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Topic 11 
• Maximum Likelihood as Bayesian Inference 

• Maximum A Posteriori 

• Bayesian Gaussian Estimation 



• So far, assumed max (log) likelihood (IID or otherwise) 
• Philosophical: Why? 

• Also, why ignore p(θ)? 

• Hint: Recall Bayes rule: 

• Everyone agrees on probability theory: inference and use 
   of probability models when we have computed p(x) 
• But how get to p(x) from data? Debate… 
• Two schools of thought: Bayesians and Frequentists 
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Why Maximum Likelihood? 
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Bayesians & Frequentists 
• Frequentists (Neymann/Pearson/Wald). An orthodox view 
that sampling is infinite and decision rules can be sharp. 

• Bayesians (Bayes/Laplace/de Finetti). Unknown quantities 
are treated probabilistically and the state of the world can 
always be updated. 

  de Finetti: p( event ) = price I would pay for a 
          contract that pays 1$ 
          when event happens 

• Likelihoodists (Fisher). Single sample inference based on 
maximizing the likelihood function and relying on the 
Birnbaum’s Theorem. Bayesians – But they don’t know it. 
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Bayesians & Frequentists 
• Frequentists:  

• Data are a repeatable random sample- there is a 
frequency  
• Underlying parameters remain constant during this 
repeatable process 
• Parameters are fixed 

• Bayesians: 
• Data are observed from the realized sample. 
• Parameters are unknown and described probabilistically 
• Data are fixed 
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Bayesians & Frequentists 
• Frequentists:  classical / objective view / no priors 
   every statistician should compute same p(x) so no priors 
   can’t have a p(event) if it never happened 
   avoid p(θ), there is 1 true model, not distribution of them 
   permitted: pθ(x,y)    forbidden: p(x,y|θ) 
   Frequentist inference: estimate one best model θ  
 use the ML estimator (unbiased & minimum variance) 
 do not depend on Bayes rule for learning 
      

• Bayesians:  subjective view / priors are ok 
   put a distribution or pdf on all variables in the problem 
   even models & deterministic quantities (i.e. speed of light) 
   use a prior p(θ), on the model θ before seeing any data 
   Bayesian inference: use Bayes rule for learning, integrate 
                                over all model (θ) unknown variables 
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Bayesian Inference 
• Bayes rule gives rise to maximum likelihood 
• Assume we have a prior over models p(θ) 

• How to pick p(θ)? 
   Pick simpler θ is better 
   Pick form for mathematical convenience 

• We have data (can assume IID): 

• Want to get a model to compute: 

• Want p(x) given our data… How to proceed? 
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Bayesian Inference 
• Want p(x) given our data… 
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Bayesian Inference to MAP & ML 
• The full Bayesian Inference integral can be mathematically 
   tricky. Maximum likelihood is an approximation of it… 

• Maximum A Posteriori (MAP) is like Maximum 
  Likelihood (ML) with a prior p(θ) which lets 
  us prefer some models over others 
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Bayesian Inference Example 
• For Gaussians, we CAN compute the integral (but hard!) 

• Example:… assume 1d Gaussian & Gaussian prior on mean 
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Bayesian Inference Example 
• Solve integral over all Gaussian means with variance=1 

• Can integrate over µ and Σ for multivariate 
  Gaussian (Jordan ch. 4 and Minka Tutorial) 
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