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Topic 12

eMixture Models and Hidden Variables
oClustering
oK-Means

eExpectation Maximization
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Mixtures for More Flexibility

o\With mixtures (e.g. mixtures of t
Gaussians) we can handle more
complicated (e.g. multi-bump,
nonlinear) distributions.
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eIn fact, if we have enough Gaussians
(maybe infinite) we can approximate
any distribution...
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Mixtures as Hidden Variables

eConsider a dataset with K subpopulations but dont know
which subpopulation each point belongs to

I.e. looking at height of adult people, we
see K=2 subpopulations: males & females
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I.e. looking at weight and height of people
we see K=2 subpopulations: males & females [ "+ . <g#
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eBecause of the ‘hidden’ variable (y can be 1 or 2), these
distributions are not Gaussians but Mixture of Gaussians

p()=> p@Ey) = p(y)p(Z|y)=> = N(Z|i,3,)
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Unlabeled data - Clusterlng

eRecall classification problem:

maximize the log-likelihood of
data given models:

=" logp(Z,y, | mpn3)
— anl log ’JTynN(iUn | Myn’zyn)

oIf we don’t know the class e
treat it as a hidden variable o
maximize the log-likelihood with L |

unlabeled data:

=" logp(Z, [mpw)=>"" logd> " p(7.y|mwY)
_ ZnNzllog(TrlN(:?n i, 5,)+ N (] CLK,EK))
eInstead of classification, we now have a clustering problem
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K-Means Clustering

eK-means solves a Chicken-and-Egg problem: - A il
If knew classes, we can get model (max likelihood!)

If knew the model, we can predict the classes (classifier!)
eKmeans: guess a model, use it to classify the data, use
classified data as labeled data to update the model, repeat.

eAssumes each point x has a discrete multinomial vector z

0) Input dataset {z.-.-,}

1) Randomly initialize means i......i,

2) Find closest mean for each point ()= 1 #i=weuin, 7,7,
3) Update means i, =33z (i)/> % otheruwise

4) If any z has changed go to 2

2
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K-Means Clustering

eGGeometric, each point goes to closest Gaussian =

eRecompute the means by their assigned points

eEssentially minimizing the following cost function:
minuminzJ(ﬁl,...,ﬁK,E’l,...,E’N>:ZZZR(Z') :

n=1
N 4 4 .
2 (z) _ 11 ifi= argminj :E'n — ﬁj : T anlxnzn (Z)
i N .
0 otherwise anl “ (Z)
eGuaranteed to improve per iteration and converge
eLike Coordinate Descent (lock one var, maximize the other)

eA.k.a. Axis-Parallel Optimization or Alternating Minimization
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Expectation-Maximization (EM)

*EM is a soft/fuzzy version of K-Means (which does winner-
takes-all, closest Gaussian Mean completely wins datapoint)

Z (z) _ { 1 ifi=argmin |7 —ﬁj g arg max_ N(fn | [LJ,,I) = argmax p(:@’n | [L])
0 otherwise
eInstead, consider soft percentage (.
assignment of datapoint '

assign o< T ? ;D/Q exp [—%

T

Z, K,

*EM is ‘less greedy’ than K-Means

usest,, = p(Z=751%,0) as _
shared responsibility for z,

eUpdate for the means are then h = e
‘weighted’ by responsibilities: D v T
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Expectation-Maximization

*EM uses expected value of Z_ (z) rather than max
ro=B{Z (i)12} = p(z, =75, 17,.9)

*EM updates covariances, mixing proportions AND means...

eThe algorithm for Gaussian mixtures:

= | o) ()
EXPECTATION: o _ (%m E)

T =
n,1 — —(t t
ZjﬁjN(a:n | pg),Z(j))
e % ()
MAXIMIZATION: ¢ = &==n ST () _ L i
Z ST | N
T
) (7 =20+ )\ [z _ 2+
E(H_l) L ZnTn,i (:Bn uz )(xn Mz )
i ()

n o N,

eDEMO... like an iterative divide-and-conquer algorithm
eBut, divide&conquer is not a guarantee. Can we prove EM?



