -H^{-1} b$
- •Only walk on $x_1 = 2x_2$ or... $x_1 2x_2 = 0$...
- •Use Lagrange Multipliers, for each constraint, subtract it times a lambda variable. Lambda blows up the minimization if we don't satisfy the constraint: $\min_{x_1,x_2} \max_{\lambda} f(\vec{x}) - \lambda (equality condition = 0)$ $= \min_{x_1,x_2} \max_{\lambda} b_1 x_1 + b_2 x_2 + \frac{1}{2} H_{11} x_1^2 + H_{12} x_1 x_2 + \frac{1}{2} H_{22} x_2^2 - \lambda (x_1 - 2x_2)$

Tony Jebara, Columbia University

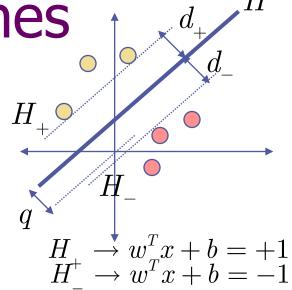
Side Note: Constraints

•Cost minimization with equality constraints: 1) Subtract each constraint times an extra variable (a Lagrange multiplier λ , like an adversary variable) 2) Take partials with respect to x and set to zero 2) Take partials with respect to a solution into constraint to find lambda 3) Plug solution into constraint to find lambda $x_1 - 2x_2 = \vec{x}^T \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

$$\begin{split} \min_{\vec{x}} \max_{\lambda} f\left(\vec{x}\right) &- \lambda \left(equality \ condition = 0\right) \\ &= \min_{\vec{x}} \ \max_{\lambda} b^{T} \vec{x} + \frac{1}{2} \vec{x}^{T} H \vec{x} - \lambda \left(x_{1} - 2x_{2}\right) \\ &\Rightarrow \frac{\partial f}{\partial \vec{x}} = \vec{b} + H \vec{x} - \lambda \left[\begin{array}{c} 1\\ -2 \end{array}\right] = 0 \quad \Rightarrow \ \vec{x} = H^{-1} \lambda \left[\begin{array}{c} 1\\ -2 \end{array}\right] - H^{-1} b \\ &\Rightarrow \left(H^{-1} \lambda \left[\begin{array}{c} 1\\ -2 \end{array}\right] - H^{-1} b\right)^{T} \left[\begin{array}{c} 1\\ -2 \end{array}\right] = 0 \Rightarrow \lambda = \frac{b^{T} H^{-1} \left[\begin{array}{c} 1\\ -2 \end{array}\right]}{\left[\begin{array}{c} 1\\ -2 \end{array}\right]} \\ &= \frac{b^{T} H^{-1} \left[\begin{array}{c} 1\\ -2 \end{array}\right]}{\left[\begin{array}{c} 1\\ -2 \end{array}\right]} \end{split}$$



- •The constraints on the SVM for $R_{emp}(\theta)=0$ are thus:
- $\begin{array}{ll} w^{T}x_{i}+b\geq+1 & \forall y_{i}=+1\\ w^{T}x_{i}+b\leq-1 & \forall y_{i}=-1\\ \bullet \text{Or more simply:} & y_{i}\left(w^{T}x_{i}+b\right)-1\geq0\\ \bullet \text{The margin of the SVM is:} \end{array}$



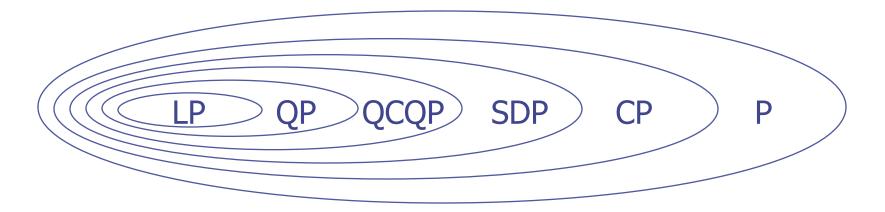
$$\begin{split} & m = d_{_+} + d_{_-} \\ \bullet \text{Distance to origin:} \quad H \to q = \frac{|b|}{\|w\|} \quad H_+ \to q_+ = \frac{|b-1|}{\|w\|}_2 \quad H_- \to q_- = \frac{|-1-b|}{\|w\|} \\ \bullet \text{Therefore:} \quad d_+ = d_- = \frac{1}{\|w\|} \quad \text{ and margin } m = \frac{2}{\|w\|} \end{split}$$

- •Therefore: $d_{+} = d_{-} = \frac{1}{\|w\|}$ and margin $m = \frac{2}{\|w\|}$ •Want to max margin, or equivalently minimize: $\|w\|$ or $\|w\|^{2}$ •SVM Problem: $\min \frac{1}{2} \|w\|^{2}$ subject to $y_{i} (w^{T}x_{i} + b) - 1 \ge 0$ •This is a quadratic program!
- •Can plug this into a matlab function called "qp()", done!

Side Note: Optimization Tools

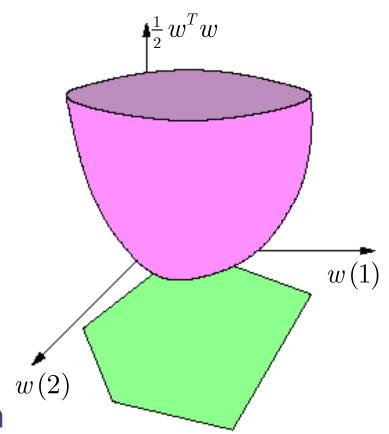
•A hierarchy of Matlab optimization packages to use:

Linear Programming $\min_{\vec{x}} \vec{b}^T \vec{x} \ s.t. \ \vec{c}_i^T \vec{x} \ge \alpha_i \ \forall i$ <Quadratic Programming $\min_{\vec{x}} \frac{1}{2} \vec{x}^T H \vec{x} + \vec{b}^T \vec{x} \ s.t. \ \vec{c}_i^T \vec{x} \ge \alpha_i \ \forall i$ <Quadratically Constrained Quadratic Programming <Semidefinite Programming <Convex Programming <Polynomial Time Algorithms



Side Note: Optimization Tools

- •Each data point adds $y_i(w^T x_i + b) - 1 \ge 0$ linear inequality to QP •Each point cuts a half plane of allowable SVMs
 - and reduces green region
- •The SVM is closest point to the origin that is still in the green region
- •The preceptron algorithm just puts us randomly in green region
- •QP runs in cubic polynomial time
- •There are D values in the w vector
- •Needs O(D³) run time... But, there is a DUAL SVM in O(N³)!



SVM in Dual Form

- •We can also solve the problem via convex duality
- •Primal SVM problem L_P : $\min \frac{1}{2} \|w\|^2$ subject to $y_i (w^T x_i + b) 1 \ge 0$ •This is a quadratic program, quadratic cost
- This is a quadratic program, quadratic cost function with multiple linear inequalities (these carve out a convex hull)
- •Subtract from cost each inequality times an α Lagrange multiplier, take derivatives of w & b:

$$\begin{split} L_{P} &= \min_{w,b} \max_{\alpha \geq 0} \frac{1}{2} \left\| w \right\|^{2} \quad -\sum_{i} \alpha_{i} \left(y_{i} \left(w^{T} x_{i} + b \right) - 1 \right) \\ & \frac{\partial}{\partial w} L_{P} = w - \sum_{i} \alpha_{i} y_{i} x_{i} = 0 \quad \rightarrow w = \sum_{i} \alpha_{i} y_{i} x_{i} \\ & \frac{\partial}{\partial b} L_{P} = -\sum_{i} \alpha_{i} y_{i} = 0 \end{split}$$

•Plug back in, dual: $L_D = \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j x_i^T x_j$ •Also have constraints: $\sum_i \alpha_i y_i = 0$ & $\alpha_i \ge 0$

•Above L_D must be maximized! convex duality... also qp()