
MACHINE LEARNING COMS 4771, HOMEWORK 4
Assigned November 6, 2014. Due November 20, 2014 before 1.00pm.

1 Problem 1 (10 points): EM Derivation

Consider a random variable x that is categorical with M possible values 1, . . . ,M . Suppose x is
represented as a vector such that x(j) = 1 if x takes the jth value, and

∑M
j=1 x(j) = 1. The

distribution of x is described by a mixture of K discrete multinomial distributions such that:

p(x) =
K∑
k=1

πkp(x|µk)

where

p(x|µk) =
M∏
j=1

µk(j)x(j)

where πk denotes the mixing coefficients for the kth component (aka the prior probability that the
hidden variable z = k), and µk specifies the parameters of the kth component. Specifically, µk(j)
represents the probability p(x(j) = 1|z = k) (and, therefore,

∑
j µk(j) = 1). Given an observed data

set {xn}, n = 1, · · · , N , derive the E and M step equations of the EM algorithm for optimizing the
mixing coefficients and the component parameters µk(j) for this distribution. For your reference,
here is the generic formula for the E and M steps. Note that θ is used to denote all parameters of
the mixture model.
E-step. For each n, calculate τnj = p(zn = j|xn, θ), i.e., the probability that observation i belongs
to each of the K clusters.
M-step. Set

θ := arg max
θ

N∑
n=1

K∑
j=1

τnj log
p(xn, zn = j|θ)

τnj
.

2 Problem 2 (30 points): EM for Multinomial Mixtures

Start by downloading the implementation of the Expectation-Maximization algorithm for Gaussian
mixture-models for clustering d-dimensional vector data using a mixture of M multivariate Gaussian
models. The code is available form the tutorials link as mixmodel.m. You will also need the four
.m files below it. This includes randInit.m to initialize the parameters randomly and the functions
plotClust.m and plotGauss.m to show the Gaussians overlayed on a plot of the first two dimensions
of the data sets after EM converges. Try this code out on datasetA and datasetB by showing a good
fit of these two data-sets with 3 Gaussians.

Next implement a new EM algorithm for clustering multinomial models rather than Gaussians. Test
this code on the dataset ShakespeareMiddleton.data. Just type ’load ShakespeareMiddleton.data’
in Matlab to load it. This dataset is a matrix of 18 columns and 10025 rows. The data are the
word counts from 9 plays are by William Shakespeare and 9 plays by Thomas Middleton. The first
9 columns correspond to the Shakespeare plays Antony, Coriolanus, Hamlet, Julius, Lear, Othello,



Romeo, Timon, and Titus. The last 9 columns correspond to the Middleton plays: Cheapside,
Gallants, Maiden, Nowit, Phoenix, Puritan, Revenger, Trick, and Witch. The texts were downloaded
(and parsed to undo capitalization, punctuation, etc.) from

http://www.tech.org/~cleary/middhome.html
http://the-tech.mit.edu/Shakespeare/

The words (from a dicitonary of 10025 words total covering all the above 18 plays) for each row
are shown in the first column of ShakespeareMiddleton.txt if you are curious what the word counts
correspond to. We also added a 1 to the counts so words that never appear in a document get 1,
words that appear once get a count of 2, and so forth.

The work for this question will be to produce code to do a mixture of multinomials instead of a
mixture of Gaussians. Use this mixture of multinomials to cluster the Shakespeare and Middelton
documents for M = 2 different clusters. Show which documents go with which cluster and the
training log-likelihood as you start EM and iterate it. Then report the log-likelihood as you vary
the number of clusters for various random initializations. Then cross-validate to determine the best
number of multinomials in the mixture (M = 1, 2, 3 and 4) by splitting the documents into training
and testing (only use 2 documents of Shakespeare and 2 from Middleton for testing since the data
is so small). Report average and standard deviation of training and testing log-likelihoods over 10
different random initializes for M = 1, 2, 3 and 4 multinomials in the mixture model.

Note on Numerical Issues. You may need to add a small amount (i.e. do MAP estimation) to
the multinomials so that they don’t give you numerical problems and you will need to work with
log probabilities to avoid NaN and Inf numerical issues. Write a brief discussion about some of the
peculiarities you noted with EM, numerical issues, convergence issues, etc. For the E-step you will
need to calculate the following responsibility values (tau) which is the ratio τk = pk/

∑M
i=1 pi.

To avoid numerical problems and 0/0 problems, compute lk = log(pk) for all k = 1, . . . ,M
probabilities. Find the largest value z = maxMi=1 li and then compute tau using this formula:
τk = exp(lk−z)

exp(l1−z)+exp(l2−z)+... exp(lM−z) instead.

Note on Random Initialization. The search space is very large so if we’re not careful we’re likely
to start very far from our clusters and may experience peculiar convergence characteristics. One
neat way to handle this is to initialize the τn,k responsiblities rather than the distribution parameters
directly, then start by running an M step.

Note on Convergence. As discussed in lectures, theoretically we should see log likelihood con-
verging to a local maximum by rising monotonically at each iteration. On this data set, convergence
is rapid, although potentially to quite different solutions.

3 Problem 3 (10 points): Jensen’s inequality

Prove the following statements:
a) The the arithmetic mean of non-negative numbers is at least their geometric mean.

b)
∑m
i=1 exp(θ>fi) ≥ exp

(
θ>
∑m
i=1 αifi −

∑m
i=1 αi logαi

)
, where αi =

exp(θ̂>fi)Pm
j=1 exp(θ̂>fj)

.

HINT: Use Jensen’s inequality.


