
MACHINE LEARNING COMS 4771, HOMEWORK 4
Assigned November 5, 2015. Due November 19, 2015 before 10 am.

1 Problem 1 (10 points): EM Derivation

Consider a random variable x that is categorical with M possible values 1, . . . ,M . Suppose x is
represented as a vector such that x(j) = 1 if x takes the jth value, and

∑M
j=1 x(j) = 1. The

distribution of x is described by a mixture of K discrete multinomial distributions such that:

p(x) =

K∑
k=1

πkp(x|µk)

where

p(x|µk) =

M∏
j=1

µk(j)x(j)

where πk denotes the mixing coefficients for the kth component (aka the prior probability that the
hidden variable z = k), and µk specifies the parameters of the kth component. Specifically, µk(j)
represents the probability p(x(j) = 1|z = k) (and, therefore,

∑
j µk(j) = 1). Given an observed data

set {xn}, n = 1, · · · , N , derive the E and M step equations of the EM algorithm for optimizing the
mixing coefficients and the component parameters µk(j) for this distribution. For your reference,
here is the generic formula for the E and M steps. Note that θ is used to denote all parameters of
the mixture model.
E-step. For each n, calculate τnj = p(zn = j|xn, θ), i.e., the probability that observation i belongs
to each of the K clusters.
M-step. Set

θ := arg max
θ

N∑
n=1

K∑
j=1

τnj log
p(xn, zn = j|θ)

τnj
.

2 Problem 2 (20 points): EM for Bernoulli Mixtures

Part A: Start by downloading the implementation of the Expectation-Maximization algorithm for
Gaussian mixture-models for clustering d-dimensional vector data using a mixture of M multivariate
Gaussian models. The code is available form the tutorials link as mixmodel.m. You will also need
the four .m files below it. This includes randInit.m to initialize the parameters randomly and the
functions plotClust.m and plotGauss.m to show the Gaussians overlayed on a plot of the first two
dimensions of the data sets after EM converges. Try this code out on datasetA and datasetB by
showing a good fit of these two data-sets with 3 Gaussians.

Part B: Now implement a new EM algorithm for clustering Bernoulli models rather than Gaussians
for the following game: Alice has K rigged coins, she performs 1000 times the following routine: she
picks a coin and tosses it 50 times. The results are reported in the file ’problem2.mat’. Your goal is
to determine the most likely K and the Bernoulli coefficients associated with each coin.



Cross-validate to determine the best K (K ∈ {1, 2, 3, 4, 5}) by splitting the documents into training
and testing. Report the training and testing log-likelihoods as you vary the number of clusters for
various random initializations (average and standard deviation).

Report the optimal Bernoulli coefficients for the most likely K (average and standard deviation).

3 Problem 3 (10 points): K-Means for image segmentation

In this question you will implement the K-Means algorithm for image segmentation. Load the
built-in image ’trees.tif’, crop it and scale it using the following code:

raw im = T i f f ( ’ t r e e s . t i f ’ , ’ r ’ ) ;
im = raw im . readRGBAImage ( ) ;
im = im2double ( im ( 1 : 2 0 0 , 1 : 2 0 0 , : ) ) ;

You can display the image using the following command:

imshow ( im ) ;

Each pixel is represented by a 3-dimensional vector, corresponding to the RGB values. Implement
the K-means algorithm as discussed in class on the set of pixels. Show your results for a few values
of K (you should display an image where the pixel values are replaced by the nearest centroid mean
value, as given in the example).

Figure 1: Results for K = 5

As you randomly initialize the K means, you might have some numerical inconsistencies. Explain
why you get these inconsistencies and discuss a smartest way of initializing your means. Finally,
explain how you would improve this method to get better segmentation.



4 Problem 4 (10 points): Jensen’s inequality

Prove the following statements:
a) The arithmetic mean of non-negative numbers is at least their geometric mean.

b)
∑m
i=1 exp(θ>fi) ≥ exp

(
θ>
∑m
i=1 αifi −

∑m
i=1 αi logαi

)
, where αi =

exp(θ̂>fi)∑m
j=1 exp(θ̂>fj)

.

HINT: Use Jensen’s inequality.


