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Topic 19

eHidden Markov Models

*HMMs as State Machines & Applications
*HMMs Basic Operations

*HMMs via the Junction Tree Algorithm
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Hidden Markov Models

oA great application of Junction Tree Algorithm and EM
eRecall mixture of Gaussians model on IID data
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eExample: location data of a single parent
as a mixture of Gaussians
eParent has 3 internal states:
g={home,daycare,work}
eBased on g, sample from appropriate
Gaussian mean and covariance to get
y=(latitude,longitude)
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Hidden Markov Models

eParent drops child at daycare before & after work. Not IID!

@ @ @ @ @ g={1=home,2=daycare,3=work}
W) W ) @) O

0.8 02 0 |g¢,=1
plg,le,,)=] 01 08 0.1 |4 =
0 02 0.8 |q, -3
q, =1

qt:2 qt=3

eHave dependence on previous state
eCan’t go straight from home to work!
eNow, order of y,,...,y; matters (in IID order doesn’t matter)



Tony Jebara, Columbia University

Hidden Markov Models

eConsider mixture of multinomials (dice) y={1,2,3,4,5 6}
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eExample: a crooked casino croupier using mlxture of dice.
eYou win if he rolls 1,2,3. You lose he rolls 4,5,6.

eCroupier has 3 internal states g={helpful,fair,adversarial }
eBased on g, sample different ‘dice’ multinomial

1=helpful 2=fair 3=adversarial
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Hidden Markov Models

eBut if the dealer has a memory or mood? Not IID!
5646166166 4321534161414341634 1113114121
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@ @ @ @ @ g={1=helpful,2=fair,3=adversarial}

y={11213141516}
1

0.8 0.1 0.1 |s,
p(g,1q,,)=| 01 08 01 |a.
01 0.1 08 o,

qt:1 qt:2 qt:3

oIf you tip, dealer starts to like you and rolls the helpful die
eDealer has a memory of his mood and last type of die g,
o\Will often use same die for gtas was rolled before...

eNow, order of y,,...,y; matters (if IID order doesn’t matter)
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Hidden Markov Models

eSince next choice of the dice depends on previous one...

@ @ @ @ @ Order of y,...,yr matters
@ @ @ @ @ Temporal or sequence model!

eAdd left-right arrows. This is a hidden Markov model
eMarkov: future || past | present

p(qt | qt_l,qt_Q,---,ql,qO) = p(qt g,
eFrom graph, have the following general pdf:
T T
p(X,)=p(q,) 1 _Ple e )1 »lq)
*S0 p(qt) depends on prewous state O-1 -
|qt1_1 |qt1_2 |qt1_
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HMMs as State Machines

*HMMs have two variables: state g and emission y
eTypically, we don’t know g (hidden variable 1,2,3,?)
*HMMs are like stochastic
automata or finite state
machines...
next state depends
on previous one...
(helpful, fair, adversarial)

eCan’t observe state g
directly, just a random
related emission y outcome
(dice roll) so...
doubly-stochastic
automaton
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HMM Applications

eSpeech Recognition (@>@)>@ Ba-ra-kk-0o-oo- ddah
phonemes from oRoRON - i ||

audio cepstral vectors

eLanguage Parsing @)@ @ Noun Verb Noun

parts of speech ¥) (%) () John Ate Pizza

from words

e(Genomics

splice site from @) X2)>%) -Intron-|-Exon-|-Promoter-
(%) (%) () GATTACATTATACCACCATACG

gene sequence
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HMMs: Parameters

e\We focus on HMMs with: discrete state q (of size M)
discrete emission y (of size N)

eInput will be arbitrary length string: y,,...,Y+
eThe pdf or (complete) likelihood is:

p(ey)=p(q,) 1 Ple e )1 plq)

e\We don't know hidden states, the incomplete likelihood is:

p(y)zz%---z%p(q,y)

eAssume HMM is stationary, tables are repeated: 6 = {ﬁ,n,u}

p(qt | qt_1> = Hﬁlnj{l[%jriﬂf Zjilo%j =1 Mx M

N

p(y,1q,)= Hj‘ijj.v_l[nzjriyf Y, =1 M x N

p(a,) =TT = > =1 M
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HMMs: Basic Operations

e\Would like to do 3 basic things with our HMMs:
1) Evaluate: given y,,...,y; & 6 compute p(yy,...,Y1)

2) Decode: given y,,...,y+ & 0 find qg,...,q; or p(qp),.--,P(dt)
3) Max Likelihood: given y,,...,yr learn parameters 6

oTyplcaIIy use Baum Welch (- algo) JTA is more general

wwwww @@
quO qul qlq2 quqT

HMMs easily get s(a Q(& 4%
Junction Tree

w(ql,yl) w(q2,y2) w(qT,yT)
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HMMs: JTA Init & Verify

oInit: v(g,u)=r(q,)r(y, 1q,) V(g.9..)=r(a Hl!qt)zocq“qmw(qt,yt)=p(yt\qt)

1P<q0,y0 U qovq1) | 9,4, T qT ¢<q§::11
) el i ofa)=1
ot b
P ﬁ(%,%) P

(49 (4,9, )
*Collect up (this time it actually doesn’t change the zetas)

Cla)=22, blasy) =2, ply, 1e) =1 (g, .0 ):—m( q,)="(q, »q,)

oCollect /eft-right via phi’s: change backbone to marginals

d)* (qo) - Zyo 1p(qo’yo) — p(qo) lb (C]O ql) © w(qo q1) p(qoaql)
o'(a)=32, v'l4 na)=rla) (g, ,0,) = p(q1 (g, 1,.,) = p(4, 0,
eDistribute:  <"(q,) = > (g, pa,) =", pla, g,

(9.0) = r(a)

O g00,) = S0(g,9,) = 1y " | =p(y,9,) ...done!



