Tony Jebara, Columbia University

Machine Learning 4771

Instructor: Tony Jebara

Topic 11

- •Maximum Likelihood as Bayesian Inference
- •Maximum A Posteriori
- •Bayesian Gaussian Estimation

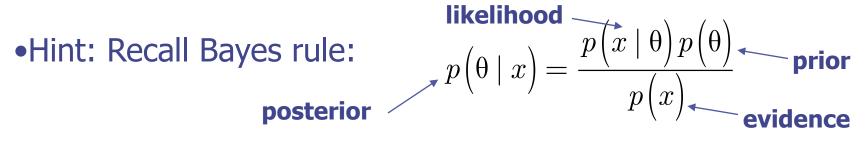
-0.5 l

 $= \max_{\theta} \prod_{i=1}^{N} p\left(x_{i} \mid \theta\right) \Big|_{0.5}^{1.5}$

Why Maximum Likelihood?

•So far, assumed max (log) likelihood (IID or otherwise) •Philosophical: Why? $\max_{\theta} L(\theta) = \max_{\theta} p(x_1, ..., x_N | \theta)$

•Also, why ignore $p(\theta)$?



- Everyone agrees on probability theory: inference and use of probability models when we have computed p(x)
 But how get to p(x) from data? Debate...
- •Two schools of thought: Bayesians and Frequentists

Bayesians & Frequentists

•Frequentists (Neymann/Pearson/Wald). An orthodox view that sampling is infinite and decision rules can be sharp.

•Bayesians (Bayes/Laplace/de Finetti). Unknown quantities are treated probabilistically and the state of the world can always be updated.

de Finetti: p(event) = price I would pay for a contract that pays 1\$ when event happens

•Likelihoodists (Fisher). Single sample inference based on maximizing the likelihood function and relying on the Birnbaum's Theorem. Bayesians – But they don't know it.

Bayesians & Frequentists

•Frequentists:

•Data are a repeatable random sample- there is a frequency

- •Underlying parameters remain constant during this repeatable process
- •Parameters are fixed

•Bayesians:

•Data are observed from the realized sample.

•Parameters are unknown and described probabilistically

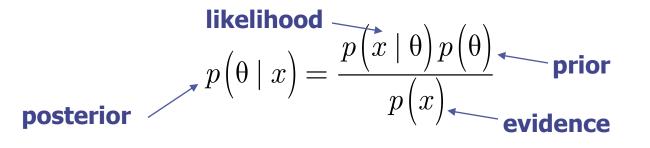
Data are fixed

Bayesians & Frequentists

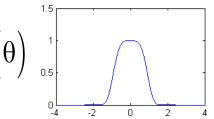
- •Frequentists: classical / objective view / no priors every statistician should compute same p(x) so no priors can't have a p(event) if it never happened avoid $p(\theta)$, there is 1 true model, not distribution of them permitted: $p_{\theta}(x,y)$ forbidden: $p(x,y|\theta)$ Frequentist inference: estimate one best model θ use the ML estimator (unbiased & minimum variance) do not depend on Bayes rule for learning
- Bayesians: subjective view / priors are ok put a distribution or pdf on all variables in the problem even models & deterministic quantities (i.e. speed of light) use a prior p(θ), on the model θ before seeing any data Bayesian inference: use Bayes rule for learning, integrate over all model (θ) unknown variables

Bayesian Inference

Bayes rule gives rise to maximum likelihood
Assume we have a prior over models p(θ)



•How to pick $p(\theta)$? Pick simpler θ is better $p(\theta)$ Pick form for mathematical convenience



- •We have data (can assume IID): $\mathfrak{X} = \{x_1, x_2, ..., x_N\}$
- •Want to get a model to compute: p(x)
- •Want p(x) given our data... How to proceed?

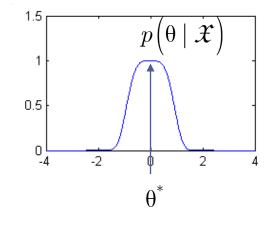
Bayesian Inference

•Want p(x) given our data... $p(x | \mathcal{X}) = p(x | x_1, x_2, ..., x_n)$ $p(x \mid \mathcal{X}) = \int_{\alpha} p(x, \theta \mid \mathcal{X}) d\theta$ $= \int_{\boldsymbol{\theta}} p(\boldsymbol{x} \mid \boldsymbol{\theta}, \boldsymbol{\mathcal{X}}) p(\boldsymbol{\theta} \mid \boldsymbol{\mathcal{X}}) d\boldsymbol{\theta}$ **Prior** $= \int_{\theta} p(x \mid \theta, \mathcal{X}) \frac{p(\mathcal{X} \mid \theta) p(\theta)}{p(\mathcal{X})} d\theta$ $= \int_{\theta} p(x \mid \theta) \frac{\prod_{i=1}^{N} p(x_i \mid \theta) p(\theta)}{p(\mathcal{X})} d\theta$ $\theta \mid \mathcal{X}$ $x \mid \theta$ 1.5 θ Manv models Weight on 0.5 0.5 each model Π -10 -5 Π -2 2 5 Π 1N -4

Bayesian Inference to MAP & ML

•The full Bayesian Inference integral can be mathematically tricky. Maximum likelihood is an approximation of it...

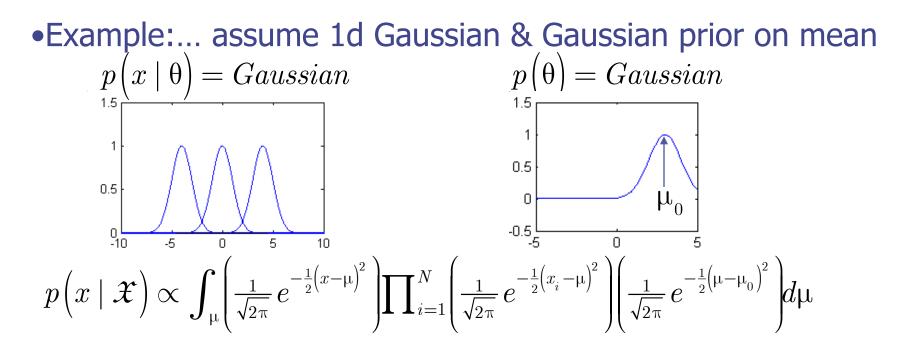
$$\begin{split} p\left(x \mid \mathcal{X}\right) &= \int_{\theta} p\left(x \mid \theta\right) \frac{\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right) p\left(\theta\right)}{p\left(\mathcal{X}\right)} d\theta \\ &\approx \int_{\theta} p\left(x \mid \theta\right) \delta\left(\theta - \theta^{*}\right) d\theta \\ where \ \theta^{*} &= \begin{cases} \arg \max_{\theta} \frac{\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right) p\left(\theta\right)}{p\left(\mathcal{X}\right)} & MAP \\ \arg \max_{\theta} \frac{\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right) uniform\left(\theta\right)}{p\left(\mathcal{X}\right)} & ML \end{cases} \end{split}$$



•Maximum A Posteriori (MAP) is like Maximum Likelihood (ML) with a prior $p(\theta)$ which lets us prefer some models over others $l_{MAP}(\theta) = l_{ML}(\theta) + \log p(\theta) = \sum_{i=1}^{N} \log p(x_i | \theta) + \log p(\theta)$

Bayesian Inference Example

•For Gaussians, we CAN compute the integral (but hard!) $p(x \mid \mathcal{X}) = \int_{\theta} p(x \mid \theta) \frac{\prod_{i=1}^{N} p(x_i \mid \theta) p(\theta)}{p(\mathcal{X})} d\theta$ $\propto \int_{\theta} p(x \mid \theta) \prod_{i=1}^{N} p(x_i \mid \theta) p(\theta) d\theta$



Bayesian Inference Example

•Solve integral over all Gaussian means with variance=1 $p\left(x \mid \mathcal{X}
ight) \propto \int_{\mu=-\infty}^{\mu=\infty} \left(rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}\left(x-\mu
ight)^2}
ight) \prod_{i=1}^N \left(rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}\left(x_i-\mu
ight)^2}
ight) \left(rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}\left(\mu_0-\mu
ight)^2}
ight) d\mu$ $\propto \int_{\mu=-\infty}^{\mu=\infty} \exp\left(-\frac{1}{2}(x-\mu)^2 - \sum_{i=1}^{\infty} \frac{1}{2}(x_i-\mu)^2 - \frac{1}{2}(\mu_0-\mu)^2\right) d\mu$ $\propto \int_{\mu=\infty}^{\mu=\infty} \exp\left(-\frac{1}{2}\left[\left(N+2\right)\mu^2 - 2\mu\left(x+\mu_0+\sum_i x_i\right)+x^2\right]\right]d\mu$ $\propto \int_{\mu=-\infty}^{\mu=\infty} \exp\left[-\frac{1}{2} \left[\left(N+2\right) \mu^2 - 2\mu \left(x+\mu_0+\sum_i x_i\right) + x^2 \right] + \left[-\frac{1}{2}^2 - \left[-\frac{1}{2}^2 \right] d\mu \right] \right] d\mu$ $\propto \exp\left[-\frac{1}{2}\left[\frac{-(x+\mu_0+\sum_i x_i)^2}{N+2}+x^2\right]\right] \qquad \tilde{\mu} = \frac{\mu_0+\sum_i x_i}{N+1}$ $= N\left(x \mid \tilde{\mu}, \tilde{\sigma}^2\right) \qquad \qquad \tilde{\sigma}^2 = \frac{N+2}{N+1}$ •Can integrate over μ and Σ for multivariate × 02 Gaussian (Jordan ch. 4 and Minka Tutorial) $p(x \mid \mathcal{X}) = \frac{\Gamma((N+1)/2)}{\Gamma((N+1-d)/2)} \left| \frac{1}{(N+1)\pi} \overline{\Sigma}^{-1} \right|^{1/2} \left(\frac{1}{N+1} \left(x - \overline{\mu} \right)^T \overline{\Sigma}^{-1} \left(x - \overline{\mu} \right) + 1 \right)^{-(N+1)/2}$ Prediction Normal(0, 1)