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Topic 5

eGeneralization Guarantees

e\/C-Dimension

eNearest Neighbor Classification (infinite VC dimension)
eStructural Risk Minimization

eSupport Vector Machines
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Empirical Risk Minimization
Example: non-pdf linear classifiers f(z;6) = sign(67z+ 0, ) € {~1,1}
eRecall ERM: R (6) = %ZYIL(%,]‘(%;O)) C O,lL 2

;6 )

eHave loss function: quadratic: L(y,z,0) = l(y — flz
linear: Lly,z0)= y—f(a:;e)
binary: Lly,x,0)= step(—yf(a:;e))

*Empirical R (e)approximates the true risk (expected error)
R(0)= B, {L(x.0.0)} = [ P(o.y)L(2.9.0)dedy €]0.1]
eBut, we don’t know the true P(x,y)!
oIf infinite data, law of large numbers says:
lim min, R (9) min R(O)

eBut, in general can't make guarantees for ERM solution:
arg min, 12 (9) = argmin, R(O)
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*ERM is inconsistent
not guaranteed

may do better
on training than
on test!

eIdea: add a prior or regularizer to R (e)
eDefine capacity or confidence = C (97)nwhich favors simpler 6

J(0)=r (0)+C(0)
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oIf, R(O) <J (6) we have bound J (9) iS @ guaranteed risk
eAfter train, can guarantee future error rate is < min_ J (e)
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Bound the True Risk with VC

eBut, how to find a guarantee? Difficult, but there is one...
eTheorem (Vapnik): with probability 1-n wheren is a
number between [0, 1], the foIIowing bound holds:

N = number of data points
h = Vapnik-Chervonenkis (VC) dimension (1970's)
= capacity of the classifier class f ( )

eNote, above is independent of the true P(x,y)

oA worst-case scenario bound, guaranteed for all P(x,y)

¢\/C dimension not just the # of parameters a classifier has
o\VC measures # of different datasets it can classify perfectly
oStructural Risk Minimization: minimize risk bound J(6)
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VC Dimension & Shattering

*How to compute h or VC for a family of functions f{.;6)

h = # of training points that can be shattered
eRecall, classifier maps input to output f (x;e) — € {—1,1}
eShattering: T pick h points & place themat ,

You challenge me with 2" possible labelings y,....y" € tl;l h
VC dimension is maximum # of points I can p]lace whic

a f(x; e) can correctly classify for arbitrary labeling y ...,y
eExample: for 2d linear classifier h=3 f (513;9) =z +29,+0,
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can't ever shatter 4 points! or 3 points on a straight line...
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VC Dimension & Shattering

eMore generally for hlgher dimensional linear classifiers,
a hyperplane in R* shatters any set of linearly independent
points. Can choose d+1 linearly indep. points so h=d+1

eNote: VC is not necessarily proportional to # of parameters
eExample: sinusoidal 1d classifier  f(z;0) = sz‘gn@in(ex))

number of parameters=1 %%W
...but... h=infinity! i A |
since I can choose: z =107 i=1,..,h .
no matter what labeling you chaIIenge Yyreonl, € {il}
using 6= w(1+ S 12(1 Y )10") shatters perfectly

But, as a side note, if I

choose4 equallyspaced | o o @ o0
x’'s then cannot shatter
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VC Dimension & Shattering

eRecall that VC dimension gives an upper bound

o\We want to minimize h since that minimizes C(6) & J(6)

oIf cant compute h exactly but can compute h* can
plug in h* in bound & still guarantee

eAlso, sometimes bound is trivial

eNeed h/N = 0.3 before C(6)<1 (recall R(6) in [0,1])
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h /1 =VC Dimension / Sample Size

eNote: h = low = good performance h = oo X poor performance
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Nearest Neighbors & VC

eConsider Nearest Neighbors classification algorithm:

Input a query example x
Find training example x; in {X;,...X\} closest to x
Predict label for x as y; of neighbor

eOften use Euclidean distance H:c - a:H to measure closeness
eNearest neighbors shatters any set of points!
¢So VC=infinity, C(6)=infinity, guaranteed risk=infinity
eBut still works well in practice

h = 0o 3£ poor performance h = low = good performance



Tony Jebara, Columbia University

VC Dimension & Large Margins

eLinear classifiers are too big a function class since h=d+1

eCan reduce VC dimension if we restrict them

eConstrain linear classifiers to data living inside a sphere

eGap-Tolerant classifiers: a linear classifier whose activity
is constrained to a sphere & outside a margin

T A

Only count errors
in shaded region
Elsewhere have

M=margin
D D=diameter
d=dimensionality




Tony Jebara, Columbia University

VC Dimension & Large Margins

oFor h&/perplanes, as M grows vs. D, shatter fewer points!
¢V/C dimension h goes down if gap-tolerant classifier has
larger margin, general formula is: h < mingceil D 7d]+1

eBefore, just had h=d+1. Now we have a smaller h
oIf data is anywhere, D is infinite and back to h=d+1
oTypically real data is bounded (by sphere), D is fixed
eMaximizing M reduces h, improving guaranteed risk J(6)
eNote: R(6) doesn’t count errors in margin or outside sphere
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Structural Risk Minimization

oStructural Risk Minimization: minimize risk bound J(6)
reducing empirical error & reduce VC dimension h

R e R

for each model i in list of hypothesis
1) compute its h=h
2) 0 =arg min, R (9)

) Space of different
3) compute J(6°,h,| Classifiers or

choose model with lowest J(6",,) Hypotheses

Or, directly optimize over both (6*,h) = argmin, J (9, h)

oIf possible, min empirical error while also minimizing VC

eFor gap-tolerant linear classifiers, minimize R..,,(6) while
maximizing margin, support vector machines do just that!
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Support Vector Machines

eSupport vector machines are (in the simplest case)

linear classifiers that do structural risk minimization (SRM)
eDirectly maximize margin to reduce guaranteed risk J(0)
eAssume first the 2-class data is linearly separable:

have {(xl,yl),...,(a:N,yN)} where x, € R” and Y. € {—1,1}

f(a:; 6) = sz’gn(g’wa + b)
eDecision boundary or hyperplane given by "z +5 =0
eNote: can scale w & b while keeping same boundary
eMany solutions exist which have empirical error R,,,,(6)=0
eWant widest or thickest one (max margin), also it's unique!
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Side Note: Constraints

eHow to minimize a function subject to equality constraints?
bz + b, + 1[—[11:1:1 +H xx + 1H22:132

min f(af) = min_ LT,

1>T9 Ly 5Ty
. _’T—) — 4
—min. b'x —|—%:1: Hzr

O g —
ax ........

R S

8

eOnly walk on x;=2x, or... X;-2X,=0...

eUse Lagrange Multipliers, for each constraint, subtract it
times a lambda variable. Lambda blows up the
minimization if we don't satisfy the constraint:

min  max f(s_é) — X(equality condition = O)

17772

— min max, b, + b, —|—1H11x1 +H xx —|—1H22:1:2—>\(x1—2x2)

T, ,T, 1271 2
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Side Note: Constraints @

eCost minimization with equality constraints:, -
1) Subtract each constraint times an extra variable
(a Lagrange multiplier A, like an adversary variable)
2) Take partials with respect to x and set to zero

3) Plug solution into constraint to find lambda
T —2x =2

min_ max, f (a_:’) — A (equality condition = O)/

= min_ max, b7+ %xTHZI_f — >\(a:1 — 23:2)
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Support Vector Machines , . 7

eDefine: w'z+b=0

H, =positive margin hyperplane
H_ =negative margin hyperplane
q =distance from decision plane to origin

¢ = min_ Hz?:’ —0|| subjectto w'z+b=0 q

nﬂnx§§?—62-—X(wﬂv+b)

1) grad % %azTa: — >\(wa + b)) =0 2)plug i_nto wrz+b=0
constraint ! (Xw) Lh=0

xr—xw =0
= \W = —-L
3)Soln & =—(-L)w b‘ o
4) distance ¢ = H;i: _ 6H _ ‘_ wgw w‘ _ w\i\w ' — ‘_
5) Define without H —wzo+b= HwH
loss of generality H - waz+b=+1

i T
since can scaleb & w C—wTrt+b=—



Tony Jebara, Columbia University

Support Vector Machines

eThe constraints on the SVM

for Remp(e)—O are thus: He L0
w z +b>+1 Vy =+1 ‘ /
wer+b<—-1 Vy =-1 q\"‘"“
«Or more simply: y(w T, +b) 1>0 O S w'stb=11
T
«The margin of the SVM is: H
: = d+ * d.— i o o1 [~1-1)
eDistance to origin: H — ¢ = W Ao a=g o=
2
eTherefore: d_=d_ —ﬁ and margin m = ” H
w

2

e\Want to max margin, or equwalently minimize: H“’H or Hw
oSVM Problem:  min< wa‘ subjectto y. (wTat +b)—1 >0
eThis is a quadratic programI

eCan plug this into a matlab function called “gp()”, done!
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Side Note: Optimization Tools

A hierarchy of Matlab optimization packages to use:

Linear Programming min_b"% st.¢'Z > o Vi
<Quadratic Programming min_ 17" Hz +0'7 st. 873 > o, Vi
<Quadratically Constrained Quadratic Programming
<Semidefinite Programming
<Convex Programming
<Polynomial Time Algorithms
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Side Note: Optimization Tools

eEach data point
adds v, (wT:z:i — b) —1>0
linear inequality to QP
eEach point cuts a half
plane of allowable SVMs
and reduces green region
eThe SVM is closest point
to the origin that is still
in the green region
eThe preceptron algorithm just w(2)
puts us randomly in green region
*QP runs in cubic polynomial time
eThere are D values in the w vector
eNeeds O(D3) run time... But, there is a DUAL SVM in O(N3)!
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SVM in Dual Form

o\We can also solve the problem via convex duality

*Primal SVM problem Lp: min? wH2 subject to y,(w'z, +b)—1>0

eThis is a quadratic program, quadratic cost
function with multiple linear inequalities
(these carve out a convex hull)

eSubtract from cost each inequality times an o

Lagrange multiplier, take derivatives of w & b:
oo el =2 0w (v, +0) 1)

Ly =w=) ayz =0 sw=> ayz
0 _ _
o Le = oy, =0
*Plug back in, dual: L, :Ziui—lzizjuu Yyrw

2

t ] J v 7
eAlso have constraints: > oy =0 & a >0 /
eAbove L, must be maximized! convex duality... also qp()

LP = min , max




