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Topic 16 
• Undirected Graphs 

• Undirected Separation 

• Inferring Marginals & Conditionals 

• Moralization 

• Junction Trees 

• Triangulation 
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Undirected Graphs 
• Separation is much easier for undirected graphs 
• But, what are undirected graphs and why use them? 
• Might be hard to call vars parent/child or cause/effect 

• Example: Image pixels 
• Each pixel is Bernoulli = {0,1} 
• Where 0=dark, 1=bright 

• Have probability over all pixels 
• Bright pixels have Bright neighbors 
• Nearby pixels dependent, so connect with links 
• Get a graphical model that looks like a grid 
• But who is parent? No parents really, just probability 
• Grid models are called Markov Random Fields 
• Used in vision, physics (lattice, spin, or Ising models), etc. 
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Undirected Graphs 
• Undirected & directed not subsets, 
• Chain Graphs are a superset… 
• Some distributions behave 
  as undirected graphs, some 
  as directed, some as both 
• Undirected graphs use the standard definition of separation: 

       an undirected graph says that 
  satisfies any statement  
  if no paths can go from XA to XB 

  unless they go through XC 

• Thus, undirected graphs obey the general Markov property 
• Recall the simple Markov property 
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Hammersley Clifford Theorem 
Theorem[HC]: any distribution that obeys the Markov property 

can be written as a product of terms over all maximal cliques  

Clique: a subset of nodes that are all pair-wise adjacent 
Maximal clique: cannot add more variables and still be a clique 
 Each c is a maximal clique of variables     in the graph  
 C is the set of all maximal cliques 
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• Probability for undirected factorizes as a product of small  
  non-negative Potential Functions over cliques in the graph 

• Normalizing term             makes p(X) sum to 1 
• Potentials ψ are non-negative un-normalized functions 
  over cliques (subgroups of fully inter-connected variables) 

• Use only maximal cliques since small ψ absorb into larger ψ

Undirected Graph Functions 

    
p X( ) = p x

1
,…,x

M( ) = 1
Z

ψ
c

X
c( )c∈C∏

  
Z = ψ

c
X

c( )c∈C∏X∑

   
p X( ) = 1

Z
ψ x

1
,x

2( )ψ x
2
,x

3( )ψ x
3
,x

4
,x

5( )ψ x
4
,x

5
,x

6( )

   
ψ x

2
,x

3( )ψ x
2( )→ ψ x

2
,x

3( ) = 1 2
5 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



Tony Jebara, Columbia University 

Undirected Separation Examples 
• Example: 

• Example: 

    
x ! y | w,z{ }
    
w ! z | x,y{ }

Directed can’t do it! 
Must be acyclic 
Will have at least one 
V structure and ball 
goes through 

    
x ! y | w{ }
x     

x ! y | w,z{ }
Undirected can’t do it! 

  x ! z

   x ! z | yx   x ! z

   x ! z | y
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• Classic logic network: nodes are binary 
• Arrows represent AND, OR, XOR, NAND, NOR, NOT etc. 
• Inference: given observed binary variables, predict others 

• Problems: uncertainty, conflicts and inconsistency 
• Could get x3=T and x3=F following two different paths 
• We need a way to enforce consistency and combine 
  conflicting statements via probabilities and Bayes rule! 

Logical Inference 
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• Replace logic network with Bayesian network 
• Tables represent AND, OR, XOR, NAND, NOR, NOT etc. 
• Probabilistic Inference:  given observed binary variables, 
    predict marginals over others 

• Can also have soft versions 
    of the functions 

Probabilistic Inference 
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• Two types of inference with a probability distribution: 

• Marginal Inference: 

or… 

• Maximum a posteriori (MAP) inference: 

       …for now we focus on marginal inference 

Probabilistic Inference 
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• Marginal inference problem: given graph and probability 
  function                          for any subsets of variables 
  find 

• So, we basically compute both marginals and divide 
• But finding marginals can take exponential work! 
• A problem for both directed & undirected graphs: 

• Graphs gave efficient storage, learning, Bayes Ball… 
• Graphs can also be used to perform efficient inference! 
• Junction Tree Algorithm: method to efficiently find marginals 

Traditional Marginal Inference 
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Traditional Marginal Inference 
• Example: brute force inference on a directed graph… 
• Given a directed graph structure & filled-in CPTs 
• We would like to efficiently compute arbitrary marginals 
• Or we would like to compute arbitrary conditionals 

• For example, we may have some evidence, i.e. x6=TRUE 

• This is tedious & does not exploit the graph’s efficiency 
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Efficient Marginals & Inference 
• Another idea is to use some efficient graph algorithm 
• Try sending messages (small tables) around the graph 

• Hopefully these somehow settle down and equal marginals 

• AND marginals are self-consistent 
• Note: can’t just return conditionals 
    since they can be inconsistent 
• Junction Tree Algorithm must find consistent marginals 
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• An algorithm that achieves fast inference, by doing 
  message passing on undirected graphs. 
• We first convert a directed graph to an undirected one 

• Then apply the efficient Junction Tree Algorithm: 
   1) Moralization 
   2) Introduce Evidence 
   3) Triangulate 
   4) Construct Junction Tree 
   5) Propagate Probabilities (Junction Tree Algorithm) 

Junction Tree Algorithm 

 →
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Moralization 
• Converts directed graph into undirected graph 
• By moralization, marrying the parents: 
   1) Connect nodes that have common children 
   2) Drop the arrow heads to get undirected 

• Note: moralization resolves coupling due to marginalizing 
• moral graph is more general (loses some independencies) 

 →
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Moralization 
• More examples: 

• More general graph less efficient but same inference: 
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Introducing Evidence 
• Given moral graph, note what is observed 

• If we know this is always observed at              , simplify… 
• Reduce the probability function since those XE fixed 
• Only keep probability function over remaining nodes XF 
• Only get marginals and conditionals with subsets of XF 
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Introducing Evidence 
• Recall undirected separation, observing XE separates others 

• But, need to recompute new normalization … 

• Just avoid Z & normalize at the end when we are querying 
   individual marginals and conditionals as subsets of XF 
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Junction Trees 
• Given moral graph want to build Junction Tree: 
 each node is a clique (ψ) of variables in moral graph 
 edges connect cliques of the potential functions  
 unique path between nodes & root node (tree) 
 between adjacent clique nodes, create separators (φ) 
 separator nodes contain intersection of variables 
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• Problem: imagine the following undirected graph 

• Not a Tree! 
• To ensure Junction Tree is a tree (no loops, etc.)  
    before forming it must first Triangulate moral graph 
    before finding the cliques… 
• Triangulating gives more general graph (like moralization) 
• Adds links to get rid of cycles or loops 
• Triangulation: Connect nodes in moral graph until 
  no chordless cycle of 4 or more nodes remains in the graph 

Triangulation 
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Triangulation 
• Triangulation: Connect nodes in moral graph such that 
    no cycle of 4 or more nodes remains in graph 

• So, add links, but many possible choices… 
• HINT: Try to keep largest clique size small 
    (makes junction tree algorithm more efficient) 
• Sub-optimal triangulations of moral graph are Polynomial 
• Triangulation that minimizes largest clique size is NP 
• But, OK to use a suboptimal triangulation (slower JTA…) 

1-cycle 
OK 

2-cycle 
OK 

3-cycle 
OK 

4-cycle 
BAD 

5-cycle 
BAD 
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Triangulation 
• Triangulation: Connect nodes in moral graph such that 
    no cycle of 4 or more nodes remains in graph 

• So, add links, but many possible choices… 
• HINT: Try to keep largest clique size small 
    (makes junction tree algorithm more efficient) 
• Sub-optimal triangulations of moral graph are Polynomial 
• Triangulation that minimizes largest clique size is NP 
• But, OK to use a suboptimal triangulation (slower JTA…) 

1-cycle 
OK 

2-cycle 
OK 

3-cycle 
OK 

3-cycle 
OK 

3-cycle 
OK 


