
MACHINE LEARNING COMS 4771, HOMEWORK 2
Assigned October 1, 2015. Due October 15, 2015 before 10am.

Please submit separate files for a) write-up, b) Matlab source files and c) figures (if you choose to
include them separately from the writeup). Do not include any other files. Your write-up should
be in ASCII plain text format (.txt) or Postscript (.ps) or the Adobe Portable Document Format
(.pdf). Please do not submit Microsoft Office documents, LaTeX source code, or something more
exotic since we will not be able to read it. LaTeX is preferred and highly recommended, but it is not
mandatory. You can use any document editing software you wish, as long as the final product is in
.ps or .pdf. Even if you do not use LaTeX to prepare your document, you can use LaTeX notation
to mark up complicated mathematical expressions, for example, in comments in your Matlab code.
See the Tutorials page for more information on LaTeX. All your code should be written in Matlab.
Please submit all your source files, each function in a separate file. Clearly denote what each function
does, which problem it belongs to, and what the inputs and the outputs are. Do not resubmit code or
data provided to you. Do not submit code written by others. Identical submissions will be detected
and both parties will get zero credit. In general, shorter code is better. Sample code is available
on the Tutorials web page. Datasets are available from the Handouts web page. You may include
figures directly in your write-up or include them separately as .jpg, .gif, .ps or .eps files, and refer
to them by filename.

Submit your work via courseworks.columbia.edu.

Problem 1 (15 points)

VC Dimension

(A) Consider a perceptron in Rd. How many points can it shatter or more specifically what
is the VC dimension of this perceptron? Explain your answer.

(B) Prove that V C(H) ≤ log2 |H| where H is a hypothesis space. (A hypothesis on a set
of n points, defines which of two classes can each point belong to. A hypothesis space is a family of
all possible hypotheses).

(C) Consider the instance space X = {1, 2, ..., 999}. Let C be a concept class consisting of
10 concepts, c0 through c9. A number n ∈ X is an element of ci if the normal decimal representa-
tion of n contains the digit i. So, for example, the number ”778” is an element of c7 and c8. What
is the VC dimension of C? Justify your answer.
(Hint: To prove the VC dimension of C is k, you should justify the following claims. 1. There exist
k elements in X that C can shatter. 2. No k + 1 or more elements in X that C can shatter.)

Problem 2 (10 points)

Kernels

(A) Consider any Mercer kernel defined by k(x, x̃) = φ(x)>φ(x̃). We are given a sample
S = {x1, x2, ..., xn} of n inputs. We can form the Kernel (Gram) matrix K as an n × n matrix
of kernel evaluations between all pairs of examples i.e., Ki,j = k(xi, xj). Mercer’s Theorem



states that a symmetric function k(., .) is a kernel iff for any finite sample S the kernel matrix K is
positive semi-definite. Recall that a matrix K ∈ Rn×n is positive semi-definite iff c>Kc ≥ 0 for all
real-valued vectors c ∈ Rn. Prove Mercer’s theorem in one direction: for any Mercer kernel k(., .)
and finite sample S, the kernel matrix K is positive semi-definite.

Given any two Mercer kernels k1(., .) and k2(., .), prove that the following are also Mercer kernels:
a) k(x, x̃) = αk1(x, x̃) + βk2(x, x̃) for α, β ≥ 0
b) k(x, x̃) = k1(x, x̃)× k2(x, x̃)
c) k(x, x̃) = f(k1(x, x̃)) where f is any polynomial with positive coefficients
d) k(x, x̃) = exp(k1(x, x̃))

(B) For the kernel K(x, y) = exp(− 1
2 ‖ x− y ‖

2) = ϕ(x) · ϕ(y), write an explicit formula for ϕ.

Problem 3 (10 points)

In this problem, you will derive the kernel regression ŷ = w>φ(x).

Recall the linear regression: ŷ = w>x with regularized cost function:

L(w) =

n∑
i=1

(w>xi − yi)2 + λw>w

We introduce new variables, ξi = w>xi − yi, and rewrite the objective function as following.

min
ξ,w

n∑
i=1

ξ2i + λw>w

subject to: w>xi − yi − ξi = 0, i = 1, ..., n

Similar derivation of SVM you learned in class, you can derive the solution to the kernel regression
in the following two steps.

a) Derive the dual using Lagrangian, and compute the solution to the dual.

b) Derive the solution to the kernel regression using the result of part a.

Problem 4 (15 points)

You will build an SVM to classify data and use cross-validation to find the best SVM kernel and
regularization value. Try different polynomials and RBF kernels (varying polynomial order from 1
to 5) and varying sigma in the RBF kernel. Also, try different values of C in the SVM. First, extract
the support vector machine Matlab code from Steve Gunn’s software package here:

http://www.isis.ecs.soton.ac.uk/resources/svminfo/

In svc.m replace [alpha lambda how] = qp(...);

with [alpha lambda how] = quadprog(H,c,[],[],A,b,vlb,vub,x0);



Clearly denote the various components and the function calls or scripts that execute your Matlab
functions. Note, to save the current figure in Matlab as a postscript file you can type:

print -depsc filename.eps

To test your SVM, you will build a simple object recognition system. Download the data file hw2-
2015-dataset.mat from the Handouts web page. This loads a matrix X of size 100 x 4 and a vector
Y of size 100 x 1. The X matrix consists of 100 data points of dimensionality 4 that belong to one of
two classes. Their actual labels are given in the Y vector. Train your SVM on half of the examples
and test on the other half (or other random subsets of the examples if you see fit). Show performance
of the SVM for linear, polynomial and RBF kernels with different settings of the polynomial order,
sigma and C value. Try to hunt for a good setting of these parameters to obtain high recognition
accuracy.


