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Topic 14 
• Structuring Probability Functions for Storage 

• Structuring Probability Functions for Inference 

• Basic Graphical Models 

• Graphical Models 

• Parameters as Nodes 
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Structuring PDFs for Storage 
• Probability tables quickly grow if p has many variables 

• For D true/false “medical” variables 

• Exponential blow-up of storage size for the probability 
• Example: 8x8 binary images of digits 
• If multinomial with M choices, probabilities are how big? 

• As in Naïve Bayes or Multivariate Bernoulli, if words 
  were independent things are much more efficient 

• For D true/false “medical” variables 
   (really even less than that…) 

   
p(x) = p flu ?,headache ?,...,temperature ?( )

   table size = 2D

0.73 0.27 
   
p(x) = p flu ?( )p headache ?( )...p temperature ?( )

   table size = 2×D

0.2 0.8 0.54 0.46 
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Structuring PDFs for Inference 
• Inference: goal is to predict some variables given others 
  x1: flu 
  x2: fever 
  x3: sinus infection   Patient claims headache 
  x4: temperature   and high temperature. 
  x5: sinus swelling   Does he have a flu? 
  x6: headache 

  Given findings variables Xf and unknown variables Xu  
  predict queried variables Xq 

• Classical approach: truth tables (slow) or logic networks 

• Modern approach: probability tables (slow) or Bayesian 
networks (fast belief propagation, junction tree algorithm)  
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From Logic Nets to Bayes Nets 
• 1980’s expert systems & logic networks became popular 

• Problem: inconsistency, 2 paths can give different answers 

• Problem: rules are hard, instead use soft probability tables 

x3 = x1 ^ x2   p(x3|x1,x2) 

• These directed graphs are called Bayesian Networks 
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Graphical Models & Bayes Nets 
• Independence assumptions make probability tables smaller 
• But real events in the world not completely independent! 
• Complete independence is unrealistic… 

• Graphical models use a 
  graph to describe more 
  subtle dependencies 
  and independencies: 

  …namely: conditional 
     independencies 
 (like causality but not exactly…) 
• Directed Graphical Model, also called Bayesian Network 
  use a directed acylic graph (DAG). 
• Neural Network = Graphical Function Representation 
• Bayesian Network = Graphical Probability Representation 
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Graphical Models & Bayes Nets 
• Node: a random variable (discrete or continuous) 

• Independent: no link 

• Dependent: link 

• Arrow: from parent to child (like causality, not exactly) 
• Child: destination of arrow, response 
• Parent: root of arrow, trigger 

• Graph: dependence/independence 
• Graph: shows factorization of joint 
    joint = products of conditionals 

• DAG: directed acyclic graph 

   p(x,y) = p(x)p(y)

   p(x,y) = p(y | x)p(x)

  parentsof child i = pa
i

= π
i

    
p x

1
,…,x

n( ) = p x
i
| pa

i( )i=1

n∏ = p x
i
| π

i( )i=1

n∏ x 
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Basic Graphical Models 
• Independence: all nodes are unlinked 

• Shading: variable is ‘observed’, condition on it 
     moves to the right of the bar in the pdf 

• Examples of simplest conditional independence situations… 

1) Markov chain: 
    
p x

1
,…,x

n( ) = p x
i
| pa

i( )i=1

n∏ = p x
i
| π

i( )i=1

n∏

   
p x,y,z( ) = p x( )p y | x( )p z | y( )

Example binary events: 
x = president says war 
y = general orders attack 
z = soldier shoots gun 

   

p x | y,z( ) =
p x,y,z( )
p y,z( )

= p x | y( )
   x  z | y
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Basic Graphical Models 
2) 1 Cause, 2 effects: 

3) 2 Causes, 1 effect: 

• Each conditional is a mini-table 
 (Multinomial or Bernoulli conditioned on parents) 

y = flu 
x = sore throat 
z = temperature 

x = rain 
y = wet driveway 
z = car oil leak 

Explaining away… 

   
p x,y,z( ) = p y( )p x | y( )p z | y( )

   
p x,y,z( ) = p x( )p z( )p y | x,z( )

   x  z | y

   x  z | y  x  z x 
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Basic Graphical Models 
2) 1 Cause, 2 effects: 

3) 2 Causes, 1 effect: 

• Each conditional is a mini-table 
 (Multinomial or Bernoulli conditioned on parents) 

y = flu 
x = sore throat 
z = temperature 

   
p x,y,z( ) = p y( )p x | y( )p z | y( )

   
p x,y,z( ) = p x( )p z( )p y | x,z( )

   x  z | y

   x  z | y  x  z x 

x = dad is diabetic 
y = child is diabetic 
z = mom is diabetic 

Explaining away… 



Tony Jebara, Columbia University 

• Example: factorization of the following system of variables 

Graphical Models 

    
p x

1
,…,x

n( ) = p x
i
| pa

i( )i=1

n∏ = p x
i
| π

i( )i=1

n∏

    
p x

1
,…,x

6( ) = p x
1( )…
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• Example: factorization of the following system of variables 

• How big are these tables (if binary variables)? 

Graphical Models 

    
p x

1
,…,x

n( ) = p x
i
| pa

i( )i=1

n∏ = p x
i
| π

i( )i=1

n∏

    

p x
1
,…,x

6( ) = p x
1( )…

= p x
1( )p x

2
| x

1( )…
= p x

1( )p x
2
| x

1( )p x
3
| x

1( )…
= p x

1( )p x
2
| x

1( )p x
3
| x

1( )p x
4
| x

2( )…
= p x

1( )p x
2
| x

1( )p x
3
| x

1( )p x
4
| x

2( )p x
5
| x

3( )…
= p x

1( )p x
2
| x

1( )p x
3
| x

1( )p x
4
| x

2( )p x
5
| x

3( )p x
6
| x

2
,x

5( )
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Graphical Models 
• Example: factorization of the following system of variables 

• How big are these tables (if binary variables)? 

    
p x

1
,…,x

n( ) = p x
i
| pa

i( )i=1

n∏ = p x
i
| π

i( )i=1

n∏

    

p x
1
,…,x

6( ) = p x
1( )…

= p x
1( )p x

2
| x

1( )…
= p x

1( )p x
2
| x

1( )p x
3
| x

1( )…
= p x

1( )p x
2
| x

1( )p x
3
| x

1( )p x
4
| x

2( )…
= p x

1( )p x
2
| x

1( )p x
3
| x

1( )p x
4
| x

2( )p x
5
| x

3( )…
= p x

1( )p x
2
| x

1( )p x
3
| x

1( )p x
4
| x

2( )p x
5
| x

3( )p x
6
| x

2
,x

5( )
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Graphical Models 
• Example: factorization of the following system of variables 

• Interpretation??? 
    
p x

1
,…,x

n( ) = p x
i
| pa

i( )i=1

n∏ = p x
i
| π

i( )i=1

n∏

    
p x

1
,…,x

6( ) = p x
1( )p x

2
| x

1( )p x
3
| x

1( )p x
4
| x

2( )p x
5
| x

3( )p x
6
| x

2
,x

5( )
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Graphical Models 
• Example: factorization of the following system of variables 

• Interpretation: 
  1: flu 
  2: fever 
  3: sinus infection 
  4: temperature 
  5: sinus swelling 
  6: headache 

    
p x

1
,…,x

n( ) = p x
i
| pa

i( )i=1

n∏ = p x
i
| π

i( )i=1

n∏

    
p x

1
,…,x

6( ) = p x
1( )p x

2
| x

1( )p x
3
| x

1( )p x
4
| x

2( )p x
5
| x

3( )p x
6
| x

2
,x

5( )
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Graphical Models 
• Normalizing probability tables. Joint distributions sum to 1.  
• BUT, conditionals sum to 1 for each setting of parents. 

  p(x)   2-1 

     
  p(x,y)  4-1          p(x|y)   4-2 
  

  p(x,y,z)  8-1     p(x|y,z)  8-4   

   
p x( ) = 1

x=0

1∑

   
p x,y( ) = 1

x ,y∑

   
p x,y,z( )x ,y,z∑ = 1

   
p x | y = 0( ) = 1

x∑
   

p x | y = 1( ) = 1
x∑

   
p x | y = 0,z = 0( ) = 1

x∑
   

p x | y = 1,z = 0( ) = 1
x∑

   
p x | y = 0,z = 1( ) = 1

x∑
   

p x | y = 1,z = 1( ) = 1
x∑

x=0 x=1 

y=
0 

y=
1 



Tony Jebara, Columbia University 

Graphical Models 
• Example: factorization of the following system of variables 

• Interpretation 
  1: flu 
  2: fever 
  3: sinus infection 
  4: temperature 
  5: sinus swelling 
  6: headache 

             vs.          degrees of freedom 

    
p x

1
,…,x

n( ) = p x
i
| pa

i( )i=1

n∏ = p x
i
| π

i( )i=1

n∏

    
p x

1
,…,x

6( ) = p x
1( )p x

2
| x

1( )p x
3
| x

1( )p x
4
| x

2( )p x
5
| x

3( )p x
6
| x

2
,x

5( )
  2

6 −1   2
1 −1   2

2 − 2   2
3 − 4  2

2 − 2   2
2 − 2   2

2 − 2

 63  13
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Parameters as Nodes 
• Consider the model variable θ ALSO as a random variable 

• But would need a prior distribution P(θ)… ignore for now 

• Recall: Naïve Bayes, word probabilities are independent 

• Text: Multivariate Bernoulli 

• Text: Multinomial 

    
p X |


α( ) =

Xmm=1

M∑⎛⎝⎜⎜⎜
⎞
⎠
⎟⎟⎟⎟!

Xmm=1

M∏ !
α

m

Xm

m=1

M∏

    
p x |


α( ) = α

d

xd 1−α
d( ) 1−xd( )

d=1

50000∏
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Continuous Conditional Models 
• In previous slide, θ and α were a random variable in graph 
• But, θ and α are continuous 
• Network can have both discrete & continuous nodes 

• Joint factorizes into conditionals that are either: 
   1) discrete conditional probability tables 
   2) continuous conditional probability distributions 

• Most popular continuous distribution = Gaussian 
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Graphical Models 
• In EM, we saw how to handle nodes that are: observed 
(shaded), hidden variables (E), parameters (M) 
• But, only considered simple iid, single parent, structures 
• More generally, have arbitrary DAG without loops 
• Notation: 

• Want to do 4 things with these graphical models: 
 1) Learn Parameters (to fit to data) 
 2) Query independence/dependence 
 3) Perform Inference (get marginals/max a posteriori) 
 4) Compute Likelihood (e.g. for classification) 

    
G = X,E{ } = nodes/randomvars,edges{ }

    
X = x

1
,…,x

M{ }

   
E = x

i
,x

j( ) : i ≠ j{ }
   
X

c
= x

1
,x

3
,x

4{ } = subset
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Graphical Models 
• Graph factorizes probability: 

• Topological graph: 
  nodes are in order so 
  that parents π come 
  before children 

• Question? Which is the more general graph? 

    
p x

1
,…,x

n( ) = p x
i
| π

i( )i=1

n∏

    

p x
1
,…,x

6( ) = p x
1( )p x

2
| x

1( )
×p x

3
| x

1( )p x
4
| x

2( )
×p x

5
| x

3( )p x
6
| x

2
,x

5( )
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Graphical Models 
• Graph factorizes probability: 

• Topological graph: 
  nodes are in order so 
  that parents π come 
  before children 

• Question? Which is the more general graph? 

• Conditional probability tables can be chosen to make 
   ‘busier’ graph look like simpler graph 

    
p x

1
,…,x

n( ) = p x
i
| π

i( )i=1

n∏

    

p x
1
,…,x

6( ) = p x
1( )p x

2
| x

1( )
×p x

3
| x

1( )p x
4
| x

2( )
×p x

5
| x

3( )p x
6
| x

2
,x

5( )

= 


