
Tony Jebara, Columbia University

Machine Learning
4771

Instructor: Tony Jebara

Tony Jebara, Columbia University

Topic 5
• Generalization Guarantees

• VC-Dimension

• Nearest Neighbor Classification (infinite VC dimension)

• Structural Risk Minimization

• Support Vector Machines

Tony Jebara, Columbia University

Empirical Risk Minimization
• Example: non-pdf linear classifiers

• Recall ERM:
• Have loss function: quadratic:
 linear:
 binary:
• Empirical approximates the true risk (expected error)

• But, we don’t know the true P(x,y)!
• If infinite data, law of large numbers says:

• But, in general, can’t make guarantees for ERM solution:

R

emp
θ() = 1

N
L y

i
, f x

i
;θ()()i=1

N∑ ∈ 0,1⎡⎣⎢
⎤
⎦⎥

L y,x, θ() = 1

2
y − f x;θ()()2

L y,x, θ() = y − f x;θ()

f x;θ() = sign θTx + θ

0()∈ −1,1{ }

L y,x, θ() = step −yf x;θ()()

R θ() = E

P
L x,y, θ(){ } = P x,y()L x,y, θ()dx dy

X×Y∫ ∈ 0,1⎡⎣⎢
⎤
⎦⎥

lim

N→∞
min

θ
R

emp
θ() = min

θ
R θ()

arg min

θ
R

emp
θ()≠ arg min

θ
R θ()

R

emp
θ()

Tony Jebara, Columbia University

• ERM is inconsistent
 not guaranteed
 may do better
 on training than
 on test!
• Idea: add a prior or regularizer to
• Define capacity or confidence = which favors simpler

• If, we have bound is a guaranteed risk
• After train, can guarantee future error rate is

Bounding the True Risk

R

emp
θ()

R θ̂()≥ R

emp
θ̂()

J θ() = R

emp
θ() +C θ()

J θ()

≤ min

θ
J θ()

R θ()≤ J θ()

R

emp
θ()

Tony Jebara, Columbia University

Bound the True Risk with VC
• But, how to find a guarantee? Difficult, but there is one…
• Theorem (Vapnik): with probability 1-η where η is a

 number between [0,1], the following bound holds:

 N = number of data points
 h = Vapnik-Chervonenkis (VC) dimension (1970’s)
 = capacity of the classifier class

• Note, above is independent of the true P(x,y)
• A worst-case scenario bound, guaranteed for all P(x,y)
• VC dimension not just the # of parameters a classifier has
• VC measures # of different datasets it can classify perfectly
• Structural Risk Minimization: minimize risk bound J(θ)

R θ()≤ J θ() = R
emp
θ() +

2h log 2eN
h() + 2 log 4

η()
N

1 + 1 +
NR

emp
θ()

h log 2eN
h() + log 4

η()
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

f .;θ()

Tony Jebara, Columbia University

VC Dimension & Shattering
• How to compute h or VC for a family of functions
 h = # of training points that can be shattered
• Recall, classifier maps input to output

• Shattering: I pick h points & place them at
 You challenge me with 2h possible labelings
 VC dimension is maximum # of points I can place which
 a can correctly classify for arbitrary labeling
• Example: for 2d linear classifier h=3

 can’t ever shatter 4 points! or 3 points on a straight line…

f .;θ()

f x;θ()→ y ∈ −1,1{ }

 x1
,…,x

h

y

1
,…,y

h
∈ ±1{ }h

 y1
,…,y

h
f x;θ()

f x;θ() = x

1
θ

1
+ x

2
θ

2
+ θ

0

Tony Jebara, Columbia University

VC Dimension & Shattering
• More generally for higher dimensional linear classifiers,
 a hyperplane in shatters any set of linearly independent
 points. Can choose d+1 linearly indep. points so h=d+1

• Note: VC is not necessarily proportional to # of parameters
• Example: sinusoidal 1d classifier
 number of parameters=1
 …but… h=infinity!

 since I can choose:
 no matter what labeling you challenge:
 using shatters perfectly

f x;θ() = sign sin θx()()

 xi
= 10−i i = 1,…,h

y

1
,…,y

h
∈ ±1{ }h

θ = π 1 + 1

2
1−y

i()10−i
i=1

h∑()
But, as a side note, if I
choose 4 equally spaced
x’s then cannot shatter

Tony Jebara, Columbia University

VC Dimension & Shattering
• Recall that VC dimension gives an upper bound
• We want to minimize h since that minimizes C(θ) & J(θ)
• If can’t compute h exactly but can compute h+ can
 plug in h+ in bound & still guarantee
• Also, sometimes bound is trivial
• Need h/N = 0.3 before C(θ)<1 (recall R(θ) in [0,1])

• Note: h = low ⇒ good performance h =∞ ⇒ poor performance

Tony Jebara, Columbia University

Nearest Neighbors & VC
• Consider Nearest Neighbors classification algorithm:

 Input a query example x
 Find training example xi in {x1,…xN} closest to x
 Predict label for x as yi of neighbor

• Often use Euclidean distance to measure closeness
• Nearest neighbors shatters any set of points!
• So VC=infinity, C(θ)=infinity, guaranteed risk=infinity
• But still works well in practice

 h =∞ ⇒ poor performance h = low ⇒ good performance

x −x

i

Tony Jebara, Columbia University

• Linear classifiers are too big a function class since h=d+1
• Can reduce VC dimension if we restrict them
• Constrain linear classifiers to data living inside a sphere
• Gap-Tolerant classifiers: a linear classifier whose activity
 is constrained to a sphere & outside a margin

• If M is small relative to D, can still shatter 3 points:

VC Dimension & Large Margins

M

D
M=margin
D=diameter
d=dimensionality

Only count errors
in shaded region
Elsewhere have
L(x,y,θ)=0

Tony Jebara, Columbia University

VC Dimension & Large Margins
• But, as M grows relative to D, can only shatter 2 points!

• For hyperplanes, as M grows vs. D, shatter fewer points!
• VC dimension h goes down if gap-tolerant classifier has
 larger margin, general formula is:

• Before, just had h=d+1. Now we have a smaller h
• If data is anywhere, D is infinite and back to h=d+1
• Typically real data is bounded (by sphere), D is fixed
• Maximizing M reduces h, improving guaranteed risk J(θ)
• Note: R(θ) doesn’t count errors in margin or outside sphere

Can’t shatter 3

Can shatter 2

h ≤ min ceil

D2

M 2

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
,d

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

+1

Tony Jebara, Columbia University

Structural Risk Minimization
• Structural Risk Minimization: minimize risk bound J(θ)
 reducing empirical error & reduce VC dimension h

 for each model i in list of hypothesis
 1) compute its h=hi

 2)
 3) compute
 choose model with lowest

• Or, directly optimize over both
• If possible, min empirical error while also minimizing VC
• For gap-tolerant linear classifiers, minimize Remp(θ) while
 maximizing margin, support vector machines do just that!

θ* = arg min

θ
R

emp
θ()

J θ*,h

i()

J θ*,h

i()

θ*,h() = arg min

θ,h
J θ,h()

h1 h2 h3

Space of different
Classifiers or
Hypotheses

R θ()≤ J θ() = R
emp
θ() +

2h log 2eN
h() + 2 log 4

η()
N

1 + 1 +
NR

emp
θ()

h log 2eN
h() + log 4

η()
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

Tony Jebara, Columbia University

Support Vector Machines
• Support vector machines are (in the simplest case)
 linear classifiers that do structural risk minimization (SRM)
• Directly maximize margin to reduce guaranteed risk J(θ)
• Assume first the 2-class data is linearly separable:

• Decision boundary or hyperplane given by
• Note: can scale w & b while keeping same boundary
• Many solutions exist which have empirical error Remp(θ)=0
• Want widest or thickest one (max margin), also it’s unique!

have x

1
,y

1(),…, x
N
,y

N(){ } where x
i
∈ D and y

i
∈ −1,1{ }

f x;θ() = sign wTx +b()

 w
Tx +b = 0

 ⇒

Tony Jebara, Columbia University

Side Note: Constraints
• How to minimize a function subject to equality constraints?

• Only walk on x1=2x2 or… x1-2x2=0…
• Use Lagrange Multipliers, for each constraint, subtract it
 times a lambda variable. Lambda blows up the
 minimization if we don’t satisfy the constraint:

min
x1 ,x2

f

x() = min

x1 ,x2
b

1
x

1
+b

2
x

2
+ 1

2
H

11
x

1
2 + H

12
x

1
x

2
+ 1

2
H

22
x

2
2

= min 
x


bT x + 1

2


xTH

x

⇒
∂f
∂

x

=

b + H


x = 0

⇒

x = −H −1b

min
x1 ,x2

max
λ
f

x()−λ equalitycondition = 0()

= min
x1 ,x2

max
λ
b

1
x

1
+b

2
x

2
+ 1

2
H

11
x

1
2 + H

12
x

1
x

2
+ 1

2
H

22
x

2
2 −λ x

1
− 2x

2()

Tony Jebara, Columbia University

Side Note: Constraints
• Cost minimization with equality constraints:
 1) Subtract each constraint times an extra variable
 (a Lagrange multiplier λ, like an adversary variable)
 2) Take partials with respect to x and set to zero
 3) Plug solution into constraint to find lambda

min 
x
max

λ
f

x()−λ equalitycondition = 0()

= min 
x

max
λ
bT x + 1

2


xTH

x −λ x

1
− 2x

2()
⇒
∂f
∂

x

=

b + H


x −λ 1

−2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = 0 ⇒


x = H −1λ 1

−2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −H −1b

⇒ H −1λ 1
−2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −H −1b

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

T

1
−2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = 0 ⇒ λ =

bT H−1 1
−2

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

1
−2

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

T

H−1 1
−2

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

x

1
− 2x

2
=

xT 1
−2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Tony Jebara, Columbia University

Support Vector Machines
• Define: w

Tx +b = 0

H+=positive margin hyperplane
H- =negative margin hyperplane
q =distance from decision plane to origin

q = min

x


x −

0 subject to wTx +b = 0

min

x
1
2


x −

0

2
−λ wTx +b()

∂
∂x

1
2
xTx −λ wTx +b()() = 0

x −λw = 0
x = λw

2) plug into
constraint

wTx +b = 0

wT λw() +b = 0

λ = − b
wTw

1) grad

3) Sol’n

x̂ = − b

wTw()w
4) distance

q = x̂ −

0 = − b

wTw
w =

b

wTw
wTw =

b

w
5) Define without
 loss of generality
 since can scale b & w

H → wTx +b = 0

 H+
→ wTx +b = +1

 H− → wTx +b = −1

Tony Jebara, Columbia University

Support Vector Machines
• The constraints on the SVM
 for Remp(θ)=0 are thus:

• Or more simply:
• The margin of the SVM is:

• Distance to origin:

• Therefore: and margin

• Want to max margin, or equivalently minimize:
• SVM Problem:
• This is a quadratic program!
• Can plug this into a matlab function called “qp()”, done!

 H+
→ wTx +b = +1

 H− → wTx +b = −1

 w
Tx

i
+b ≥+1 ∀y

i
= +1

 w
Tx

i
+b ≤−1 ∀y

i
= −1

y

i
wTx

i
+b()−1≥ 0

 m = d
+

+d
−

H → q =

b

w
H

+
→ q

+
=

b−1

w
H
−
→ q

−
=

−1−b

w

d

+
= d

−
= 1

w

m =
2

w

w or w

2

min 1

2
w

2
subject to y

i
wTx

i
+b()−1≥ 0

Tony Jebara, Columbia University

• A hierarchy of Matlab optimization packages to use:

Linear Programming
<Quadratic Programming
 <Quadratically Constrained Quadratic Programming
 <Semidefinite Programming
 <Convex Programming
 <Polynomial Time Algorithms

Side Note: Optimization Tools

P CP SDP QCQP QP LP

 min 
x


bT x s.t.


c

i
T x ≥ α

i
∀i

 min 
x

1
2


xTH

x +

bT x s.t.


c

i
T x ≥ α

i
∀i

Tony Jebara, Columbia University

• Each data point
 adds
 linear inequality to QP
• Each point cuts a half
 plane of allowable SVMs
 and reduces green region
• The SVM is closest point
 to the origin that is still
 in the green region
• The preceptron algorithm just
 puts us randomly in green region
• QP runs in cubic polynomial time
• There are D values in the w vector
• Needs O(D3) run time… But, there is a DUAL SVM in O(N3)!

Side Note: Optimization Tools

1
2
wTw

y

i
wTx

i
+b()−1≥ 0

Tony Jebara, Columbia University

SVM in Dual Form
• We can also solve the problem via convex duality
• Primal SVM problem LP:
• This is a quadratic program, quadratic cost
 function with multiple linear inequalities
 (these carve out a convex hull)
• Subtract from cost each inequality times an α 	

 Lagrange multiplier, take derivatives of w & b:

• Plug back in, dual:
• Also have constraints:
• Above LD must be maximized! convex duality… also qp()

min 1

2
w

2
subject to y

i
wTx

i
+b()−1≥ 0

L

P
= min

w,b
max

α≥0
1
2

w
2
− α

i
y

i
wTx

i
+b()−1()i∑

∂
∂w

L
P

= w− α
i
y

i
x

i
= 0 →

i∑ w = α
i
y

i
x

ii∑

∂
∂b

L
P

=− α
i
y

i
= 0

i∑

L

D
= α

ii∑ − 1
2

α
i
α

j
y

i
y

j
x

i
Tx

jj∑i∑

α

i
y

i
= 0

i∑ & α
i
≥ 0

