
COMS4771 Machine Learning 2015: Homework 4
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November 1, 2015
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Thus, we can write the corresponding Lagrangian:

L(µ, ⇡,↵, �) =
NX

n=1

KX

j=1

⌧

n,j

[x
n

log(µ
j

) + log(⇡
j

)]� ↵(
KX

j=1

⇡

j

� 1)�
KX

j=1

�

j

(
MX

l=1

µ

j

(l)� 1)

We want to maximize this function along ⇡

j

:

@L(µ, ⇡,↵, �)
@⇡

j

= 0

,
NX

n=1

⌧

n,j

⇡

j

� ↵ = 0

, ⇡

j

=

P
N

n=1

⌧

n,j

↵

If we plug this into the primal constraint on ⇡ that is
P

K

i=1

⇡

i

= 1, we get:

⇡

j

=

P
N

n=1

⌧

n,jP
K

i=1

P
N

n=1

⌧

n,i

=
1

N

NX

n=1

⌧

n,j

We want to maximize the lagrangian along µ

j

(l) :

@L(µ, ⇡,↵, �)
@µ

j

(l)
= 0

,
NX

n=1

⌧

n,j

x

n

(l)
1

µ

j

(l)
� �

j

= 0

, µ

j

(l) =
1

�

j

NX

n=1

⌧

n,j

x

n

(l)

If we plug this into the constraint on µ which is
P

M

l=1

µ

j

(l) = 1 and given thatP
M

l=1

x

n

(l) = 1

µ

j

(l) =
NX

n=1

⌧

n,jP
N

n

0
=1

⌧

n

0
,j

x

n

(l)

2



Problem 2

Part A:

The fitting results of EM-GMM on datasetA and datasetB are showed in Figure 1
and Figure 2.
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Figure 1: GMM fitting on datasetA
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Figure 2: GMM fitting on datasetB
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Part B:

The maximum average value of the testing log-likelihood is reached for K=3 (the
splitting was made using half of the data for training and half of the data for testing)
The Bernoulli coe�cients are on average 0.2, 0.5 and 0.8.
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function [training_l, testing_l, alpha] = EM(K)

% Load data

load problem2.mat

permutation = randperm (1000);

training_data = dataset(permutation (1:500) ,:);

testing_data = dataset(permutation (501:1000) ,:);

% Parameters definition

[N, T] = size(training_data);

tau = zeros(N, K);

alpha = zeros(K,1);

Pi = ones(K)/K;

% As the coin tosses are independent

% we can represent the data as a vector

% of N lines with the number of heads

X = (sum(training_data’))’;

X_test = (sum(testing_data’))’;

% Initialization

for k = 1:K

alpha(k) = 0.5*k/K;

end

for step = 1:10

% Expectation

for n = 1:N
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S = 0;

for l = 1:K

S = S + Pi(l)*alpha(l)^X(n)*(1-alpha(l))^(T-X(n));

end

for k = 1:K

tau(n,k) = Pi(k)*alpha(k)^X(n)*(1-alpha(k))^(T-X(n))/S;

end

end

% Maximization

for k = 1:K

alpha(k) = sum(tau(:,k) .* X)/T/sum(tau(:,k));

end

Pi = sum(tau)/N;

% Log likelihood estimation

training_l = 0;

for n = 1:N

p = 0;

for k = 1:K

p = p + Pi(k)*alpha(k)^X(n)*(1-alpha(k))^(T-X(n));

end

training_l = training_l + log(p);

end

testing_l = 0;

for n = 1:N

p = 0;

for k = 1:K

p = p + Pi(k)*alpha(k)^X_test(n)*(1-alpha(k))^(T-X_test(n

));

end

testing_l = testing_l + log(p);

end

testing_l;

end
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Problem 3

Figure 3: Original image Figure 4: K = 3

Figure 5: K = 4 Figure 6: K = 5

As we randomly initialize the means, some means might end up being unused (i.e.
the mean is not the closest mean to any point). This leads to NaN values when we
compute the new mean.

As an example of a better way of initializing these centroids, we might make sure
that no two initial means are too close by setting up a minimum distance between them.
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We implemented a segmentation method based on RGB features, therefore our
method is not spatially dependent leading to a fuzzy segmentation. To get better
segmentation, we should consider spatial features.

% Load image

raw_im = Tiff(’trees.tif’,’r’);

im = raw_im.readRGBAImage ();

im = im2double(im(1:200 ,1:200 , :));

imshow(im)

[height , width , ~] = size(im);

% 1. Initialization of mu values

K = 3;

mu = zeros([K 3]);

for k = 1:K

mu_h = randi ([1 height ]);

mu_w = randi ([1 width]);

mu(k, :) = im(mu_h,mu_w, :);

end

% 2. Loop

Z = zeros(height , width , K);

n_iteration = 0;

while true

% Compute new Z

old_Z = Z;

for n_h = 1: height

for n_w = 1: width

distance_to_mu = Inf;

for k = 1:K

if norm(mu(k, :) - squeeze(im(n_h, n_w, :))’) <

distance_to_mu

% update minimum distance

distance_to_mu = norm(mu(k, :) - squeeze(im(n_h,

n_w, :))’);

% clear old argmin

Z(n_h, n_w, :) = 0;

% update new argmin

Z(n_h, n_w, k) = 1;

end

end

end

end

n_iteration = n_iteration + 1;

if isequal(Z, old_Z);

break

end

% Compute new mu

for k = 1:K

for channel = 1:3
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mu(k, channel) = (sum(sum(im(:, :, channel) .* Z(:,:,k)))

)/sum(sum(Z(:, :, k)));

end

end

end

% 3. Create the segmented image

% If some means are not used they get NaN

% values when divided by zeros , we set these

% values to zeros

ind = find(isnan(mu));

n_unused_means = length(ind)/3;

mu(ind)= 0;

% Plotting the results

segmented_image = zeros(size(im));

for k = 1:K

for channel = 1:3

segmented_image(:, :, channel) = segmented_image(:, :,

channel) + mu(k, channel) * Z(:,:,k);

end

end

fprintf(’Number of means: %d\n’, K)

fprintf(’Number of effective means: %d\n’, K - n_unused_means)

fprintf(’Number of iterations: %d\n’, n_iteration)

imshow(segmented_image);
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Problem 4
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