COMS4771: Homework 2 Solution

October 7, 2015

Problem 1
(A)

Answer: The VC dimension of perceptron in R? is d+1.

Proof. 1t will be proved in two steps:
(1) There exist d+1 points that perceptron can shatter.
(2) No d + 2(or more) points can be shattered by H.

(1)

Suppose the perceptron f(z):

fla) = 1 ifwlz+b>0,
| —1 otherwise.

Consider d+1 points (¥ = (0, ...,0)7, 2 = (1,0,7..,0)7, 2% = (0,1, ...,0)7, ...,z =
(0,0, ...,1)T. After these d+1 points being arbitrarily labeled: y = (vo,¥1, ..., y4)" €
{_1’ 1}d+1‘

Let b = 0.5 yp and w = (wy, we, ...wq) where w; = y;,1 € {1,2,...,d}. Thus f(z)
can label all these d 4+ 1 points correctly.

So the VC dimension of perceptron is at least d + 1.

(2)

Expand x € R? to X € R4 by letting (X)T = (27, 1), and let WT = (w?,b).

Thus:
1 ifWrX >0,

—1 otherwise.

s ={

Assume there exist d+2 points that perceptron in R? can shatter, namely (), 2® .. z(@+2) ¢
R? corresponding to XM X®)  X(d+2) ¢ pdt1
Since d + 2 points in R, there exists certain i s.t.:

() — Zaj X0
i
where at least one a; # 0. Let S = {j|j # i,a; # 0}.
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Vj € S, we give 1) the label sign(a;), and give (i) a label —1.
By our assumption, there exists W that make f(X) label those d+2 points correctly.
So Vj € S, we have

a; - WEXU) >0,

and
wTrx® <o.
Also:

WX = W) a; - X))

J#i
= WT(Z a; - X))

jes

jes

> 0.

So, our assumption is false. The VC dimension of perceptron in R? is at most d+-1.

Combine (1) and (2), we can conclude that the VC dimension of perceptron in R?
isd+1. O

(B)

Proof. Suppose a hypothesis space H whose VC-dimension VC(H) = n, so there exist
n points that H can shatter. We can arbitrarily give 0 or 1 label to each of the points,
so there are 2™ ways to label them. No matter how the n points are labeled, there
exist a hypothesis h € H which can label them correctly. H must consists at least 2"
different hypothesises, that is |H| > 2". So VC(H) = n < log, |H]|. O
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(C)
Answer: The VC dimension of C is 2.
Proof. First, VCdim(C) < log, |C| = log, 10, so VC'dim(C) < 3.
Assume there exist X7, Xo, X3 € X = {1,2,...,999} that can be shattered by C,

which means all kinds of labels can be realized by concept class C. So 3{¢;,, ¢y, ..., Cis } C
C, which can label X7, X5, X3 as it’s showed in Table 1.

X1 Xy X
G, 0 0 0
Ci, 0 0 1
Cig 0 1 0
G, 0 1 1
¢, 1 0 0
Cig 1 0 1
Ci, 1 1 0
¢, 1 1 1

Table 1

As it can be seen from Table 1, there are at least 3 concepts € C' that label X; to
be 1, so X; must contains at least 4 different digits. However, X; < 999, thus it can
contain at most 3 digits.The assumption is proved to be false.

So:

VCdim(C) < 2.

Consider the following Table 2.

34 24
¢ 0 0
Cy 0 1
C3 1 0
Cy 1 1
Table 2

As it show in Table 2, 34 and 24 can be shattered by concept class C'. So:
VCdim(C) > 2.

Finally, we can conclude that the VC dimension of C' is 2. [
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Problem 2

(A)
Proof.
Kij = k(xi, ;) = ¢(x3) - ¢(x5)
CTKC = ZZCiCjKZ'j
= chicjéf)(%)'ﬁb(ﬂ?j)
= (Z cip(xi)) - (Z cip(xi))
= I o3
> 0 l
]
a)
Proof.
k(z,y) = aki(z,y)+ Bka(z, y)
= (Vagi(z),Vasi(y)) + (v Ba(x) f@
= (Vagi(z \f¢2 I, [V (y \fqﬁz
]
b)

Proof. Let fi(z) be the ith feature value under the feature map ¢1, g;(x) be the ith feature value
under the feature map ¢o.
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Then:

k‘(d?,y) = kl(:c,y)kg(x,y)
= (¢1(z) - 1(y))(d2(2) - P2(v))

= O_fi@) )OO gi(x)g;(v))
i=0 Jj=0

= > fil@) fiy)gi(x)g; (y)
i

= > (fil@)g; (@) (fi(y)g;(v))

]

= (#3(2), 3(v))
where ¢3 has feature h; j(z) = fi(z)g;(x). O
c)

Since each polynomial term is a product of kernels with a positive coefficient, the proof follows
from part a and b.

d)
By Taylor expansion:
x
T __
¢ = Z il
i=0

Then the proof follows part c.

(B)

Proof. We wish to show that the kernel k(x,y) = exp(—3|x — y||?>) can be written as an inner-
product between some mapping ¢ on x and y, in other words, k(x,y) = (¢(x),¢(y)). Assume
that x,y € R% Consider the formula for ¢,(x) = (7/2)~%*exp(—||x — z||?) which is an infinite
dimensional function over z € R? (rather than a finite dimensional vector with z being a discrete
index as we did in class). Similarly, we have ¢,(y) = (7/2)"%*exp(—|y — 2z||?). Then, we define
the kernel as k(x,y) = (#2(x), ¢2(y)) = |, ¢2(x) X ¢(y)dz. This integral evaluates to

k(x,y) = /(7T/2)d/4 exp (=[x — zl|*) x (w/2)" " exp (—ly —2°) dz

z

= (7r/2)_d/2 /exp (—XTX —z'z+ QXTZ) exp (—yTy —z'z+ 2yTz) dz

z

= (7/2)" % exp (—xTx - yTy> /eXp (—ZZTZ +2(y+x)" z) dz

z
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Define r = (y + x)/2 for short-hand and write...

k(x,y) = (7T/2)*d/2 exp (—XTX — yTy> /exp (—2sz =+ 4rTz> dz

= (7r/2)’d/2 exp (—XTX y y) exp (2rTr> /exp (—QZTZ +4r'z — 2rTr> dz
z
= (7r/2)_d/2 exp (—XTX — yTy> exp <2rTr) /exp (—2||z — I’||2) dz
= (7/2)"%%exp (—XTX y y) exp (ZrTr) (m/2)Y/?
1 1

= exp ( x'x — ) exp <2xTx + §yTy + XTy>

1 Ty
= €xXp 5 y Y+X y

1
= exp( 3 Ix — yH2>
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Problem 3

a)

By applying Lagrangian, we can write the primal as:

min max £(§, w, a)
fw o

where

L& w,a)= Zfl—i—)\ww Zazw i —yi — &),

a € R,

Then we write the dual:

maxmin L£(§, w, a)
« §7w

Take partial derivatives over &, w

oL
9%;

6£ =2 \w — Zazxz =0

=264+ a0, =0

Therefore,
« 1
5 = —5, w ﬁXO{
Plug in &, w
1 1
Lp(a) = ZaTa + 4)\aTXTXa - ﬁaTXTXa +a'y— -«
1 1
= —ZaToa — EQTXTXOJ + aTy

The dual problem is:
max Lp(a)

Take partial derivative over a;, we have:

The solution to the dual problem:

a=2MX"X 47!
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b)
Using the results in part a, we have:

1
w= 5 Xa= X(XTX +AD)"Yy

The linear regression can be written as:
n
=y (X' X+ADT'X 2 =) yT (XX + M) H(a; - £)
i=1
Replace = with ¢(z), and X TX with Gram matrix K, we get:
a=2\K+ )y
Kernel regression:

9=y (K + X)) k(x;, 2).
i=1
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Problem 4

First, we normalize the data X, and then randomly split the dataset in to two half for cross
validation. Then, we train SVM using polynomial kernel and RBF kernel with different parameters
and costs. Testing errors are plotted in the following two graphs.
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Polynomial Kernel

Figure 1: Testing errors using polynomial kernel with different orders and costs
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Figure 2: Testing errors using RBF kernel with different variances and costs
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Machine Learning Problem Set #2

Problem 4

function question4

% load the dataset
load hw2—-2015—dataset;

n = size(X,1);
idxtrain = randsample(n, n/2);

% split the dataset
idxtest = setdiff(l:n, idxtrain);

trnX = X(idxtrain, :);

tstX = X(idxtest, :);
trnY = Y(idxtrain, :);
tstY = Y(idxtest, :);
% classify using polynomials
d_max = 50;
err.d = zeros(1l, d.max);
global pl;
for d=1:d_max
pl = d;
% train
[nsv, alpha, bias] = sve(trnX ,trnY , "poly’  inf);
% predict

predictedY = svcoutput (trnX ,trnY ,tstX, ’poly’,alpha, bias);

% compute test error
err_d (d) = svcerror (trnX ,trnY , tstX ,tstY , "poly ' ,alpha, bias);
end

% plot error wvs polynomial degree
f = figure (1);

clf (f);
plot (1:d_max, err_d);
print (f, '—depsc’, ’poly.eps’);

Michelle Tadmor - example solution )



Machine Learning Problem Set #2

% classify wusing rbfs
sigmas = .1:.1:2;
err_sigma = zeros (1, numel(sigmas));
for sigma_i=1:numel(sigmas)
pl = sigmas(sigma_i);

% train
[nsv, alpha, bias] = sve(trnX ,trnY , 'rbf’ inf);

% predict
predictedY = svcoutput (trnX ,trnY ,tstX, ’rbf’ alpha, bias);

% compute test error

err_sigma (sigma_i) = svcerror (trnX ,trnY ,tstX ,tstY , ’rbf’ jalpha, bias);
end

% plot error wvs polynomial degree
f = figure (1);

clf (f);

plot (sigmas, err_sigma );

print(f, ’'—depsc’, ’rbf.eps’);
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