
Machine Learning - Problem Set #3

Correction -

1 Problem 1: Casino and The Dice

/5
First of all let’s compute the probability of the player winning (outcomes sum is 7) given the type
of dice he is using.

p(wins|dice=fair) =
6∑
i=1

p(roll=i)p(roll=7-i) = 1
6

p(wins|dice=unfair) =
∑

i∈{3,4}
p(roll=i)p(roll=7-i) +

∑
i/∈{3,4}

p(roll=i)p(roll=7-i) = 2
32 + 4

122 = 1
4

Now recall that a binomial distribution with parameters n, µ (which captures here the probability
of the player winning in each of the n independent rolls of the dice) is

p(k) =
(
n

k

)
µk(1− µ)n−k, k ∈ [n] .

We want to compute the probability that the dice are unfair, given some n and k. Then we
will use this expression to compute the threshold t such that p(dice=unfair|n, k=t) ≥ 0.5, but
p(dice=unfair|n, k=t-1) < 0.5

Correction (Official) 1

mailto:

p(dice=unfair|n, k) = p(k|n,dice=unfair)p(dice=unfair|n)
p(k|n)

= p(k|n,dice=unfair)p(dice=unfair|n)
p(k|n,dice=unfair)p(dice=unfair|n) + p(k|n, dice=fair)p(dice=fair|n)

= 1
1 + p(k|n,dice=fair)p(dice=fair|n)

p(k|n,dice=unfair)p(dice=unfair|n)

= 1

1 + (n
k)(1

6)k(5
6)n−k 999

1000
(n

k)(1
4)k(3

4)n−k 1
1000

= 1

1 + �
�(n
k)5n−k6−n999

�
�(n
k)3n−k4−n

= 1
1 + 999(5

3)n−k(3
2)−n

0.5 ≤ 1
1 + 999(5

3)n−k(3
2)−n

1 ≥ 999
(5

3

)n−k (2
3

)n
0 ≥ log(999) + (n− k) log

(5
3

)
+ n log

(2
3

)
k ≥ log(999)

log 5− log 3 +
(

1 + log 2− log 3
log 5− log 3

)
n

k ≥ 13.5208 + 0.2063n

So when k, the number or player wins is bigger than 13.5208 + 0.2063n, where n is the total
number of plays, it is more likely that the player is using unfair dice.

To compute the minimum number of rounds we must observe to possibly make an inference like
that, we analyze the extreme case where k = n, i.e. when the player wins all rounds.

n ≥ 13.5208 + 0.2063n

n ≥ 13.5208
1− 0.2063

n ≥ 17.0351
n ≥ 18

So the player must start playing and win 18 rounds in a row for the probability of the dice being
unfair to be more than half. This means the casino must wait at least 18 rounds before suspecting
that the dice are loaded.

Correction (Official) 2

2 Problem 2: Coin Toss with Prior

/10
We will solve this problem without the use of previously computed Beta distribution statistics. It is
ok to identify that both the prior and the posterior distributions are instances of the Beta distribution,
and use formulas for this distribution (http://en.wikipedia.org/wiki/Beta_distribution).

Uniform prior and D = {H,T}

p(H) =
∫ 1

0
p(H|µ)p(µ)dµ =

∫ 1

0
µdµ = 1

2

p(µ|D) = p(D|µ)p(µ)∫ 1
0 p(D|µ)p(µ)dµ

= µ(1− µ)∫ 1
0 µ(1− µ)dµ

= µ(1− µ)
1
2 −

1
3

= 6µ(1− µ)

µML = argµ max[log(p(D|µ))] = argµ max[logµ+ log(1− µ)]
∂

∂µ
[log(p(D|µ))] = 1

µML
− 1

1− µML
= 0

µML = 1
2

µMAP = argµ max[log(p(D|µ)) + log(p(µ))] = argµ max[logµ− log(1− µ)] = µML

µMAP = 1
2

p(H|D) =
∫ 1

0
p(H|µ,D)p(µ|D)dµ =

∫ 1

0
6µ2(1− µ)dµ = 6

(1
3 −

1
4

)
= 1

2

V ar{p(µ|D)} = E{µ2|D} − (E{µ|D})2 =
∫ 1

0
6µ3(1− µ)dµ−

(∫ 1

0
6µ2(1− µ)dµ

)2

V ar{p(µ|D)} = 6
(1

4 −
1
5

)
− 36

(1
3 −

1
4

)2

V ar{p(µ|D)} = 1
20

Uniform prior and D = {T,T,T}

p(H) =
∫ 1

0
p(H|µ)p(µ)dµ =

∫ 1

0
µdµ = 1

2

p(µ|D) = p(D|µ)p(µ)]∫ 1
0 p(D|µ)p(µ)dµ

= (1− µ)3∫ 1
0 (1− µ)3dµ

= (1− µ)3

2− 1
4 −

3
2

= 4(1− µ)3

Correction (Official) 3

http://en.wikipedia.org/wiki/Beta_distribution

µML = argµ max[log(p(D|µ))] = argµ max[3 log(1− µ)] = 0

µMAP = argµ max[log(p(D|µ)) + log(p(µ))] == argµ max[3 log(1− µ)] = 0

p(H|D) =
∫ 1

0
p(H|µ,D)p(µ|D)dµ =

∫ 1

0
4µ(1− µ)3dµ = 4

(
−1

5 + 3
4 − 1 + 1

2

)
= 1

5

V ar{p(µ|D)} = E{µ2|D} − (E{µ|D})2 =
∫ 1

0
4µ2(1− µ)3dµ−

(∫ 1

0
4µ(1− µ)3dµ

)2

V ar{p(µ|D)} = 4
(
−1

6 + 3
5 −

3
4 + 1

3

)
−
(1

5

)2

V ar{p(µ|D)} = 2
75

Beta Distribution prior and D = {H,T}
Prior: p(µ) = 6µ(1− µ) = Beta(α = 2, β = 2)

p(H) =
∫ 1

0
p(H|µ)p(µ)dµ =

∫ 1

0
6µ2(1− µ)dµ = 6

(1
3 −

1
4

)
= 1

2

p(µ|D) = p(D|µ)p(µ)]∫ 1
0 p(D|µ)p(µ)dµ

= 6µ2(1− µ)2∫ 1
0 6µ2(1− µ)2dµ

= µ2(1− µ)2

1
5 −

1
2 + 1

3
= 30µ2(1− µ)2

µML = argµ max[log(p(D|µ))] = argµ max[logµ+ log(1− µ)]
∂

∂µ
[log(p(D|µ))] = 2

µML
− 2

1− µML
= 0

µML = 1
2

µMAP = argµ max[log(p(D|µ)) + log(p(µ))] == argµ max[2 logµ+ 2 log(1− µ)] = µML

µMAP = 1
2

p(H|D) =
∫ 1

0
p(H|µ,D)p(µ|D)dµ =

∫ 1

0
30µ3(1− µ)2dµ = 30

(1
5 −

1
2 + 1

4

)
= 1

2

V ar{p(µ|D)} = E{µ2|D} − (E{µ|D})2 =
∫ 1

0
30µ4(1− µ)2dµ−

(∫ 1

0
30µ3(1− µ)2dµ

)2

V ar{p(µ|D)} = 30
(1

7 −
1
3 + 1

5

)
−
(1

2

)2

V ar{p(µ|D)} = 1
28

Correction (Official) 4

Beta Distribution prior and D = {T,T,T}
Prior: p(µ) = 6µ(1− µ) = Beta(α = 2, β = 2)

p(H) =
∫ 1

0
p(H|µ)p(µ)dµ =

∫ 1

0
6µ2(1− µ)dµ = 6

(1
3 −

1
4

)
= 1

2

p(µ|D) = p(D|µ)p(µ)]∫ 1
0 p(D|µ)p(µ)dµ

= 6µ(1− µ)4∫ 1
0 6µ(1− µ)4dµ

= µ(1− µ)4

1
6 −

4
5 + 3

2 −
4
3 + 1

2
= 30µ(1− µ)4

µML = argµ max[log(p(D|µ))] = argµ max[3 log(1− µ)]
µML = 0

µMAP = argµ max[log(p(D|µ)) + log(p(µ))] = argµ max[logµ+ 4 log(1− µ)]
∂

∂µ
[log(p(D|µ)) + log(p(µ))] = 1

µMAP
− 4

1− µMAP

µMAP = 1
5

p(H|D) =
∫ 1

0
p(H|µ,D)p(µ|D)dµ =

∫ 1

0
30µ2(1− µ)4dµ = 30

(15
7 −

2
3 + 6

5 − 1 + 1
3

)
= 2

7

V ar{p(µ|D)} = E{µ2|D} − (E{µ|D})2 =
∫ 1

0
30µ3(1− µ)4dµ−

(∫ 1

0
30µ2(1− µ)4dµ

)2

V ar{p(µ|D)} = 3
28 −

(2
7

)2

V ar{p(µ|D)} = 5
196

Summary of Results

Case p(H) p(µ|D) µML µMAP p(H|D) V ar{p(µ|D)}

µ = Uniform[0, 1];D = {H,T} 1
2 6µ(1− µ) 1

2
1
2

1
2

1
20

µ = Uniform[0, 1];D = {T, T, T} 1
2 4(1− µ)3 0 0 1

5
2
75

µ = Beta(2, 2);D = {H,T} 1
2 30µ2(1− µ)2 1

2
1
2

1
2

1
28

µ = Beta(2, 2);D = {T, T, T} 1
2 30µ(1− µ)4 0 1

5
2
7

5
196

Reason why maximum likelihood estimation might not be good in this case
We have too few observations, what makes ML estimation too brittle and prone to extreme

results. Moreover, in this case we do have some prior knowledge about how a coin should behave
(even if it is not fair it should not always land on the same side) and ML estimation ignores that.

Correction (Official) 5

3 Problem 3: Conditional Independence

/5
1. a ⊥⊥ b|c→ a ⊥⊥ b is False . Conditional independence does not imply unconditional indepen-

dence. For a counterexample let’s consider a, b, c are binary random variables, with joint
probabilities:

c=0 c=1

b=0 b=1 b=0 b=1

a = 0 1
15

1
15 a = 0 2

15
4
15

a = 1 2
15

2
15 a = 1 1

15
2
15

In this case a ⊥⊥ b|c because:

p(a|b = 0, c) = p(a|b = 1, c) = p(a|c)

But a 6⊥⊥ b because:
p(a = 1|b = 0) = 1

2 6= p(a = 1|b = 1) = 4
9

2. a ⊥⊥ b→ a ⊥⊥ b|c is False . Unconditional independence does not imply conditional indepen-
dence. For a counterexample let’s consider a, b, c are binary random variables, with joint
probabilities:

c=0 c=1

b=0 b=1 b=0 b=1

a = 0 3
18

1
18 a = 0 0

18
2
18

a = 1 0
18

2
18 a = 1 6

18
4
18

In this case a ⊥⊥ b because:

p(a = 1|b = 0) = p(a = 1|b = 1) = 2
3

p(a = 0|b = 0) = p(a = 0|b = 1) = 1
3

But a 6⊥⊥ b|c because, for example:

p(a = 1|b = 0, c = 0) = 0 6= p(a = 1|b = 1, c = 0) = 2
3

3. (a ⊥⊥ b) ∧ (b ⊥⊥ c)→ a ⊥⊥ c is False . This statement is trivially false. Consider the case where
a = c, for example. By definition, a is not independent of c, since they are the same variable,
but they can be both independent of b.

Correction (Official) 6

4 Problem 4: Maximum Likelihood

/10
Let’s compute the likelihood, take the derivative in respect to λ and set it to zero:

p(x1 . . . xn|α, λ) =
n∏
i=1

1
Γ(α)λ

αxα−1
i e−λxi

log p(x1 . . . xn|α, λ) =
n∑
i=1
− log(Γ(α)) + α log λ+ (α− 1) log xi − λxi

∂

∂λ
log p(x1 . . . xn|α, λ) =

n∑
i=1

α

λ
− xi

0 =
n∑
i=1

α

λMLE
− xi

λMLE =
∑n
i=1 xi
nα

Now to completely prove that this is a maximum point of likelihood (and not a minimum), we’ll
take the second derivative of the log-likelihood and verify that it is negative at this point.

∂2

(∂λ)2 log p(x1 . . . xn|α, λ) =
n∑
i=1
− α

λ2

= −nα
λ2

≤ 0

Since both α and n are strictly positive values, and λ2 will always be non-negative, we conclude
that the second derivative of the log-likelihood is always non-positive, and therefore the λMLE we
computed is the maximum likelihood estimate.

Correction (Official) 7

5 Problem 5: Kernel Logistic Regression

/20
5.1 Gradient Expression and Update Rule

First we will compute the gradient of the cost and the update rule:

∇wJ(w) = ∂

∂w

[
−

N∑
i=1

log
(
σ(yiwTki)

)
+ λwTw

]

= −
N∑
i=1

σ(yiwTki)(1− σ(yiwTki))yiki
σ(yiwTki)

+ 2λw

= −
N∑
i=1

[(
1− σ(yiwTki)

)
yiki

]
+ 2λw

wj := wj−1 +
N∑
i=1

[
1− σ(yiwTki)

]
yiki − 2λw

This is the update rule for the gradient descent. For the stochastic gradient descent the only
difference is that we randomly choose p points to do the summation instead of considering all points
in the training set.

5.2 Gradient Descent

The step size used was the maximum value found that made the descent smooth (without increasing
the cost from time to time).

The parameters of the classifier with best performance in terms of accuracy are shown in the
table below. We also show how the cost decreased through time during the training.

step size (η) 0.05

stopping criteria (ε) 1e-5

regularization factor (λ) 1e-3

iterations to train 29722

time to train 52s

test accuracy 92.7%

Table 1: Results of gradient descent.

Correction (Official) 8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time (s)

C
os

t

Gradient Descent

Figure 1: Evolution of the cost through time (during training).

5.3 Stochastic Gradient Descent (p=1)

For the stochastic gradient descent few changes were necessary in the algorithm:
1. The gradient in each iteration was computed with a single random observation of the training

set.
2. The algorithm always kept stored the lowest cost achieved with its corresponding w. The

algorithm has a time limit of 60 seconds and if no solution was found until then it would
outputs the best solution seen so far.

3. The step size was reduced because otherwise the algorithm would not converge.
The parameters of the classifier with best performance in terms of accuracy are shown in the

table below. We also show how the cost decreased through time during the training.

Correction (Official) 9

step size (η) 0.005

stopping criteria (ε) 1e-5

regularization factor (λ) 1e-3

iterations to train 67165

time to train 57s

test accuracy 92.5%

Table 2: Results of stochastic gradient descent with p=1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
os

t

Stochastic Gradient Descent (p=1)

Figure 2: Evolution of the cost through time (during training).

Now with stochastic gradient descent we can see that the cost indeed goes down with time but
has a lot of noise. Since we are always storing the best solution seen so far, what really matters is
the lowest cost ever achieved, and we can see that the lower bound of the cost decreases consistently.

We can also conclude that the stochastic gradient descent needs more iterations to achieve the
same low cost solution as gradient descent.On the other hand, it iterates much faster. It is expected
that with bigger data sets the advantage of the stochastic gradient descent is greater, but in this
specific case both gradient descent and stochastic gradient descent achieved practically the same
accuracy with the same training time.

Correction (Official) 10

5.4 Stochastic Gradient Descent (p=100)

This version of the stochastic gradient descent is in the middle between the gradient descent and the
stochastic gradient descent with p=1. In this method we select a batch of observations to compute
the gradient in each iteration, and this batch is selected randomly from the training set (without
replacement).

The parameters of the classifier with best performance in terms of accuracy are shown in the
table below. We also show how the cost decreased through time during the training.

step size (η) 0.01

stopping criteria (ε) 1e-5

regularization factor (λ) 1e-3

iterations to train 62394

time to train 60s

test accuracy 92.8%

Table 3: Results of stochastic gradient descent with p=100.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time (s)

C
os

t

Stochastic Gradient Descent (p=100)

Figure 3: Evolution of the cost through time (during training).

We can see in this case that there is some noise during the descent, but not nearly as much as
when p=1.

Correction (Official) 11

5.5 Comparison of the descent of the tree methods

To compare how the cost function decreases for the different methods let’s do another run of the 3
algorithms with the same step size for all three (step size = 0.05). We measured the cost function
along the time (not the iteration count) and got the following results:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

C
os

t

Method Comparison

Stochastic G.D. (p=1)
Stochastic G.D. (p=100)
Gradient Descent

Figure 4: Evolution of the cost through time (during training).

The stochastic gradient descent with p=100 seems to be the best practical choice in this case,
although for this dataset size all three methods are very close.

This is the code used to generate the reference solutions:
1 %% Pre−p r o c e s s i n g

c l e a r
3 load data1 . mat

5 N = s i z e (TrainingX , 1) ;

7 % Compute k2 (var i ance o f k e r n e l)
d i s tances_squared = z e r o s (N,N) ;

9 f o r i = 1 :N
f o r j = 1 :N

11 distances_squared (i , j) = norm(TrainingX (i , :) − TrainingX (j , :)) ;
end

13 end

15 k2 = sum(sum(distances_squared)) / (N^2) ;

17 % Compute the Gram Matrix
G = z e r o s (N,N) ;

19 f o r i = 1 :N
f o r j = 1 :N

Correction (Official) 12

21 G(i , j) = exp(−(d i s tances_squared (i , j)) /k2) ;
end

23 end
c l e a r d i s tances_squared

25
%% Gradient Descent

27
time_to_record = 5 ;

29 s t ep_s i z e = . 0 1 ;
e p s i l o n = 1e−5;

31 lambda = 1e−3;
w = z e r o s (N, 1) ;

33 cost_by_iterat ion = [] ;
i = 1 ;

35 record ing_cost = true ;
t i c ;

37
whi le (t rue)

39 % compute the c o s t and gr ad i e n t o f the cur rent w
cost_now = c o s t (TrainingY , G, w, lambda) ;

41 grad = grad i en t (TrainingY , G, w, lambda) ;

43 i f (r ecord ing_cost)
cost_by_iterat ion (i) = cost_now ;

45 end

47 i f (mod(i , 1000) == 0)
d i s p l a y (s p r i n t f (’ Cost : %.5 f ’ , cost_now)) ;

49 d i s p l a y (s p r i n t f (’ Grad : %.5 f ’ , norm(grad))) ;
end

51
i f (r ecord ing_cost && toc > time_to_record)

53 record ing_cost = f a l s e ;
end

55
% i f g rad i en t too small , s top

57 i f (norm(grad) < e p s i l o n)
break ;

59 end

61 w = w − s t ep_s i z e ∗ grad ;
i = i +1;

63 end

65 % eva luate accuracy
Ypredicted = p r e d i c t (TrainingX , w, TestX , k2) ;

67 r i g h t = sum(Ypredicted == TestY) ;
accuracy = r i g h t / s i z e (TestY , 1) ;

69
% p l o t c o s t through time

71 time = l i n s p a c e (0 , time_to_record , s i z e (cost_by_iterat ion , 2)) ;
p l o t (time , cost_by_iterat ion , ’b− ’ , ’ LineWidth ’ , 1) ;

73 x l a b e l (’Time (s) ’) ; y l a b e l (s p r i n t f (’ Cost ’)) ;
t i t l e (’ Gradient Descent ’) ;

75
%% S t o c h a s t i c g rad i e n t descent p = 1

77
time_to_record = 5 ;

79 s t ep_s i z e = . 0 0 5 ;
e p s i l o n = 1e−5;

81 lambda = 1e−3;
w = z e r o s (N, 1) ;

83 cost_by_iterat ion_sto = s i z e (1 ,5000) ;
i = 1 ;

85 record ing_cost = true ;

Correction (Official) 13

t i c ;
87 best_w = w;

min_cost = 1000 ;
89

whi le (t rue)
91 % compute the c o s t and gr ad i e n t o f the cur rent w

cost_now = c o s t (TrainingY , G, w, lambda) ;
93

% get one random input
95 chosen = c e i l (N∗ rand) ;

grad = grad i en t (TrainingY (chosen) , G(chosen , :) , w, lambda) ;
97

i f (r ecord ing_cost)
99 cost_by_iterat ion_sto (i) = cost_now ;

end
101

i f (mod(i , 1000) == 0)
103 d i s p l a y (s p r i n t f (’ Cost : %.5 f ’ , cost_now)) ;

d i s p l a y (s p r i n t f (’ Grad : %.5 f ’ , norm(grad))) ;
105 end

107 i f (r ecord ing_cost && toc > time_to_record)
record ing_cost = f a l s e ;

109 end

111 % i f g rad i en t too small , s top
i f (norm(grad) < e p s i l o n)

113 break ;
end

115
w = w − s t ep_s i z e ∗ grad ;

117 i = i +1;

119 i f (cost_now < min_cost)
min_cost = cost_now ;

121 best_w = w;
end

123 end
w = best_w ;

125
% eva luate accuracy

127 Ypredicted = p r e d i c t (TrainingX , w, TestX , k2) ;
r i g h t = sum(Ypredicted == TestY) ;

129 accuracy = r i g h t / s i z e (TestY , 1) ;

131 time = l i n s p a c e (0 , time_to_record , s i z e (cost_by_iterat ion_sto , 2)) ;
p l o t (time , cost_by_iterat ion_sto , ’b− ’ , ’ LineWidth ’ , 1) ;

133 x l a b e l (’Time (s) ’) ; y l a b e l (s p r i n t f (’ Cost ’)) ;
t i t l e (’ S t o c h a s t i c Gradient Descent (p=1) ’) ;

135
%% S t o c h a s t i c g rad i e n t descent p = 100

137
time_to_record = 5 ;

139 s t ep_s i z e = . 0 1 ;
e p s i l o n = 1e−5;

141 lambda = 1e−3;
w = z e r o s (N, 1) ;

143 cost_by_iterat ion_sto2 = s i z e (1 ,5000) ;
i = 1 ;

145 record ing_cost = true ;
t i c ;

147 best_w = w;
min_cost = 1000 ;

149
whi le (t rue)

Correction (Official) 14

151 % compute the c o s t and gr ad i e n t o f the cur rent w
cost_now = c o s t (TrainingY , G, w, lambda) ;

153
% get random inputs

155 chosen = randsample (N, 100) ;
grad = grad i en t (TrainingY (chosen) , G(chosen , :) , w, lambda) ;

157
i f (r ecord ing_cost)

159 cost_by_iterat ion_sto2 (i) = cost_now ;
end

161
i f (mod(i , 1000) == 0)

163 d i s p l a y (s p r i n t f (’ Cost : %.5 f ’ , cost_now)) ;
d i s p l a y (s p r i n t f (’ Grad : %.5 f ’ , norm(grad))) ;

165 end

167 i f (r ecord ing_cost && toc > time_to_record)
record ing_cost = f a l s e ;

169 end

171 % i f g rad i en t too small , s top
i f (norm(grad) < e p s i l o n)

173 break ;
end

175
w = w − s t ep_s i z e ∗ grad ;

177 i = i +1;

179 i f (cost_now < min_cost)
min_cost = cost_now ;

181 best_w = w;
end

183 end
w = best_w ;

185
% eva luate accuracy

187 Ypredicted = p r e d i c t (TrainingX , w, TestX , k2) ;
r i g h t = sum(Ypredicted == TestY) ;

189 accuracy = r i g h t / s i z e (TestY , 1) ;

191 time = l i n s p a c e (0 , time_to_record , s i z e (cost_by_iterat ion_sto2 , 2)) ;
p l o t (time , cost_by_iterat ion_sto2 , ’b− ’ , ’ LineWidth ’ , 1) ;

193 x l a b e l (’Time (s) ’) ; y l a b e l (s p r i n t f (’ Cost ’)) ;
t i t l e (’ S t o c h a s t i c Gradient Descent (p=100) ’) ;

195
%% Descent comparison

197

199 time = l i n s p a c e (0 , time_to_record , s i z e (cost_by_iterat ion_sto , 2)) ;
p l o t (time , cost_by_iterat ion_sto , ’ r− ’ , ’ LineWidth ’ , 1) ;

201
hold a l l ;

203 x l a b e l (’Time (s) ’) ; y l a b e l (s p r i n t f (’ Cost ’)) ;
t i t l e (’ Method Comparison ’) ;

205
time = l i n s p a c e (0 , time_to_record , s i z e (cost_by_iterat ion_sto2 , 2)) ;

207 p l o t (time , cost_by_iterat ion_sto2 , ’ k− ’ , ’ LineWidth ’ , 2) ;

209 time = l i n s p a c e (0 , time_to_record , s i z e (cost_by_iterat ion , 2)) ;
p l o t (time , cost_by_iterat ion , ’b− ’ , ’ LineWidth ’ , 2) ;

211

213 hold o f f ;

215 l egend (’ S t o c h a s t i c G.D. (p=1) ’ , ’ S t o c h a s t i c G.D. (p=100) ’ , ’ Gradient Descent ’ , ’ Locat ion ’ , ’

Correction (Official) 15

Northeast ’)

Extra functions:
1 f u n c t i o n [c o s t] = c o s t (Y, G, w, lambda)

%COST Returns the c o s t o f the cur rent w
3 c o s t = lambda ∗(w’∗w) − sum(log (s igmoid ((G∗w) .∗Y))) / s i z e (Y, 1) ;

end
5

f u n c t i o n [output] = sigmoid (x)
7 %SIGMOID

output = 1./(1+ exp(−x)) ;
9 end

11 f u n c t i o n [output] = p r e d i c t (Xtr , w, X, k2)
%PREDICT

13
Xpanded = z e r o s (s i z e (X, 1) , s i z e (Xtr , 1)) ;

15 f o r i = 1 : s i z e (X, 1)
f o r j = 1 : s i z e (Xtr , 1)

17 Xpanded (i , j) = exp(−(norm(X(i , :) − Xtr (j , :)) ^2) /k2) ;
end

19 end

21 output = 2∗(s igmoid (Xpanded∗w) > 0 . 5) − 1 ;
end

23
f u n c t i o n [output] = gr ad i e n t (Y, G, w, lambda)

25 %GRADIENT
output = 2∗ lambda∗w − (G’) ∗(Y.∗(1− s igmoid ((G∗w) .∗Y))) / s i z e (Y, 1) ;

27 end

Correction (Official) 16

	1 Problem 1: Casino and The Dice
	2 Problem 2: Coin Toss with Prior
	3 Problem 3: Conditional Independence
	4 Problem 4: Maximum Likelihood
	5 Problem 5: Kernel Logistic Regression
	5.1 Gradient Expression and Update Rule
	5.2 Gradient Descent
	5.3 Stochastic Gradient Descent (p=1)
	5.4 Stochastic Gradient Descent (p=100)
	5.5 Comparison of the descent of the tree methods

