Tony Jebara, Columbia University

# Machine Learning 4771

Instructor: Tony Jebara

## Topic 5

- •Generalization Guarantees
- VC-Dimension
- •Nearest Neighbor Classification (infinite VC dimension)
- •Structural Risk Minimization
- •Support Vector Machines

#### **Empirical Risk Minimization**

•Example: non-pdf linear classifiers  $f(x;\theta) = sign(\theta^T x + \theta_0) \in \{-1,1\}$ •Recall ERM:  $R_{emp}\left(\theta\right) = \frac{1}{N} \sum_{i=1}^{N} L\left(y_i, f\left(x_i; \theta\right)\right) \in [0,1]$ •Have loss function: quadratic:  $L\left(y, x, \theta\right) = \frac{1}{2} \left(y - f\left(x; \theta\right)\right)^2$ linear:  $L\left(y, x, \theta\right) = \left|y - f\left(x; \theta\right)\right|$ binary:  $L\left(y, x, \theta\right) = step\left(-yf\left(x; \theta\right)\right)$ •Empirical  $R_{emp}(\theta)$  approximates the true risk (expected error)  $R(\theta) = E_{P}\left\{L(x, y, \theta)\right\} = \int_{X \lor V} P(x, y) L(x, y, \theta) dx dy \in [0, 1]$ •But, we don't know the true P(x,y)! •If infinite data, *law of large numbers* says:  $\lim_{N \to \infty} \ \min_{\theta} R_{emp}(\theta) = \min_{\theta} R(\theta)$ •But, in general, can't make guarantees for ERM solution:  $\arg \min_{\theta} R_{emp}(\theta) \neq \arg \min_{\theta} R(\theta)$ 

#### Bounding the True Risk

•ERM is inconsistent not guaranteed may do better on training than on test!



•Idea: add a prior or regularizer to  $R_{emp}(\theta)$ •Define capacity or confidence =  $C(\theta)$  which favors simpler  $\theta$ 

$$J(\theta) = R_{emp}(\theta) + C(\theta)$$

$$J(\theta)$$

$$R(\theta)$$

$$R(\theta)$$

$$\theta^* \hat{\theta}$$

$$If, R(\theta) \le J(\theta) \text{ we have bound } J(\theta) \text{ is a guaranteed risk}$$

$$After train, can guarantee future error rate is \le \min_{\theta} J(\theta)$$

#### Bound the True Risk with VC

But, how to find a guarantee? Difficult, but there is one...
Theorem (Vapnik): with probability 1-η where η is a number between [0,1], the following bound holds:

$$R\left(\theta\right) \leq J\left(\theta\right) = R_{emp}\left(\theta\right) + \frac{2h\log\left(\frac{2eN}{h}\right) + 2\log\left(\frac{4}{\eta}\right)}{N} \left(1 + \sqrt{1 + \frac{NR_{emp}\left(\theta\right)}{h\log\left(\frac{2eN}{h}\right) + \log\left(\frac{4}{\eta}\right)}}\right)$$

N = number of data points

h = Vapnik-Chervonenkis (VC) dimension (1970's)

= capacity of the classifier class  $f(.;\theta)$ 

•Note, above is independent of the true P(x,y)

•A *worst-case scenario* bound, guaranteed for all P(x,y)

•VC dimension not just the # of parameters a classifier has

•VC measures # of different datasets it can classify perfectly

•Structural Risk Minimization: minimize risk bound J(θ)

## VC Dimension & Shattering

•How to compute h or VC for a family of functions  $f(.;\theta)$ h = # of training points that can be shattered •Recall, classifier maps input to output  $f(x;\theta) \rightarrow y \in \{-1,1\}$ •Shattering: I pick h points & place them at  $x_1, ..., x_h$ You challenge me with 2<sup>h</sup> possible labelings  $y_1, ..., y_h \in \{\pm 1\}^h$ VC dimension is maximum # of points I can place which a  $f(x;\theta)$  can correctly classify for arbitrary labeling  $y_1, \dots, y_h$ •Example: for 2d linear classifier h=3  $f(x;\theta) = x_1\theta_1 + x_2\theta_2 + \theta_0$ 

can't ever shatter 4 points! or 3 points on a straight line...

## VC Dimension & Shattering

- •More generally for higher dimensional linear classifiers, a hyperplane in  $\mathbb{R}^d$  shatters any set of linearly independent points. Can choose d+1 linearly indep. points so h=d+1
- •Note: VC is *not necessarily proportional* to # of parameters •Example: sinusoidal 1d classifier  $f(x;\theta) = sign(sin(\theta x))$

number of parameters=1
...but... h=infinity!



since I can choose:  $x_i = 10^{-i}$  i = 1, ..., hno matter what labeling you challenge:  $y_1, ..., y_h \in \{\pm 1\}^h$ using  $\theta = \pi \left(1 + \sum_{i=1}^h \frac{1}{2} (1 - y_i) 10^{-i}\right)$  shatters perfectly But, as a side note, if I choose 4 equally spaced x's then cannot shatter

## VC Dimension & Shattering

- •Recall that VC dimension gives an upper bound
- •We want to minimize h since that minimizes  $C(\theta) \& J(\theta)$
- •If can't compute h exactly but can compute h<sup>+</sup> can plug in h<sup>+</sup> in bound & still guarantee
- •Also, sometimes bound is trivial
- •Need h/N = 0.3 before C( $\theta$ )<1 (recall R( $\theta$ ) in [0,1])



 $h = \infty \not impose poor performance$ 

#### Nearest Neighbors & VC

•Consider Nearest Neighbors classification algorithm:

Input a query example x Find training example  $x_i$  in  $\{x_1, ..., x_N\}$  closest to x Predict label for x as  $y_i$  of neighbor



•Often use Euclidean distance  $||x - x_i||$  to measure closeness •Nearest neighbors shatters any set of points!

So VC=infinity, C(θ)=infinity, guaranteed risk=infinity
But still works well in practice

 $h = \infty \Join poor performance$   $h = low \Rightarrow good performance$ 

## VC Dimension & Large Margins

- Linear classifiers are too big a function class since h=d+1
  Can reduce VC dimension if we restrict them
- Constrain linear classifiers to data living inside a sphere
   Gap-Tolerant classifiers: a linear classifier whose activity is constrained to a sphere & outside a margin
  - Only count errors in shaded region Elsewhere have L(x,y,θ)=0



M=margin D=diameter d=dimensionality

D

•If M is small relative to D, can still shatter 3 points:

and a second and a s

#### VC Dimension & Large Margins

•But, as M grows relative to D, can only shatter 2 points!



•For hyperplanes, as M grows vs. D, shatter fewer points! •VC dimension h goes down if gap-tolerant classifier has larger margin, general formula is:  $h \le \min \left\{ ceil \left[ \frac{D^2}{M^2} \right], d \right\} + 1$ 

- •Before, just had h=d+1. Now we have a smaller h
- •If data is anywhere, D is infinite and back to h=d+1
- •Typically real data is bounded (by sphere), D is fixed
- •Maximizing M reduces h, improving guaranteed risk  $J(\theta)$
- •Note:  $R(\theta)$  doesn't count errors in margin or outside sphere

## **Structural Risk Minimization**

 Structural Risk Minimization: minimize risk bound J(θ) reducing empirical error & reduce VC dimension h

 $R\left(\theta\right) \leq J\left(\theta\right) = R_{emp}\left(\theta\right) + \frac{2h\log\left(\frac{2eN}{h}\right) + 2\log\left(\frac{4}{\eta}\right)}{N} \left(1 + \sqrt{1 + \frac{NR_{emp}\left(\theta\right)}{h\log\left(\frac{2eN}{h}\right) + \log\left(\frac{2eN}{h}\right)}}\right)$ 

- for each model i in list of hypothesis
  - 1) compute its  $h=h_i$

2)  $\theta^* = \arg \min_{\theta} R_{emp}(\theta)$ 3) compute  $J(\theta^*, h_i)$ choose model with lowest  $J(\theta^*, h_i)$ 

Space of different Classifiers or Hypotheses

Or, directly optimize over both (θ\*, h) = arg min<sub>θ,h</sub> J(θ, h)
If possible, min empirical error while also minimizing VC
For gap-tolerant linear classifiers, minimize R<sub>emp</sub>(θ) while maximizing margin, support vector machines do just that!

#### **Support Vector Machines**

Support vector machines are (in the simplest case) linear classifiers that do structural risk minimization (SRM)
Directly maximize margin to reduce guaranteed risk J(θ)
Assume first the 2-class data is linearly separable:

$$\begin{array}{l} have \ \left\{ \left(x_{1}, y_{1}\right), \dots, \left(x_{N}, y_{N}\right) \right\} & where \ x_{i} \in \mathbb{R}^{D} \ and \ y_{i} \in \left\{-1, 1\right\} \\ f\left(x; \theta\right) = sign\left(w^{T}x + b\right) \end{array}$$

Decision boundary or hyperplane given by w<sup>T</sup>x + b = 0
Note: can scale w & b while keeping same boundary
Many solutions exist which have empirical error R<sub>emp</sub>(θ)=0
Want widest or thickest one (max margin), also it's unique!

#### Side Note: Constraints

- •How to minimize a function subject to equality constraints?  $\min_{x_1, x_2} f(\vec{x}) = \min_{x_1, x_2} b_1 x_1 + b_2 x_2 + \frac{1}{2} H_{11} x_1^2 + H_{12} x_1 x_2 + \frac{1}{2} H_{22} x_2^2$   $= \min_{\vec{x}} \vec{b}^T \vec{x} + \frac{1}{2} \vec{x}^T H \vec{x}$   $\Rightarrow \frac{\partial f}{\partial \vec{x}} = \vec{b} + H \vec{x} = 0$   $\Rightarrow \vec{x} = -H^{-1} b$
- •Only walk on  $x_1 = 2x_2$  or...  $x_1 2x_2 = 0$ ...
- •Use Lagrange Multipliers, for each constraint, subtract it times a lambda variable. Lambda blows up the minimization if we don't satisfy the constraint:  $\min_{x_1,x_2} \max_{\lambda} f(\vec{x}) - \lambda (equality condition = 0)$  $= \min_{x_1,x_2} \max_{\lambda} b_1 x_1 + b_2 x_2 + \frac{1}{2} H_{11} x_1^2 + H_{12} x_1 x_2 + \frac{1}{2} H_{22} x_2^2 - \lambda (x_1 - 2x_2)$

#### Tony Jebara, Columbia University

## Side Note: Constraints

•Cost minimization with equality constraints: 1) Subtract each constraint times an extra variable (a Lagrange multiplier  $\lambda$ , like an adversary variable) 2) Take partials with respect to x and set to zero 2) Take partials with respect to a solution into constraint to find lambda 3) Plug solution into constraint to find lambda  $x_1 - 2x_2 = \vec{x}^T \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ 

$$\begin{split} \min_{\vec{x}} \max_{\lambda} f\left(\vec{x}\right) &- \lambda \left(equality \ condition = 0\right) \\ &= \min_{\vec{x}} \ \max_{\lambda} b^{T} \vec{x} + \frac{1}{2} \vec{x}^{T} H \vec{x} - \lambda \left(x_{1} - 2x_{2}\right) \\ &\Rightarrow \frac{\partial f}{\partial \vec{x}} = \vec{b} + H \vec{x} - \lambda \left[\begin{array}{c} 1\\ -2 \end{array}\right] = 0 \quad \Rightarrow \ \vec{x} = H^{-1} \lambda \left[\begin{array}{c} 1\\ -2 \end{array}\right] - H^{-1} b \\ &\Rightarrow \left(H^{-1} \lambda \left[\begin{array}{c} 1\\ -2 \end{array}\right] - H^{-1} b\right)^{T} \left[\begin{array}{c} 1\\ -2 \end{array}\right] = 0 \Rightarrow \lambda = \frac{b^{T} H^{-1} \left[\begin{array}{c} 1\\ -2 \end{array}\right]}{\left[\begin{array}{c} 1\\ -2 \end{array}\right]} \\ &= \frac{b^{T} H^{-1} \left[\begin{array}{c} 1\\ -2 \end{array}\right]}{\left[\begin{array}{c} 1\\ -2 \end{array}\right]} \end{split}$$





- •The constraints on the SVM for  $R_{emp}(\theta)=0$  are thus:
- $\begin{array}{ll} w^{T}x_{i}+b\geq+1 & \forall y_{i}=+1\\ w^{T}x_{i}+b\leq-1 & \forall y_{i}=-1\\ \bullet \text{Or more simply:} & y_{i}\left(w^{T}x_{i}+b\right)-1\geq0\\ \bullet \text{The margin of the SVM is:} \end{array}$



$$\begin{split} & m = d_{_+} + d_{_-} \\ \bullet \text{Distance to origin:} \quad H \to q = \frac{|b|}{\|w\|} \quad H_+ \to q_+ = \frac{|b-1|}{\|w\|}_2 \quad H_- \to q_- = \frac{|-1-b|}{\|w\|} \\ \bullet \text{Therefore:} \quad d_+ = d_- = \frac{1}{\|w\|} \quad \text{ and margin } m = \frac{2}{\|w\|} \end{split}$$

- •Therefore:  $d_{+} = d_{-} = \frac{1}{\|w\|}$  and margin  $m = \frac{2}{\|w\|}$ •Want to max margin, or equivalently minimize:  $\|w\|$  or  $\|w\|^{2}$ •SVM Problem:  $\min \frac{1}{2} \|w\|^{2}$  subject to  $y_{i} (w^{T}x_{i} + b) - 1 \ge 0$ •This is a quadratic program!
- •Can plug this into a matlab function called "qp()", done!

## Side Note: Optimization Tools

•A hierarchy of Matlab optimization packages to use:

Linear Programming  $\min_{\vec{x}} \vec{b}^T \vec{x} \ s.t. \ \vec{c}_i^T \vec{x} \ge \alpha_i \ \forall i$  <Quadratic Programming  $\min_{\vec{x}} \frac{1}{2} \vec{x}^T H \vec{x} + \vec{b}^T \vec{x} \ s.t. \ \vec{c}_i^T \vec{x} \ge \alpha_i \ \forall i$  <Quadratically Constrained Quadratic Programming <Semidefinite Programming <Convex Programming <Polynomial Time Algorithms



#### Side Note: Optimization Tools

- •Each data point adds  $y_i(w^T x_i + b) - 1 \ge 0$ linear inequality to QP •Each point cuts a half plane of allowable SVMs
  - and reduces green region
- •The SVM is closest point to the origin that is still in the green region
- •The preceptron algorithm just puts us randomly in green region
- •QP runs in cubic polynomial time
- •There are D values in the w vector
- •Needs O(D<sup>3</sup>) run time... But, there is a DUAL SVM in O(N<sup>3</sup>)!



### SVM in Dual Form

- •We can also solve the problem via convex duality
- •Primal SVM problem  $L_P$ :  $\min \frac{1}{2} \|w\|^2$  subject to  $y_i (w^T x_i + b) 1 \ge 0$ •This is a quadratic program, quadratic cost
- This is a quadratic program, quadratic cost function with multiple linear inequalities (these carve out a convex hull)
- •Subtract from cost each inequality times an  $\alpha$ Lagrange multiplier, take derivatives of w & b:

$$\begin{split} L_{P} &= \min_{w,b} \max_{\alpha \geq 0} \frac{1}{2} \left\| w \right\|^{2} \quad -\sum_{i} \alpha_{i} \left( y_{i} \left( w^{T} x_{i} + b \right) - 1 \right) \\ & \frac{\partial}{\partial w} L_{P} = w - \sum_{i} \alpha_{i} y_{i} x_{i} = 0 \quad \rightarrow w = \sum_{i} \alpha_{i} y_{i} x_{i} \\ & \frac{\partial}{\partial b} L_{P} = -\sum_{i} \alpha_{i} y_{i} = 0 \end{split}$$

•Plug back in, dual:  $L_D = \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j x_i^T x_j$ •Also have constraints:  $\sum_i \alpha_i y_i = 0$  &  $\alpha_i \ge 0$ 

•Above L<sub>D</sub> must be maximized! convex duality... also qp()