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Topic 14

eStructuring Probability Functions for Storage
oStructuring Probability Functions for Inference
eBasic Graphical Models

eGraphical Models

eParameters as Nodes
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Structuring PDFs for Storage

eProbability tables quickly grow if p has many variables

p(x)=1p ( flu?, headache?,..., temperature ?)

III

eFor D true/false “medical” variables table size = 2"

eExponential blow-up of storage size for the probabi
eExample: 8x8 binary images of digits
oIf multinomial with M choices, probabilities are how big?

ty

*As in Naive Bayes or Multivariate Bernoulli, if words

were independent things are much more efficient
p(r)=7p (ﬂu ?) i (headache ?) ..D (tempemture ?)

0.73 | 0.27 0.2 | 0.8 0.54 | 0.46

eFor D true/false “"medical” variables tgblesize = 2x D
(really even less than that...)
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Structuring PDFs for Inference

eInference: goal is to predict some variables given others

x1:
X2:
X3:
X4:
X5:
X6:

flu

fever

sinus infection Patient claims headache
temperature and high temperature.
sinus swelling Does he have a flu?
headache

Given findings variables X: and unknown variables X,
predict queried variables X,

eClassical approach: truth tables (slow) or logic networks

eModern approach: probability tables (slow) or Bayesian
networks (fast belief propagation, junction tree algorithm)
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From Logic Nets to Bayes Nets

¢1980’s expert systems & logic networks became popular

x1 x2 | x1vx2 x1/x2 x1 -> x2
T T T @

T F F @ @

T F T

: : T

eProblem: inconsistency, 2 paths can give different answers

M- -]
M | = || -]

eProblem: rules are hard, instead use soft probability tables

X3 =x1 " x2 p(x3|x1,x2)
x3=0 x3=1 x3=0 x3=1
x2=0 x2=1 x2=0 x2=1 x2=0 x2=1 x2=0 x2=1
x1=0] 1.0 1.0 x1=0] 0.0 0.0 x1=0] 0.8 0.7 x1=0] 0.2 0.3
x1=1| 1.0 0.0 x1=1| 0.0 1.0 x1=1| 0.7 0.1 x1=1| 0.3 0.9

eThese directed graphs are called Bayesian Networks
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Graphical Models & Bayes Nets

eIndependence assumptions make probability tables smaller
eBut real events in the world not completely independent!
eComplete independence is unrealistic...

Xy

eGraphical models use a
graph to describe more
subtle dependencies
and independencies:
...namely: conditional

independencies
(like causality but not exactly...)

eDirected Graphical Model, also called Bayesian Network
use a directed acylic graph (DAG).

eNeural Network = Graphical Function Representation

eBayesian Network = Graphical Probability Representation
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Graphical Models & Bayes Nets

*Node: a random variable (discrete or continuous) (®)
Independent: no link (@ @ p(z,y) = p(z)p(y)
Dependent: link (@O—v) pz,y) = ply | z)p(x)

oArrow: from parent to child (like causality, not exactly)
»Child: destination of arrow, response
eParent: root of arrow, trigger  parentsof childi = pa, =T,

*Graph: dependence/independence
eGraph: shows factorization of joint
joint = products of conditionals

p(a:l,...,xn) = szlp(:ci | pai) = H;p(% | ﬂi)

*DAG: directed acyclic graph ®

Q%Q



Tony Jebara, Columbia University

Basic Graphical Models

eIndependence: all nodes are unlinked @ @ @

eShading: variable is ‘observed’, condition on it @ @
moves to the right of the bar in the pdf

eExamples of simplest conditional independence situations...
p(xl,...,xn) = Hizlp(xi | paz.) = Hizlp(xi | T(Z.)

1) Markov chain: W Example binary events:

X = president says war

plews)=pla)olvla)plzls) )= goneratoviersattack

O—QQ—0 1,220y

o(v.7)
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Basic Graphical Models

2) 1 Cause, 2 effects: p T,Y,2) = Z | y)

y = flu

X = sore throat

z = temperature

z | z|y

3) 2 Causes, 1 effect: p(z,5,2) = p(z)p(2)p(y | z.2)

X = rain

y = wet driveway

z = car oil leak

Explaining away... T ‘ > xX > ’ Y

eFach conditional is a mini-table
(Multinomial or Bernoulli conditioned on parents)
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Basic Graphical Models
2) 1 Cause, 2 effects: p(fli,y,Z) = p(y)p(fﬂ | y)p(z | y)

y = flu
X = sore throat
z = temperature

3) 2 Causes, 1 effect: p(fb’, Yy Z) = p(:v p(Z)p(y | 2, Z)

X = dad is diabetic
y = child is diabetic
z = mom is diabetic

Explaining away...

z | 2 ¥ 2|y

eFach conditional is a mini-table
(Multinomial or Bernoulli conditioned on parents)
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Graphical Models

eExample: factorization of the following system of variables
P\t xn) ~ r;p(:cz | pai) - H;p(% | “z‘) x

ple,... a:G):p 5171)
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Graphical Models

eExample: factorization of the following system of variables

ploveen) = TLple ) =TLole5)

X,

I

3

8
S

8

8

A=~ R = B

eHow big are these tables (if binary variables)?
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Graphical Models

eExample: factorization of the following system of variables

ploveen) = TLple ) =TLole5)

X,

Xs X

z, |z |plT, |z, p(x5\x3)...

I

3

8
S

8

8

A=~ R = B

= P\ Ly 10 )P\, 1 p(:l:5 | $3)p($6 | x2,$5)
20 ol 92 92 92 92 93

eHow big are these tables (if binary variables)?
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Graphical Models

eExample: factorization of the following system of variables

p(:vl ..... xn> = H:;lp(a:i | pai) — H;p(% | Wi) ) X,

eInterpretation???
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Graphical Models
eExample: factorization of the following system of variables

p(% 7777 xn): H?:1p(xz' |pai): H?le(xi |Wz) v A

eInterpretation:

: flu

: fever

: sinus infection
: temperature

: sinus swelling
: headache

o) = o) (5, 15 2, | 2) 0z, |25, 1 2,) 0z, | 2,2,

0 21 22 22 22 22 23
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Graphical Models

eNormalizing probability tables. Joint distributions sum to 1.
eBUT, conditionals sum to 1 for each setting of parents.

p(x) 2-1

Zizop(a:)zl
p(X,Y) 4-1 p(x|y) 4-2
pr a:|y:()):1
Zx,yp(x y) 1 pr x\yzl):l
p(x,y,z) 81 p(x|Y,z) 8-4
E > pra: yzO,z:O)zl
IO S plely=12=0)=1
x=0 x=1 Zpa:y_o,z_l_l
2, ploe) =1 > plely=1z=1)=1
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Graphical Models

eExample: factorization of the following system of variables

p(% 7777 $n> — H?:1p(xz' | pai) — H?le(xi | Wz‘) A
eInterpretation p
: flu

: fever

: sinus infection
: temperature

: sinus swelling
: headache
Ty x6) = p(asl)p(xz | a:l)p(xg | a:l)p(x4 | xz)p(x5 | :zzg)p(aiﬁ | x2,x5)
‘-1 2'—-12°—-2 2°—-2 22—2 22—2 2°_4

o S TR WN

63 vs. 13 degrees of freedom
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Parameters as Nodes

eConsider the model variable 6 ALSO as a random variable
(o)
@—(®)
eBut would need a prior distribution P(0)... ignore for now
eRecall: Naive Bayes, word probabilities are independent

@ & ®
e Text: Multivariate Bernoulli @ @ @
plela) =TT o (1=, @) (r) ()
(&)

e Text: Multinomial
p(X|&>:[Zlem]! | I
I e & &
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Continuous Conditional Models

eIn previous slide, 6 and o were a random variable in graph
eBut, 6 and o are continuous
eNetwork can have both discrete & continuous nodes

eJoint factorizes into conditionals that are either:
1) discrete conditional probability tables
2) continuous conditional probability distributions

0.4
’ 03
0.2
®

»010 -5 0 5 10

eMost popular continuous distribution = Gaussian
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Graphical Models

eIn EM, we saw how to handle nodes that are: observed
(shaded), hidden variables (E), parameters (M)
eBut, only considered simple iid, single parent, structures
eMore generally, have arbitrary DAG without loops
eNotation:
G = {X,E} = {nodes / randomvars,edges}
X = {a:l,...,:BM}

E:{(m,x,):iij}

X = {x T, T }— subset

e\Want to do 4 things with these graphical models
1) Learn Parameters (to fit to data)
2) Query independence/dependence
3) Perform Inference (get marginals/max a posteriori)
4) Compute Likelihood (e.g. for classification)
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Graphical Models

*Graph factorizes probability: p(z,,....z, | =[] p(z |~,)

1

eTopological graph:
nodes are in order so X,
that parents © come
before children

( ) ( - w) X, X;
eQuestion? Which is the more general graph?

@® @ ©® @——>
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Graphical Models

*Graph factorizes probability: p(z,,....z, | =[] p(z |~,)

1

eTopological graph:
nodes are in order so X,
that parents © come
before children

( ) ( - w) X, X;
eQuestion? Which is the more general graph?

D @m® O

eConditional probability tables can be chosen to make
‘busier’ graph look like simpler graph




