
COMS4771: Homework 2 Solution

October 7, 2015

Problem 1

(A)
Answer: The VC dimension of perceptron in Rd is d+1.

Proof. It will be proved in two steps:
(1) There exist d+1 points that perceptron can shatter.
(2) No d+ 2(or more) points can be shattered by H.

(1)

Suppose the perceptron f(x):

f(x) =

{
1 if wTx+ b > 0,
−1 otherwise.

Consider d+1 points x(0) = (0, ..., 0)T , x(1) = (1, 0, ..., 0)T , x(2) = (0, 1, ..., 0)T , ..., x(d) =
(0, 0, ..., 1)T . After these d+1 points being arbitrarily labeled: y = (y0, y1, ..., yd)

T ∈
{−1, 1}d+1.

Let b = 0.5 · y0 and w = (w1, w2, ...wd) where wi = yi, i ∈ {1, 2, ..., d}. Thus f(x)
can label all these d+ 1 points correctly.

So the VC dimension of perceptron is at least d+ 1.

(2)

Expand x ∈ Rd to X ∈ Rd+1, by letting (X)T = (xT , 1), and let W T = (wT , b).

f(X) =

Thus: {
1 if W TX > 0,
−1 otherwise.

Assume there exist d+2 points that perceptron inRd can shatter, namely x(1), x(2), ..., x(d+2) ∈
Rd corresponding to X(1), X(2), ..., X(d+2) ∈ Rd+1.

Since d+ 2 points in Rd+1, there exists certain i s.t.:

X(i) =
∑
j 6=i

aj ·X(j),

where at least one aj 6= 0. Let S = {j|j 6= i, aj 6= 0}.
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(B)
Proof. Suppose a hypothesis space H whose VC-dimension V C(H) = n, so there exist
n points that H can shatter. We can arbitrarily give 0 or 1 label to each of the points,
so there are 2n ways to label them. No matter how the n points are labeled, there
exist a hypothesis h ∈ H which can label them correctly. H must consists at least 2n

different hypothesises, that is |H| ≥ 2n. So V C(H) = n ≤ log2 |H|.

∀j ∈ S, we give x(j) the label sign(aj), and give x(i) a label −1.
By our assumption, there exists W that make f(X) label those d+2 points correctly.
So ∀j ∈ S, we have

aj ·W TX(j) > 0,

and
W TX(i) ≤ 0.

Also: ∑
W TX(i) = W T (

j 6=i

aj ·X(j))∑
= W T (

j∈S

aj ·X(j))

=
∑
j∈S

aj ·W TX(j)

> 0.

So, our assumption is false. The VC dimension of perceptron in Rd is at most d+1.

Combine (1) and (2), we can conclude that the VC dimension of perceptron in Rd

is d+ 1.
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(C)
Answer: The VC dimension of C is 2.

Proof. First, V Cdim(C) ≤ log2 |C| = log2 10, so V Cdim(C) ≤ 3.
Assume there exist X1, X2, X3 ∈ X = {1, 2, ..., 999} that can be shattered by C,

which means all kinds of labels can be realized by concept class C. So ∃{ci1 , ci2 , ..., ci8} ⊂
C, which can label X1, X2, X3 as it’s showed in Table 1.

X1 X2 X3

ci1 0 0 0
ci2 0 0 1
ci3 0 1 0
ci4 0 1 1
ci5 1 0 0
ci6 1 0 1
ci7 1 1 0
ci8 1 1 1

Table 1

As it can be seen from Table 1, there are at least 3 concepts ∈ C that label X1 to
be 1, so X1 must contains at least 4 different digits. However, X1 ≤ 999, thus it can
contain at most 3 digits.The assumption is proved to be false.

So:
V Cdim(C) ≤ 2.

Consider the following Table 2.

34 24
c1 0 0
c2 0 1
c3 1 0
c4 1 1

Table 2

As it show in Table 2, 34 and 24 can be shattered by concept class C. So:

V Cdim(C) ≥ 2.

Finally, we can conclude that the VC dimension of C is 2.
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Problem 2

(A)

Proof.
Kij = k(xi, xj) = φ(xi) · φ(xj)

cTKc =
∑
i

∑
j

cicjKij

=
∑
i

∑
j

cicjφ(xi) · φ(xj)

= (
∑
i

ciφ(xi)) · (
∑
i

ciφ(xi))

= ‖
∑
i

ciφ(xi)‖22

≥ 0

a)

Proof.

k(x, y) = αk1(x, y) + βk2(x, y)

= 〈
√
αφ1(x),

√
αφ1(y)〉+ 〈

√
βφ2(x),

√
βφ2(y)〉

= 〈[
√
αφ1(x),

√
βφ2(x)], [

√
αφ1(y),

√
βφ2(y)]〉

b)

Proof. Let fi(x) be the ith feature value under the feature map φ1, gi(x) be the ith feature value
under the feature map φ2.
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Then:

k(x, y) = k1(x, y)k2(x, y)

= (φ1(x) · φ1(y))(φ2(x) · φ2(y))

= (
∞∑
i=0

fi(x)fi(y))(
∞∑
j=0

gj(x)gj(y))

=
∑
i,j

fi(x)fi(y)gj(x)gj(y)

=
∑
i,j

(fi(x)gj(x))(fi(y)gj(y))

= 〈φ3(x), φ3(y)〉

where φ3 has feature hi,j(x) = fi(x)gj(x).

c)
Since each polynomial term is a product of kernels with a positive coefficient, the proof follows
from part a and b.

d)
By Taylor expansion:

ex =
∞∑
i=0

xi

i!

Then the proof follows part c.

(B)

Proof. We wish to show that the kernel k(x,y) = exp(−1
2‖x − y‖2) can be written as an inner-

product between some mapping φ on x and y, in other words, k(x,y) = 〈φ(x), φ(y)〉. Assume
that x,y ∈ Rd. Consider the formula for φz(x) = (π/2)−d/4 exp(−‖x − z‖2) which is an infinite
dimensional function over z ∈ Rd (rather than a finite dimensional vector with z being a discrete
index as we did in class). Similarly, we have φz(y) = (π/2)−d/4 exp(−‖y − z‖2). Then, we define
the kernel as k(x,y) = 〈φz(x), φz(y)〉 =

∫
z φz(x)× φz(y)dz. This integral evaluates to

k(x,y) =

∫
z
(π/2)−d/4 exp

(
−‖x− z‖2

)
× (π/2)−d/4 exp

(
−‖y − z‖2

)
dz

= (π/2)−d/2
∫
z

exp
(
−x>x− z>z + 2x>z

)
exp

(
−y>y − z>z + 2y>z

)
dz

= (π/2)−d/2 exp
(
−x>x− y>y

)∫
z

exp
(
−2z>z + 2 (y + x)> z

)
dz
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Define r = (y + x)/2 for short-hand and write...

k(x,y) = (π/2)−d/2 exp
(
−x>x− y>y

)∫
z

exp
(
−2z>z + 4r>z

)
dz

= (π/2)−d/2 exp
(
−x>x− y>y

)
exp

(
2r>r

)∫
z

exp
(
−2z>z + 4r>z− 2r>r

)
dz

= (π/2)−d/2 exp
(
−x>x− y>y

)
exp

(
2r>r

)∫
z

exp
(
−2‖z− r‖2

)
dz

= (π/2)−d/2 exp
(
−x>x− y>y

)
exp

(
2r>r

)
(π/2)d/2

= exp
(
−x>x− y>y

)
exp

(
1

2
x>x +

1

2
y>y + x>y

)
= exp

(
−1

2
x>x− 1

2
y>y + x>y

)
= exp

(
−1

2
‖x− y‖2

)
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Problem 3

a)

By applying Lagrangian, we can write the primal as:

min
ξ,w

max
α
L(ξ, w, α)

where

L(ξ, w, α) =

n∑
i=1

ξ2i + λw>w −
n∑
i=1

αi(w
>xi − yi − ξi),

α ∈ R,

Then we write the dual:
max
α

min
ξ,w
L(ξ, w, α)

Take partial derivatives over ξ, w.
∂L
∂ξi

= 2ξi + αi = 0

∂L
∂w

= 2λw −
n∑
i=1

αixi = 0

Therefore,

ξ = −α
2
, w =

1

2λ
Xα.

Plug in ξ, w,

LD(α) =
1

4
α>α+

1

4λ
α>X>Xα− 1

2λ
α>X>Xα+ α>y − 1

2
α>α

= −1

4
α>α− 1

4λ
α>X>Xα+ α>y

The dual problem is:
max
α
LD(α)

Take partial derivative over α, we have:

∂LD
∂α

= −1

2
α− 1

2λ
X>Xα+ y = 0

The solution to the dual problem:

α = 2λ(X>X + λI)−1y
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b)

Using the results in part a, we have:

w =
1

2λ
Xα = X(X>X + λI)−1y

The linear regression can be written as:

ŷ = y>(X>X + λI)−1X>x̂ =
n∑
i=1

y>(X>X + λI)−1(xi · x̂)

Replace x with φ(x), and X>X with Gram matrix K, we get:

α = 2λ(K + λI)−1y

Kernel regression:

ŷ =
n∑
i=1

y>(K + λI)−1k(xi, x̂).
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Problem 4

First, we normalize the data X, and then randomly split the dataset in to two half for cross
validation. Then, we train SVM using polynomial kernel and RBF kernel with different parameters
and costs. Testing errors are plotted in the following two graphs.
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Figure 1: Testing errors using polynomial kernel with different orders and costs

Figure 2: Testing errors using RBF kernel with different variances and costs
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Machine Learning Problem Set #2

Problem 4

function ques t ion4

% load the da t a s e t
load hw2−2015−datase t ;

n = s ize (X, 1 ) ;
i d x t r a i n = randsample (n , n / 2 ) ;

% s p l i t the da t a s e t
i d x t e s t = s e t d i f f ( 1 : n , i d x t r a i n ) ;

trnX = X( idxt ra in , : ) ;
tstX = X( idx t e s t , : ) ;

trnY = Y( idxt ra in , : ) ;
tstY = Y( idx t e s t , : ) ;

% c l a s s i f y us ing po lynomia l s
d max = 50 ;
e r r d = zeros (1 , d max ) ;

global p1 ;
for d=1:d max

p1 = d ;

% tra in
[ nsv , alpha , b i a s ] = svc ( trnX , trnY , ’ poly ’ , i n f ) ;

% pred i c t
predictedY = svcoutput ( trnX , trnY , tstX , ’ poly ’ , alpha , b i a s ) ;

% compute t e s t e r ror
e r r d (d) = s v c e r r o r ( trnX , trnY , tstX , tstY , ’ poly ’ , alpha , b i a s ) ;

end

% p l o t er ror vs po lynomia l degree
f = f igure ( 1 ) ;
c l f ( f ) ;
plot ( 1 : d max , e r r d ) ;
print ( f , ’−depsc ’ , ’ poly . eps ’ ) ;
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Machine Learning Problem Set #2

% c l a s s i f y us ing r b f s
sigmas = . 1 : . 1 : 2 ;
e r r s i gma = zeros (1 , numel ( sigmas ) ) ;
for s i gma i =1:numel ( sigmas )

p1 = sigmas ( s i gma i ) ;

% tra in
[ nsv , alpha , b i a s ] = svc ( trnX , trnY , ’ rb f ’ , i n f ) ;

% pred i c t
predictedY = svcoutput ( trnX , trnY , tstX , ’ rb f ’ , alpha , b i a s ) ;

% compute t e s t e r ror
e r r s i gma ( s i gma i ) = s v c e r r o r ( trnX , trnY , tstX , tstY , ’ rb f ’ , alpha , b i a s ) ;

end

% p l o t er ror vs po lynomia l degree
f = f igure ( 1 ) ;
c l f ( f ) ;
plot ( sigmas , e r r s i gma ) ;
print ( f , ’−depsc ’ , ’ r b f . eps ’ ) ;
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