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Topic 17

eTriangulation Examples
eRunning Intersection Property
eBuilding a Junction Tree

eThe Junction Tree Algorithm
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Triangulation Examples

oCycle: A closed (simple) path, with no repeated vertices
other than the starting and ending vertices

eChordless Cycle: a cycle where no two non-adjacent
vertices on the cycle are joined by an edge.
eTriangulated Graph: a graph that contains no chordless
cycle of four or more vertices (aka a Chordal Graph).
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Triangulation Examples
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Triangulation Examples
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Triangulation Examples
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Triangulation Examples
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Triangulation Examples
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Triangulation Examples
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Triangulation Examples
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Running Intersection Property

oJunction Tree must satisfy Running Intersection Property
eRIP: On unique path connecting clique V to clique W all
other cliques share nodes in VnNW

ABD ABD
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Running Intersection Property

oJunction Tree must satisfy Running Intersection Property
eRIP: On unique path connecting clique V to clique W all
other cliques share nodes in VnNW
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HINT: Junction on path!
Tree has largest
total separator  |¢|= ‘¢(B, D)‘ T ‘d)(C,D)‘ 2| = ‘d)(C,D)‘ T ‘d)(D)‘

cardinality 949 94
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Forming the Junction Tree

eGoal: connect k cliques into a tree... kk2 possibilities!

eFor each, check Running Intersection Property, too slow...

eTheorem: a valid (RIP) Junction Tree connection is one
that maximizes the cardinality of the separators

*
JT = arg MaX oy srrucTURES ‘(I)‘

— G IMAX 1y pp sTRUCTURES Zs ‘d) (X S )‘
eUse very fast Kruskal algorithm:

1) Init Tree with all cligues unconnected (no edges)

2) Compute size of separators between all pairs

3) Connect the two cliques with the biggest separator
cardinality which doesn't create a loop
in current Tree (maintains Tree structure)

4) Stop when all nodes are connected, else goto 3
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Kruskal Example

eStart with unconnected cliques (after triangulation)

ACD | BDE | CDF | DEH DFGH FGHI
ACD - 1 2 1 1 0
BDE - 1 2 1 0
CDF - 1 2 1
DEH 2 1
DFGH 3
FGHI =
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Junction Tree Probabilities

o\We now have a valid Junction Tree!
e\What does that mean?
eRecall probability for undirected graphs:
p(XS): p(xl,...,:cM) = %Hoﬂ)(Xj
eCan write junction tree as potentials of its cliques:

p(0)=TLo(x) |
eAlternatively: clique potentials over separator potentials:

X
p(X) _ l.._.oq“)( 0)
Z [T 0(%,)
eThis doesn’t change/do anything! Just less compact...

oLike de-absorbing smaller cliques from maximal cliques:

$(4B.D) . “vignal o(B.D) 21
¢(B,D) formula if

fb(A,B,D) —
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Junction Tree Probabilities

eCan quickly converted )directed graph into this form:
1% X

. (X) _ % p<331 x2>p (?l TQ)p (5’74 | 5133) j:u:s-li!ncs&e;:'it-i:al‘ls,t:a:
s as clique an
1 1P($17$2)1\) 332>$3)1b(x3,x4) separator ’
— E . (x ol ) potential functions
2 3
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Junction Tree Algorithm

sRunning the JTA converts clique 4(4.B,D) = »(4.B.D)

potentials & separator potentials d>(B, D) — p| B, D)

into marginals over their variables  (B,c, D) — p(B,C,D)

... and does not change p(X)
eDon’t want just normalization!

(4, B, D)
ZA,B,D v (A’ B, D)
eThese marginals should all agree & be consistent

w(A,B,D - p(A,B,D) 5 ZAp(A,B,D) - ~(B,D) e ALL

4(B,D) — p(B,D) — p(B,D) o EQUAL
b(B,C,D)— p(B,C,D)  — " p(B,C.D)=p(B,D)"
eConsistency: all distributions agree on submarginals
*JTA sends messages between cliques & separators dividing
each by the others marginals until consistency...

= p(A,B,D)
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Junction Tree Algorithm

eSend message from each clique to its separators of
what it thinks the submarginal on the separator is.

eNormalize each cliqgue by incoming message
from its separators so it agrees with them

CAB ) (51 CBCD v-{an} s-{s} w-{nc}

If agree: ZV\SmpV = ¢, = p(S) = ¢, = ZW\SlpW ...Done!

Else: Send message Send message Now they

FromVtoW... FromWto V... Agree...Done!

3 sk % *k o ﬁ *
d)s - Zv\s wv (1)5 — Zw\s ww ZV\S lL)V B ZV\S o qJ)V

Y b b .
Py = 2, P, =0, =53

* * V\§ TV
o} b o \

Py, =V, Py, = by, = ¢y = ZW\SwW
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Junction Tree Algorithm

eWhen "Done”, all clique potentials are marginals and
all separator potentials are submarginals!
eNote that p(X) is unchanged by message passing step:

oy =3 0, B
: * S
: ’ p(X):L—wVwW :;wv‘bsww :vall)w
v, =, Z (l)i; Z d)i; Z o,
ePotentials set to conditionals (or slices) become marginals!

v, =pBlA|plA *
= p A,B)) . — d)BZZ;AWBZZAP(A’B):p(B)
leC:pC'\B) — 1‘)j;od)S\\)BOp(lB)p<C|B>p(B’C>

¢, =1 i



