
Tony Jebara, Columbia University

Machine Learning
4771

Instructor: Tony Jebara

Tony Jebara, Columbia University

Topic 12
• Mixture Models and Hidden Variables

• Clustering

• K-Means

• Expectation Maximization

Tony Jebara, Columbia University

Mixtures for More Flexibility
• With mixtures (e.g. mixtures of
 Gaussians) we can handle more
 complicated (e.g. multi-bump,
 nonlinear) distributions.

 subpopulations: G1=compact car
 G2=mid-size car
 G3=cadillac

• In fact, if we have enough Gaussians
 (maybe infinite) we can approximate
 any distribution...

x
x x x

x x x x
x
x x
x x

x
x
x

x x x
x
x x x

CAR SIZE

TO
P

SP
EE

D

x
x x x

x x x x
x
x x
x x

x
x
x

x
x x

x
x x x

CAR SIZE

TO
P

SP
EE

D

G1

G2

G3

Tony Jebara, Columbia University

• Consider a dataset with K subpopulations but don’t know
 which subpopulation each point belongs to

 I.e. looking at height of adult people, we
 see K=2 subpopulations: males & females

 I.e. looking at weight and height of people
 we see K=2 subpopulations: males & females

• Because of the ‘hidden’ variable (y can be 1 or 2), these
 distributions are not Gaussians but Mixture of Gaussians

Mixtures as Hidden Variables

m f

m
f

p

x() = p(


x,y)

y∑ = p y()p

x | y()y∑ = π

y
N

x |

µ

y
,Σ

y()y∑
= π

y
1

2π()D/2
Σy

exp − 1
2


x −

µ

y()T Σy
−1 x −


µ

y()⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟y=1

K∑

Tony Jebara, Columbia University

Unlabeled data  Clustering
• Recall classification problem:

 maximize the log-likelihood of
 data given models:

• If we don’t know the class
 treat it as a hidden variable
 maximize the log-likelihood with
 unlabeled data:

• Instead of classification, we now have a clustering problem

l = log p

x

n
,y

n
| π,µ,Σ()n=1

N∑
= logπ

yn
N

x

n
|

µ

yn
,Σ

yn
()n=1

N∑

l = log p

x

n
| π,µ,Σ()n=1

N∑ = log p

x

n
,y | π,µ,Σ()y=1

K∑n=1

N∑
= log π

1
N

x

n
|

µ

1
,Σ

1() +…+ π
K
N

x

n
|

µ

K
,Σ

K()()n=1

N∑

Tony Jebara, Columbia University

K-Means Clustering
• K-means solves a Chicken-and-Egg problem:
 If knew classes, we can get model (max likelihood!)
 If knew the model, we can predict the classes (classifier!)
• Kmeans: guess a model, use it to classify the data, use
classified data as labeled data to update the model, repeat.

• Assumes each point x has a discrete multinomial vector z

0) Input dataset
1) Randomly initialize means
2) Find closest mean for each point
3) Update means
4) If any z has changed go to 2


µ

1
,…,

µ

K


z

n
i() = 1

0
if i = arg min

j


x

n
−

µ

j

2

otherwise

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪


µ

i
=


x

n


z

n
i()n=1

N∑ 
z

n
i()n=1

N∑


x

1
,…,

x

N{ }

Tony Jebara, Columbia University

K-Means Clustering
• Geometric, each point goes to closest Gaussian
• Recompute the means by their assigned points
• Essentially minimizing the following cost function:

• Guaranteed to improve per iteration and converge
• Like Coordinate Descent (lock one var, maximize the other)
• A.k.a. Axis-Parallel Optimization or Alternating Minimization

min

µ
min

z
J

µ

1
,…,

µ

K
,

z

1
,…,

z

N() =

z

n
i() xn

−

µ

i

2

i=1

K

∑
n=1

N

∑


z

n
i() = 1

0
if i = arg min

j


x

n
−

µ

j

2

otherwise

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

z

µ	

Local
Minima


µ

i
=


x

n


z

n
i()n=1

N∑

z

n
i()n=1

N∑

Tony Jebara, Columbia University

Expectation-Maximization (EM)
• EM is a soft/fuzzy version of K-Means (which does winner-
takes-all, closest Gaussian Mean completely wins datapoint)

• Instead, consider soft percentage
 assignment of datapoint

• EM is ‘less greedy’ than K-Means
 uses as
 shared responsibility for

• Update for the means are then
 ‘weighted’ by responsibilities:

assign ∝ π

j
1

2π()D/2
exp − 1

2


x

n
−

µ

j

2⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

τ

n,i
= p


z =

δ
i
|

x

n
, θ()

µ
i

=
τ

n,i


x

nn=1

N∑
τ

n,in=1

N∑

τ

n,1
,…,τ

n,K
=


x

n


z

n
i() = 1

0
if i = arg min

j


x

n
−

µ

j

2
= arg max

j
N

x

n
|

µ

j
,I() = arg max

j
p

x

n
|

µ

j()
otherwise

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

Tony Jebara, Columbia University

Expectation-Maximization
• EM uses expected value of rather than max

• EM updates covariances, mixing proportions AND means…
• The algorithm for Gaussian mixtures:

 EXPECTATION:

 MAXIMIZATION:

• DEMO… like an iterative divide-and-conquer algorithm
• But, divide&conquer is not a guarantee. Can we prove EM?

τ

n,i
= E


z

n
i() |

x

n{ } = p

z

n
=

δ
i
|

x

n
, θ()


z

n
i()

τ
n,i
(t) =

π
i
N

x

n
|

µ

i
(t),Σ

i
(t)()

π
j
N

x

n
|

µ

j
(t),Σ

j
(t)()j∑


µ

i
(t+1) =

τ
n,i
(t) x

nn∑
τ

n,i
(t)

n∑

Σ
i
(t+1) =

τ
n,i
(t) x

n
−

µ

i
(t+1)() xn

−

µ

i
(t+1)()Tn∑

τ
n,i
(t)

n∑

π

i
(t+1) =

τ
n,i
(t)

n∑
N

