
MACHINE LEARNING COMS 4771, HOMEWORK 3

Assigned October 15, 2014. Due November 6, 2014 before 1:00pm.

1 Problem 1 (10 points)

In this problem we consider tossing a coin with two sides labeled H and T . Assume all tosses are
iid with p(H) = µ.

1.1 Discrete possible parameter values

There are 3 possible values for µ. It could be fair µ = 1
2 , biased tails µ = 1

4 , or biased heads µ = 3
4 .

Assume our prior is that each of these possibilities is equally likely.

Looking forward, what is the minimum number of tosses we’d need to see in order to conclude that
p(µ = 1

2 ) > 1
2 (strictly greater)? Give an example of a sequence of tosses with this length which

would lead to this conclusion. Prove your results.

Instead, assume no tosses have yet occurred. What is the minimum number of tosses we’d need to
see in order to conclude that p(µ = 3

4 ) > 1
2 (strictly greater)? Give an example of a sequence of

tosses with this length which would lead to this conclusion. Prove your results.

1.2 Continuous possible parameter values

You may find results on the Beta distribution given in lecture 2 useful and may quote them without
proof.

Consider two possible prior distributions: (A) µ ∼ Uniform[0, 1]; (B) we have some reason to think
the coin is likely to be fair so assume µ has a probability distribution which has the form of a concave
parabola with its maximum at 1

2 and falls to 0 at 0 and 1.

Along with 2 possible realizations: (1) D1 = {H, T }; (2) D2 = {T, T, T }.

For each of the 4 combinations of priors and realizations, derive with proof:

• p(H) given the prior

• the posterior distribution p(µ|D) [ensure this is properly normalized]

• the maximum likelihood estimate µML given the data D

• the MAP estimate µMAP given the data D

• p(H |D), i.e. the full Bayesian probability that the next toss is H

• the variance of the posterior distribution p(µ|D)

Give one reason why the maximum likelihood estimate might not be good in this context.



2 Problem 2 (5 points): Bayes Rule

Assume we have a good test for swine flu that is highly accurate, and outputs either true(T) or
false(F). If a patient has swine flu and takes the test, the test will output true(T )99% of the time.
If a patient does not have swine flu, the test will output false (F )98% of the time.

Assume that we know that 1 in 10,000 people have swine flu.

If Joe takes the test and it outputs T, what is the probability that Joe has swine flu?

3 Problem 3 (5 points): Conditional Independence

Prove or disprove with a counterexample:

1. For random variables u, v, w and x : u ⊥ (v, w)|x → u ⊥ v|x.

2. For single events A, B and C : A ⊥ (B, C) → A ⊥ B.

4 Problem 4 (10 points): Maximum Likelihood

The Weibull distribution is a probability density over non-negative scalars, x ≥ 0. One particular
form is as follows p(x|λ) = 3

λ
(x

λ
)2e−( x

λ
)3 . The density has a scalar parameter λ > 0 which adjusts

its shape as shown below.

What is the maximum likelihood estimate of λ from a dataset x1, · · · , xn of n iid samples?

5 Problem 5 (20 points): Kernel Logistic Regression

Load dataset ’data1.mat’. Implement kernel logistic regression with an ℓ2 regularizer using the
empirical kernel map. In other words, minimize:

J(w) = −

N∑

i=1

log(σ(yiw
⊤ki)) + λw⊤w



to get w. Here ki is a column vector such that ki = [k(xi, x1), · · · , k(xi, xj), · · · , k(xi, xN )]⊤.
Here yi ∈ {−1, +1} is the given label for each input xi ∈ R

d. Note that function σ is defined
as σ(v) = 1/(1+e−v). Use the radial basis function (RBF or Gaussian) kernel exp(−‖xi−xj‖

2/κ2),

where the parameter κ is used as the mean of the pairwise distance, i.e., κ2 = 1
N2

∑N

i,j=1 ‖xi −xj‖
2.

After w is obtained, for any test input x, compute p(y = 1|x) = σ(w⊤kx), where kx =
[k(x, x1), · · · , k(x, xj), · · · , k(x, xN )]⊤. If p(y = 1|x) > 0.5, the predicted label y = 1, otherwise,
y = −1. Report the accuracy: the percentage of test data where your predicted label agrees with
the given ground truth label. To optimize J(w), use two methods: gradient descent and stochastic
gradient descent. For stochastic gradient descent, use p points to estimate the gradient. Experiment
with p = 1 and p = 100. Experiment with the step size and choose the one that works for you.
Compare how the value of the cost function decreases with time for different methods. Stop the
iterations when the gradient becomes smaller than epsilon (say, 1e − 5).


