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Topic 12 
• Mixture Models and Hidden Variables 

• Clustering 

• K-Means 

• Expectation Maximization 
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Mixtures for More Flexibility 
• With mixtures (e.g. mixtures of 
  Gaussians) we can handle more 
  complicated (e.g. multi-bump, 
  nonlinear) distributions. 

  subpopulations:   G1=compact car 
   G2=mid-size car 
   G3=cadillac 

• In fact, if we have enough Gaussians 
  (maybe infinite) we can approximate 
  any distribution... 
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• Consider a dataset with K subpopulations but don’t know 
  which subpopulation each point belongs to 

  I.e. looking at height of adult people, we 
  see K=2 subpopulations: males & females 

  I.e. looking at weight and height of people 
  we see K=2 subpopulations: males & females 

• Because of the ‘hidden’ variable (y can be 1 or 2), these 
  distributions are not Gaussians but Mixture of Gaussians 

Mixtures as Hidden Variables 
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Unlabeled data  Clustering 
• Recall classification problem: 

  maximize the log-likelihood of 
  data given models: 

• If we don’t know the class 
  treat it as a hidden variable 
  maximize the log-likelihood with 
  unlabeled data: 

• Instead of classification, we now have a clustering problem 
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K-Means Clustering 
• K-means solves a Chicken-and-Egg problem: 
 If knew classes, we can get model (max likelihood!) 
 If knew the model, we can predict the classes (classifier!) 
• Kmeans: guess a model, use it to classify the data, use 
classified data as labeled data to update the model, repeat. 

• Assumes each point x has a discrete multinomial vector z 

0) Input dataset 
1) Randomly initialize means 
2) Find closest mean for each point 
3) Update means 
4) If any z has changed go to 2 
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K-Means Clustering 
• Geometric, each point goes to closest Gaussian 
• Recompute the means by their assigned points 
• Essentially minimizing the following cost function: 

• Guaranteed to improve per iteration and converge 
• Like Coordinate Descent (lock one var, maximize the other) 
• A.k.a. Axis-Parallel Optimization or Alternating Minimization 
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Expectation-Maximization (EM) 
• EM is a soft/fuzzy version of K-Means (which does winner-
takes-all, closest Gaussian Mean completely wins datapoint) 

• Instead, consider soft percentage 
  assignment of datapoint 

• EM is ‘less greedy’ than K-Means 
  uses                           as 
  shared responsibility for 

• Update for the means are then 
 ‘weighted’ by responsibilities: 
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Expectation-Maximization 
• EM uses expected value of        rather than max 

• EM updates covariances, mixing proportions AND means… 
• The algorithm for Gaussian mixtures: 

  EXPECTATION: 

  MAXIMIZATION: 

• DEMO… like an iterative divide-and-conquer algorithm 
• But, divide&conquer is not a guarantee. Can we prove EM? 
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