Tony Jebara, Columbia University

Machine Learning
4771

Instructor: Tony Jebara



Tony Jebara, Columbia University

Topic 11

eMaximum Likelihood as Bayesian Inference
eMaximum A Posteriori

eBayesian Gaussian Estimation
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Why Maximum Likelihood?

eSo far, assumed max (log) likelihood (IID or otherwise)
oPhIlOSOphICE]l: Why? max, L(e) = max, p($17...,xN | e)

= max, HLp(xi | 9) ;z T

*Also, why ignore p(6)? o T

likelihood
eHint: Recall Bayes rule: " Oo_m | 9)p(9)‘\ rior
p(0]z)= . P

()

posterior evidence

eEveryone agrees on probability theory: inference and use
of probability models when we have computed p(x)

eBut how get to p(x) from data? Debate...

oTwo schools of thought: Bayesians and Frequentists
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Bayesians & Frequentists

eFrequentists (Neymann/Pearson/Wald). An orthodox view
that sampling is infinite and decision rules can be sharp.

eBayesians (Bayes/Laplace/de Finetti). Unknown quantities
are treated probabilistically and the state of the world can

always be updated.

de Finetti: p( event ) = price I would pay for a
contract that pays 1$

when event happens

oL ikelihoodists (Fisher). Single sample inference based on

maximizing the likelihood function and relying on the
Birnbaum’s Theorem. Bayesians — But they don‘t know it.
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Bayesians & Frequentists

eFrequentists:
eData are a repeatable random sample- there is a
frequency
eUnderlying parameters remain constant during this
repeatable process
eParameters are fixed

eBayesians:
eData are observed from the realized sample.
eParameters are unknown and described probabilistically
eData are fixed
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Bayesians & Frequentists

eFrequentists: classical / objective view / no priors
every statistician should compute same p(x) so no priors
can’t have a p(event) if it never happened
avoid p(0), there is 1 true model, not distribution of them
permitted: py(x,y) forbidden: p(x,y|6)
Frequentist inference: estimate one best model 6
use the ML estimator (unbiased & minimum variance)
do not depend on Bayes rule for learning

eBayesians: subjective view / priors are ok
put a distribution or pdf on all variables in the problem
even models & deterministic quantities (i.e. speed of light)
use a prior p(0), on the model 6 before seeing any data
Bayesian inference: use Bayes rule for learning, integrate
over all model (6) unknown variables
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Bayesian Inference

eBayes rule gives rise to maximum likelihood
eAssume we have a prior over models p(6)

R 10
posterior / (5'3)‘\

likelihood

evidence

eHow to pick p(6)? | |
Pick simpler @ is better P(e) A |
Pick form for mathematical convenience I W
o\We have data (can assume IID): X = {:1;1,:1;2, JZN}

e\Want to get a model to compute: p(:z;)
e\Want p(x) given our data... How to proceed?
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Bayesian Inference

«Want p(x) given our data... p(a: | %) - p(az | x1x2x>
p(x|3€):fep(x,0|%d6
= [ p(z]0.2p(0] Z)do Prior

1.5 \ ) 1.5
=1 | Many 'l

05} N\%\Q | models Weight on 05 /\
LS N eachmodel | / 1\
-10 -5 0 5 10 -4 -2 0 2
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Bayesian Inference to MAP & ML

eThe full Bayesian Inference integral can be mathematically
tricky. Maximum likelihood is an approximation of it...

Hj\; *, ‘ Op|0 1.5 ' ' ;
p(az|,%‘):fep($|6> pp<(3€) )p( )de 1 p(0|1‘) |
~ [ (= 16)5(6—06")do o /_‘\
arg max Hivlp(xi | G)p(e) MAP % 2 0 2 4
where § = | | p(f) 0
— va_lp(xi | G)Lam'form(e) s
e p(%)

eMaximum A Posteriori (MAP) is like Maximum
Likelihood (ML) with a prior p(06) which lets

us prefer some models over others

Lar (0) =1, (6) +log p(0) = D=7 logp(, | 0)+ log p(0)
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Bayesian Inference Example

eFor Gaussians, we CAN compute the integral (but hard!)

p(ﬂ%)zﬂp(ﬂe)nflp(%\9)p(6)de

(%)

< [ p(z|6)[T , p(, 0)p(6)ds

eExample:... assume 1d Gaussian & Gaussian prior on mean
pla| 9) = Gaussian p(@) = Gaussian
15 - - - 1.5
1} - 1 A
05 I 1
05t 1 0 MO )
0 . . : 05 :
-10 -5 0 5 10 -5 0 5

p(r) ) [ [ﬁe*“)? ]va 1%65@@2 ][ﬁezmof ]du
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Bayesian Inference Example

eSolve integral over all Gaussian means with variance=1
plal ) [ | e I e e

o [ oo o = 22 4o ) = 2o, )

x Liz_o:oexp —g(N +2)u’ =2z, + > 7 )+ x{)dp

ocLi:O:oeXp —% (N+2)u2—2M($+M0+Zi%>+x2:+[ ]2_[ r]du

2
1 —(fv—i-uo—kzixi) 2 ~ M0+Zixi
X €xXpl =y N+2 T W= N1
~2 N+2
~ ~9 / _ —=
— N(*/E | M, O ) o N+1

eCan integrate over u and X for multivariate

Gaussian (Jordan ch. 4 and Minka Tutorial)
](N+1)/2

r((v+1)/2)
r((N+1-d)/2)

1 V-1

1/2 T _
(N+1)= 2 [N;H (:13 N E) X (aj N E) +1

pfel )=




