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Topic 5 
• Generalization Guarantees 

• VC-Dimension 

• Nearest Neighbor Classification (infinite VC dimension) 

• Structural Risk Minimization 

• Support Vector Machines 
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Empirical Risk Minimization 
• Example: non-pdf linear classifiers 

• Recall ERM: 
• Have loss function: quadratic: 
   linear: 
   binary: 
• Empirical          approximates the true risk (expected error) 

• But, we don’t know the true P(x,y)! 
• If infinite data, law of large numbers says: 

• But, in general, can’t make guarantees for ERM solution: 
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• ERM is inconsistent 
   not guaranteed 
   may do better 
   on training than 
   on test! 
• Idea: add a prior or regularizer to 
• Define capacity or confidence =        which favors simpler   

• If,                    we have bound        is a guaranteed risk 
• After train, can guarantee future error rate is 

Bounding the True Risk 
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Bound the True Risk with VC 
• But, how to find a guarantee? Difficult, but there is one… 
• Theorem (Vapnik): with probability 1-η where η is a 

 number between [0,1], the following bound holds: 

      N  = number of data points 
       h = Vapnik-Chervonenkis (VC) dimension (1970’s)  
 = capacity of the classifier class 

• Note, above is independent of the true P(x,y) 
• A worst-case scenario bound, guaranteed for all P(x,y) 
• VC dimension not just the # of parameters a classifier has 
• VC measures # of different datasets it can classify perfectly 
• Structural Risk Minimization: minimize risk bound J(θ) 
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VC Dimension & Shattering 
• How to compute h or VC for a family of functions 
   h = # of training points that can be shattered 
• Recall, classifier maps input to output 

• Shattering:  I pick h points & place them at 
  You challenge me with 2h possible labelings  
  VC dimension is maximum # of points I can place which 
  a           can correctly classify for arbitrary labeling 
• Example: for 2d linear classifier h=3 

  can’t ever shatter 4 points! or 3 points on a straight line… 
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VC Dimension & Shattering 
• More generally for higher dimensional linear classifiers, 
  a hyperplane in      shatters any set of linearly independent 
  points. Can choose d+1 linearly indep. points so h=d+1 

• Note: VC is not necessarily proportional to # of parameters 
• Example: sinusoidal 1d classifier 
    number of parameters=1 
    …but…  h=infinity! 

    since I can choose: 
    no matter what labeling you challenge: 
    using        shatters perfectly 
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VC Dimension & Shattering 
• Recall that VC dimension gives an upper bound 
• We want to minimize h since that minimizes C(θ) & J(θ) 
• If can’t compute h exactly but can compute h+ can 
    plug in h+ in bound & still guarantee 
• Also, sometimes bound is trivial 
• Need h/N = 0.3 before C(θ)<1 (recall R(θ) in [0,1]) 

• Note:   h = low ⇒ good performance h =∞ ⇒ poor performance
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Nearest Neighbors & VC 
• Consider Nearest Neighbors classification algorithm: 
  
  Input a query example x  
  Find training example xi in {x1,…xN} closest to x 
  Predict label for x as yi of neighbor 

• Often use Euclidean distance           to measure closeness  
• Nearest neighbors shatters any set of points! 
• So VC=infinity, C(θ)=infinity, guaranteed risk=infinity 
• But still works well in practice 

  h =∞ ⇒ poor performance h = low ⇒ good performance
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• Linear classifiers are too big a function class since h=d+1 
• Can reduce VC dimension if we restrict them 
• Constrain linear classifiers to data living inside a sphere 
• Gap-Tolerant classifiers: a linear classifier whose activity 
  is constrained to a sphere & outside a margin 

• If M is small relative to D, can still shatter 3 points: 

VC Dimension & Large Margins 

M 

D 
M=margin 
D=diameter 
d=dimensionality 

Only count errors 
in shaded region 
Elsewhere have 
L(x,y,θ)=0 
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VC Dimension & Large Margins 
• But, as M grows relative to D, can only shatter 2 points! 

• For hyperplanes, as M grows vs. D, shatter fewer points! 
• VC dimension h goes down if gap-tolerant classifier has 
  larger margin, general formula is: 

• Before, just had h=d+1. Now we have a smaller h 
• If data is anywhere, D is infinite and back to h=d+1 
• Typically real data is bounded (by sphere), D is fixed 
• Maximizing M reduces h, improving guaranteed risk J(θ) 
• Note: R(θ) doesn’t count errors in margin or outside sphere 

Can’t shatter 3 

Can shatter 2 
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Structural Risk Minimization 
• Structural Risk Minimization: minimize risk bound J(θ) 
   reducing empirical error & reduce VC dimension h 

   for each model i in list of hypothesis 
 1) compute its h=hi 

 2) 
 3) compute 
   choose model with lowest 

• Or, directly optimize over both 
• If possible, min empirical error while also minimizing VC 
• For gap-tolerant linear classifiers, minimize Remp(θ) while 
  maximizing margin, support vector machines do just that! 
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Support Vector Machines 
• Support vector machines are (in the simplest case) 
  linear classifiers that do structural risk minimization (SRM) 
• Directly maximize margin to reduce guaranteed risk J(θ) 
• Assume first the 2-class data is linearly separable: 

• Decision boundary or hyperplane given by 
• Note: can scale w & b  while keeping same boundary 
• Many solutions exist which have empirical error Remp(θ)=0 
• Want widest or thickest one (max margin), also it’s unique! 
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Side Note: Constraints 
• How to minimize a function subject to equality constraints? 

• Only walk on x1=2x2 or… x1-2x2=0… 
• Use Lagrange Multipliers, for each constraint, subtract it 
  times a lambda variable. Lambda blows up the 
  minimization if we don’t satisfy the constraint: 
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Side Note: Constraints 
• Cost minimization with equality constraints: 
  1) Subtract each constraint times an extra variable 
 (a Lagrange multiplier λ, like an adversary variable) 
  2) Take partials with respect to x and set to zero 
  3) Plug solution into constraint to find lambda 
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Support Vector Machines 
• Define:    w

Tx +b = 0

H+=positive margin hyperplane 
H- =negative margin hyperplane 
q  =distance from decision plane to origin 
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Support Vector Machines 
• The constraints on the SVM 
   for Remp(θ)=0 are thus: 

• Or more simply: 
• The margin of the SVM is: 

• Distance to origin: 

• Therefore:    and margin 

• Want to max margin, or equivalently minimize: 
• SVM Problem: 
• This is a quadratic program! 
• Can plug this into a matlab function called “qp()”, done! 
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• A hierarchy of Matlab optimization packages to use: 

Linear Programming 
<Quadratic Programming 
 <Quadratically Constrained Quadratic Programming 
  <Semidefinite Programming 
   <Convex Programming 
    <Polynomial Time Algorithms 

Side Note: Optimization Tools 

P CP SDP QCQP QP LP 

    min 
x


bT x s.t.


c

i
T x ≥ α

i
∀i

    min 
x

1
2


xTH

x +

bT x s.t.


c

i
T x ≥ α

i
∀i



Tony Jebara, Columbia University 

• Each data point 
  adds 
  linear inequality to QP 
• Each point cuts a half 
  plane of allowable SVMs 
  and reduces green region 
• The SVM is closest point 
  to the origin that is still 
  in the green region 
• The preceptron algorithm just 
  puts us randomly in green region 
• QP runs in cubic polynomial time 
• There are D values in the w vector 
• Needs O(D3) run time… But, there is a DUAL SVM in O(N3)! 

Side Note: Optimization Tools 
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SVM in Dual Form 
• We can also solve the problem via convex duality 
• Primal SVM problem LP: 
• This is a quadratic program, quadratic cost 
   function with multiple linear inequalities 
   (these carve out a convex hull) 
• Subtract from cost each inequality times an α 	

   Lagrange multiplier, take derivatives of w & b: 

• Plug back in, dual: 
• Also have constraints: 
• Above LD must be maximized! convex duality… also qp() 
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