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ABSTRACT

Search and Ranking in Semantically Rich

Applications

Julia Stoyanovich

This thesis proposes novel search and ranking approaches for semantically rich application

domains.

The central role of Data Management in today’s society may be compared to the role of

Physics in early 20th Century when it entered its Golden Age. Data is the raw matter of the

Universe of Information, and, in a process analogous to nuclear fusion, data is transformed

progressively into information, and then into knowledge.

The advent of the World Wide Web as an information exchange platform and a social

medium, both on an unprecedented scale, raises the user’s expectations with respect to

the availability and ease of access to relevant information. Web users build persistent on-

line personas: they provide information about themselves in stored profiles, register their

relationships with other users, and express their preferences with respect to information

and products. As a result, rich semantic information about the user is readily available,

or can be derived, and can be used to improve the user’s online experience, making him

more productive, more creative, and better entertained online. There is thus a need for

context-aware data management mechanisms that support a user-centric data exploration

experience, and do so efficiently on the large scale.

In a complementary trend, scientific domains, most notably the domain of life sciences,

are experiencing unprecedented growth. The ever-increasing amount of data and knowledge

requires the development of new semantically rich data management techniques that facili-

tate system-wide analysis and scientific collaboration. Literature search is a central task in

scientific research. Controlled vocabularies and ontologies that exist in this domain present

an opportunity for improving the quality of ranking.

The Web is a multifaceted medium that gives users access to a wide variety of datasets,



and satisfies diverse information needs. Some Web users look for answers to specific ques-

tions, while others browse content and explore the richness of possibilities. The notion of

relevance is intrinsically linked with preference and choice. Individual items and item col-

lections are characterized in part by the semantic relationships that hold among values of

their attributes. Exposing these semantic relationships helps the user gain a better under-

standing of the dataset, allowing him to make informed choices. This process is commonly

known as data exploration, and has applications that range from analyzing the performance

of the stock market, to identifying genetic disease susceptibility, to looking for a date.

In this thesis we propose novel search and ranking techniques that improve the user

experience and facilitate information discovery in several semantically rich application do-

mains. We show how the social context in social tagging sites can be used for user-centric

information discovery. We also propose novel ontology-aware search and ranking techniques,

and apply them to scientific literature search. Finally, we address data exploration in ranked

structured datasets, and propose a rank-aware clustering algorithm that uses semantic rela-

tionships among item attributes to facilitate information discovery.
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Chapter 1

Introduction

The central role of Data Management in today’s society may be compared to the role of

Physics in early 20th Century when it entered its Golden Age. Data is the raw matter of the

Universe of Information, and, in a process analogous to nuclear fusion, data is transformed

progressively into information, and then into knowledge.

Information is, in fact, so important, that even philosophers are starting to get inter-

ested. An emerging discipline of Philosophy of Information [Floridi, 2009b] postulates that

“to be is to be an informational entity” [Ess, 2009]. According to this new doctrine, history

is synonymous with the information age, since prehistory is the age in human development

that precedes the availability of recording systems.

The information-based nature of our society has only recently become apparent, and

is clearly linked to the wide-spread adoption of the World Wide Web as a platform for

information dissemination and sharing. Nowadays the most advanced economies highly

depend on information technologies in their functioning and growth. It has been argued that

the world’s seven larges economies, formerly known as G7, qualify as information societies,

because at least 70% of their gross domestic product depends on intangible information-

related goods, not on material goods, which are the physical output of agricultural or

manufacturing processes [Floridi, 2009a].

The World Wide Web is, without a doubt, one of the greatest inventions of the 20th

century. The Web is a living and breathing organism that is interesting both as a phe-

nomenon unto itself, and because of the multitude of other phenomena that it supports

and enables. The advent of the World Wide Web sparked the generation and exchange of

information on an unprecedented scale, presenting the data management community with

vital opportunities and interesting challenges.

A central data management challenge that arises in the Internet age is the transformation

of data into knowledge. A particular aspect of this challenge may be phrased as follows.

Provided that the burden of synthesizing knowledge from relevant information rests on the

user, how can the system point the user towards the information that is relevant? After all,
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the complexity of finding a needle in a haystack increases with the size of the haystack.1

The young 21st century has already unveiled its first great discoveries, not last among

which is the popularization of online social networking and of social content sites. Of these

sites there is a great variety – from the versatile Facebook platform that supports many

types of content and various degrees of user involvement, to the minimalist Twitter, in

which users communicate by publishing laconic status updates, or tweets.

Social content sites are backed by the World Wide Web, and are responsible for enriching

or, as some would say, polluting the global information space by orders of magnitude more

data. These sites bring about a shift in the traditional paradigm of information dissemi-

nation, in which there are far fewer producers of information than there are consumers. In

contrast to traditional media, and to Internet-based publishing of the pre-social era, users

of social content sites are both producers and raters of information, as well as information

consumers. The blurring of the line between producers and consumers of content results in

democratization of information, providing a powerful participation incentive.

In a related trend, many scientific domains, most notably the domain of life sciences,

are experiencing unprecedented growth. The recent complete sequencing of the Human

Genome, and the tremendous advances in experimental technology, are rapidly bringing

about new scientific knowledge. The ever-increasing amount of data and knowledge in

life sciences in turn requires the development of new semantically rich data management

techniques that facilitate scientific research and collaboration.

An important challenge posed by the data management needs of the scientific community

may be phrased as follows. Provided that high-quality knowledge bases are available that

summarize the state of the art in a scientific field, how can the system use this knowledge

to identify relevant information, enabling further scientific advances?

The Web is a multifaceted medium that gives users access to a wide variety of datasets,

and satisfies diverse information needs. Some Web users look for answers to specific ques-

tions, while others browse content and explore the richness of possibilities. The notion of

relevance is intrinsically linked with preference and choice. Preferences are known to change

based on temporal aspects, one of which is the change in availability of items (be it physical

products of information entities), or in a user’s belief about the availability of items [Hansson

and Grüne-Yanoff, 2006]. The process by which a user ascertains the availability of items

is known as data exploration.

Individual items and item collections are characterized in part by the semantic rela-

tionships that hold among values of their attributes. These relationships may be known

a priori, e.g., all 10-story buildings in the US have an elevator. Alternatively, these rela-

tionships may need to be derived, using inference or statistical tools. Exposing semantic

relationships that hold among item attributes helps the user gain a better understanding

1Proof is left as an exercise for the reader.
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of the dataset, allowing him to make informed choices. Data exploration is a common task,

with application ranging from analyzing the performance of the stock market, to identifying

genetic disease susceptibility, to looking for a date.

Success of data exploration depends critically on the availability of effective analysis

and presentation methods. An important data management question is then: Provided

that a user’s preferences depend in part on the semantic relationships that hold among item

attributes, how can the system effectively derive these relationships and present them to the

user, facilitating data exploration?

This thesis proposes novel search and ranking methods aimed at improving the user

experience and facilitating information discovery in semantically rich applications. In the

remainder of this section, we give an overview of the state of the art in related data man-

agement areas, and outline our contributions.

1.1 Information Retrieval and Web Search

In Information Retrieval (IR), a user expresses his information need with a query q. An IR

system evaluates the query against a document corpus D, and identifies a set of answers

A ⊆ D that are conjectured by the system to satisfy the user’s information need. The

documents in A are said to match the query q. The language used to express the query,

and the mechanism by which answers are identified, depend on the retrieval model used by

the IR system. We will describe several common retrieval models in Section 1.1.1.

In IR, documents are typically drawn from a large corpus, and relevant documents are

identified. In real-world IR scenarios such as Web search, or scientific literature search,

many more relevant documents are typically identified than any one user is willing to read.

Further, not all documents that are identified as answers carry equal relevance to the user’s

query. Therefore, the system must choose a portion of the result set to present to the user,

motivating the need for ranking. Results are commonly returned in the form of a ranked

list, with the goal of presenting to the user documents that are conjectured by the system

to have high relevance to the user’s query. To this end, IR systems define a ranking function

R : D → R that, for a fixed query, associates each document d ∈ D with a real number. R

defines a natural ordering on the documents in the collection, and expresses the extent to

which each document matches the query.

Information Retrieval methods were originally developed for searching document col-

lections to which we currently refer as Digital Libraries, such as the on-line version of the

Library of Congress (www.loc.gov) or the PubMed Central repository of scientific articles

(www.pubmedcentral.nih.gov). These collections are curated and generally contain docu-

ments of high quality, in the sense that a document that covers a particular topic is usually

authored by an expert on that topic. Further, the vocabulary used in a document is usu-

ally representative of the document’s semantic content. This is to be contrasted with the
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document corpus that is the World Wide Web, in which there is a high degree of variability

with respect to the quality of information. Authors of Web content have a varying degree

of expertise on the subjects they cover. Additionally, the words used on a particular web

page may not truthfully reflect the semantic content of the page, a phenomenon known as

search engine spamming. Based on these considerations, new IR methods were developed

that incorporate both a document’s textual relatedness to a user’s query, and a document’s

authority. We will give an overview of these methods in Section 1.1.2.

An important and difficult question is how to properly evaluate the performance of an

IR system. We discuss some approaches for evaluating the quality of retrieval and ranking

in Section 1.1.3, and give an overview of performance-related issues in Section 1.1.4.

1.1.1 Information Retrieval Models

The IR models of this section represent queries and documents in a corpus as collections,

such as sets or vectors, of index terms. Index terms t1, t2, . . . tn are elements of a vocabulary

T that typically corresponds to words in the natural language of the collection.

The Boolean model is based on set theory and Boolean algebra. In this model queries

are specified as conjunctions (keyword AND), disjunctions (keyword OR), or negations

(keyword NOT) of index terms. A query is an arbitrary Boolean expression over the terms

from T , which is converted by the system to disjunctive normal form. Each document

d ∈ D is in turn represented as a conjunction of the terms that occur in the document.

Suppose that a vocabulary is given that consists of three terms; we represent the vo-

cabulary as a set T = {t1, t2, t3}
2. Suppose also that a query is given by the Boolean

expression q = t1 ∧ (t2 ∨ ¬t3). This query can be equivalently re-written in disjunctive

normal form as qDNF = (t1∧ t2∧ t3)∨ (t1∧ t2∧¬t3)∨ (t1∧¬t2∧¬t3). Document di = t1∧ t2

will match the query, since it matches the second conjunctive term in qDNF . On the other

hand, document dj = t1 ∧ t3 will not match q.

For each document d ∈ D, the Boolean model will predict that the document is either

relevant to a query q or that it is irrelevant.

The vector space model, which was first introduced in [Salton et al., 1975], relaxes the

assumption that a document is either relevant or irrelevant to a query. Unlike the Boolean

model, the vector space model incorporates term weights, and supports partial matching.

In the vector space model, the vocabulary of index terms T is represented by a vector,

with length equal to the size of the vocabulary. Queries and documents are represented

by vectors of non-binary weights, with each position corresponding to a term in T . The

weights are used to compute the degree of similarity between a query and a document. So,

for a query ~q and a document ~d, we compute similarity as the cosine of the angle between

2This example is based on the example in Section 2.5.2 of [Baeza-Yates and Ribeiro-Neto, 1999].
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these two vectors in the space of T :

sim(~d, ~q) =
~d • ~q

|~d| × |~q|
(1.1)

How well the model will match human intuition clearly depends on a meaningful choice

for the weights. A classic weighting scheme, known as tf-idf, weights a document term

according to how often the term appears in the document. This portion of the weight, called

term frequency, or tf, models the intuition that a term that is mentioned in a document more

often is more representative of the document’s content than another term that is mentioned

less often. The tf weight is normalized by the total frequency of the term in the corpus.

This normalization, referred to as inverse document frequency, or idf, penalizes terms that

frequently occur in the corpus, because such terms may be less informative.

We described two classical retrieval models in IR. Many other successful models exist and

are used today in IR systems. The probabilistic model attempts to estimate the probability

that the user will find the document d relevant to a query q, given the representations of

d and q. A family of probabilistic IR models are the language models that are based on a

probabilistic mechanism for generating text. Given a query q and a document d, the system

computes the probability that q was generated by the language model of d, and ranks the

retrieved documents on this probability [Croft and Lafferty, 2003].

The fuzzy set model assumes that each query term defines a fuzzy set, and that each

document has a degree of membership (usually less than 1) in this set. The extended Boolean

model allows for the weighting of Boolean terms. A variety of extensions, and of new models,

have been considered in the literature. However, this thesis does not use any of the later

models, and so a complete review is beyond the scope of this work. We refer the reader

to [Baeza-Yates and Ribeiro-Neto, 1999; Manning et al., 2008] for a comprehensive review

of other approaches.

Most IR models lend themselves well to ranking, because they incorporate a notion of

non-binary similarity between the query and the document. An exception is the Boolean

retrieval model, which produces binary outcomes, and as such does not naturally support

ranking. In addition to relevance, modern IR systems also incorporate a notion of authority

into the ranking, and we discuss this topic next.

1.1.2 Link Analysis and Authority-Based Ranking

The World Wide Web became a prominent medium for information discovery in the early

1990s. By that time IR was already a mature field that developed primarily based on

information discovery tasks over large curated document collections. The advent of the

Web prompted the field of IR to adapt, and to develop techniques appropriate both for

the ever-increasing size of this dynamic collection, and for the heterogeneity in information

quality.
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A crucial property of the Web that motivates some of the early advances in Web-based

retrieval and ranking is that the Web has a natural graph structure. The Web is comprised

of pages with hyperlinks to other pages. For example, a Web page of a Computer Science

PhD student may contain a link pointing to her adviser’s homepage:

<a href=’’http://www.cs.columbia.edu/~kar’’>Homepage of Kenneth A. Ross</a>

A key observation made by Kleinberg in a seminal paper [Kleinberg, 1999] is that hy-

perlinks of this kind may be viewed as endorsements. A page that links to another page

implicitly endorses the target page, giving it prominence, commonly referred to as authority.

At roughly the same time Brin and Page developed the PageRank algorithm [Brin and

Page, 1998] that models the authority of a Web page based on the probability that it will

be visited by a random surfer who uses the link structure of the Web. PageRank serves as

basis for the search algorithm employed by Google, a leading Web search engine. We now

give a brief description of these two influential algorithms.

The Hyperlink-Induced Topic Search (HITS) algorithm, also known as Hubs and Au-

thorities, was proposed in [Kleinberg, 1999]. HITS uses the link structure of the web graph

to identify, in a query-specific or topic-specific manner, a set of authoritative pages, and

a set of hub pages that join the authorities into the link structure. The Web is modeled

as a directed graph G = (V,E), where nodes V correspond to pages, and a directed edge

(p, q) ∈ E indicates the presence of a link from page p to page q.

The algorithm starts by constructing a relatively small subgraph of the Web, called the

root set, that contains a high number of query-relevant pages. The root set is then expanded

to include adjacent pages – pages pointed to by the pages in the root set, and pages pointing

to the pages in the root set. The resulting sub-graph of the Web graph, referred to as Gσ,

has a high chance of containing some authorities, and these authorities are identified using

an iterative procedure.

Each web page p among the nodes of Gσ is assigned two weights – an authority weight

x〈p〉 and a hub weight y〈p〉. Both kinds of weights are initialized uniformly for all pages, and

are updated iteratively. The update procedure builds on the intuition that a page p that

points to many pages should receive a high hub weight (y), while a page that is pointed to

by many pages should receive a high authority weight (x). Given weights {x〈p〉} and {y〈p〉},

two operations are applied in turn and update the weights as follows:

x〈p〉 ← Σq:(q,p)∈Ey〈p〉 (1.2)

y〈p〉 ← Σq:(q,p)∈Ex〈p〉 (1.3)

Weights are normalized after each iterative step. Eventually, the system converges to a

solution and the iteration stops.
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The PageRank algorithm, introduced in [Brin and Page, 1998], models the behavior of a

random surfer who starts with a random Web page and visits other web pages by following

outgoing hyperlinks. At some point the surfer may decide to start at another random page.

The probability that a random surfer will visit a web page is the PageRank of that page.

Unlike HITS, PageRank is a query-independent measure of page authority. PageRank

is computed iteratively over the entire Web graph, with the intuition that the authority of

a page p depends on the number of incoming hyperlinks and on the authority of the page q

from which the hyperlink to p originates. PageRank of a page p is computed by iteratively

using the equation:

x〈p〉 = (1− d)Σq:(q,p)∈E

x〈q〉

hq
+ d (1.4)

Here, hq is the outdegree of page q, and d ∈ (0, 1) is a dumping factor that represents the

probability that the random surfer will get bored of hyperlinked browsing, and will jump

to a random Web page. The computation eventually converges to an equilibrium solution.

An authority score of a page can be combined, for example in a multiplicative manner,

with the query relevance score, allowing the system to rank results by a combination of query

relevance and query-independent (in the case of PageRank) quality. The PageRank and

HITS authority propagation measures have had extremely high impact, both academically

and commercially. The practical value of link-based authority measures is best supported

by the tremendous commercial success of Google and its wide adoption by everyday Web

users. It may well be the case that the sustained growth of the Web is due, at least in part,

to the fact that Web content can be discovered effectively using this generation of search

technology.

Recently, a new style of Web search has emerged in which semantic entities, such as

products or scholars, are returned by the system in response to a query. We will discuss the

emergence of semantic Web technologies and their new search and ranking requirements in

Section 1.2.1.

1.1.3 Evaluating the Quality of an Information Retrieval System

Evaluation of the effectiveness of an IR system typically incorporates relevance judgments

that are issued by users against all, or some, documents in the corpus. Judgments rate the

relevance of a document to a particular query on some scale, and may evaluate the textual

relevance of a document to a query, the document’s quality and trustworthiness, or both. In

the simplest case, a document may be considered either relevant or irrelevant to the query,

receiving a relevance score of 1 or 0, respectively. Sometimes more fine-grained relevance

scores are used. For example, a document’s relevance may be judged on a scale from 0 to

3, where 3 denotes high relevance, and 0 denotes no relevance.
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1.1.3.1 Set-Based Measures

We now describe some typical ways that relevance judgments may be used to quantify the

performance of an IR system. These and other methods are described in detail in [Baeza-

Yates and Ribeiro-Neto, 1999]. Given a query q, and a document collection D, we may use

relevance judgments to partition the collection into two mutually exclusive sets: set R of

relevant documents, and set I of irrelevant documents. To quantify the performance of a

retrieval-only IR system (one that does not do any ranking), we may consider the set of all

answers A conjectured by the system to be relevant to the query. We define recall as the

fraction of the relevant documents that has been retrieved:

Recall =
|R ∩ A|

|R|
(1.5)

We may also define precision as the fraction of the retrieved documents that are relevant:

Precision =
|R ∩A|

|A|
(1.6)

A variety of measures exist that combine precision and recall in various ways, such as

the F-measure and the E-measure [Baeza-Yates and Ribeiro-Neto, 1999].

In order to make precision and recall appropriate for ranked retrieval, one can consider a

modification of precision, recall and related measures, applying them at top-N , for various

values of N . Then only the documents in the highest N positions in the list are considered

when evaluating quality (we denote these documents by top(A, N)), but these documents

are still treated as a set, and the relative ordering of documents in the set is ignored. For

example, precision at top-N may be defined as the fraction of the top-N that is relevant to

the query:

Precision@N =
|R ∩ top(A, N)|

|top(A, N)|
(1.7)

Recall, precision and related measures are based on the assumption that the set of rel-

evant documents for a query is the same for every user. However, different users may have

very different interpretations of relevance, and we will provide more background on this

intuition in Section 1.3. Several user-oriented quality measures are in use in IR, includ-

ing coverage, novelty, expected search length, satisfaction and frustration [Baeza-Yates and

Ribeiro-Neto, 1999].

As before, for a given query, let R refer to the set of relevant documents in a collection,

and let A be the set of answers retrieved by the IR method. Also let U ⊆ R be the relevant

documents known to the user. For example, R may represent all movies directed by Milos

Forman, and U may represent the subset of Forman’s movies that the user has seen. We
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define coverage as the fraction of the documents known to the user to be relevant that has

been retrieved:

Coverage =
|U ∩ A|

|U|
(1.8)

Coverage is a user-oriented version of recall (see Equation 1.5), and we use this measure

in Section 2.2. Another proposed quality measure is novelty, defined as the fraction of the

relevant documents that were retrieved and were unknown to the user:

Novelty =
|A \ U|

|A|
(1.9)

The novelty measure, while incorporating a user’s point of view on relevance to some

extent, still makes an implicit assumption that the set of relevant documents R is the same

for all users, and that documents in this set simply have not been discovered, and judged,

by all users. There is, however, increasing evidence that this assumption does not hold in

practice, and we elaborate on this point in Section 1.3.2.

1.1.3.2 List-Based Measures

A crucial shortcoming of quality measures described above is that they do not naturally

account for the order of items in the list. An intuitive argument can be made that, because

a user is more likely to pay attention to the items that are returned higher in the list, i.e., at

lower ranks, a successful IR method should return high-quality items closer to the top of the

list. In the remainder of this section we describe several techniques proposed in [Järvelin and

Kekäläinen, 2002] that incorporate this intuition. These techniques, particularly Normalized

Discounted Cumulated Gain (NDCG), are used extensively throughout this thesis, both to

assess the quality of proposed solutions, as in Chapters 2 and 4, and to develop new ranking

methods, as in Chapter 5.

Other techniques for comparing ranked lists are described in the literature (see for

example [Fagin et al., 2003a]), but we focus on the techniques of [Järvelin and Kekäläinen,

2002] because, as we will show in subsequent chapters, they are efficient to compute and

are a natural fit for our application scenarios.

The measures of [Järvelin and Kekäläinen, 2002] evaluate the quality of a ranked list

with respect to information gain, or simply gain, that is cumulated by document rank. In

other words, the relevance score of each document in the list is used to compute a gained

value for its ranked position in the result, and the gain is then summed progressively from

ranked position 1 to N . (Here, and in the remainder of this section, ranked lists are 1-based

for convenience.)

Let us assume that relevance scores of 0 to 3 are used, with 3 denoting high relevance,

and 0 denoting lack of relevance. A top-10 list of documents is represented as a gain vector
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G of 10 components, each having a value of 0, 1, 2, or 3. For example:

G = 〈3, 2, 3, 0, 0, 1, 2, 2, 3, 0〉 (1.10)

The cumulated gain at ranked position i is computed by summing from position 1 to i,

where i ranges from 1 to 10. Cumulated gain is represented by a vector CG, and is defined

recursively as follows:

CG[i] =

{

G[1] if i = 1

CG[i− 1] + G[i] otherwise
(1.11)

For example, from the gain vector in Equation 1.10 we obtain the following cumulated

again vector:

CG = 〈3, 5, 8, 8, 8, 9, 11, 13, 16, 16〉 (1.12)

The gain and cumulated gain vectors defined above incorporate the intuition that highly

relevant documents are more valuable than marginally relevant documents. The next mea-

sure, discounted cumulated gain, builds on the intuitive idea that, the greater the ranked

position of a relevant document, the less valuable the document is for the user. This is

because the user is less likely to examine the document due to time, effort, and accumu-

lated information from documents already seen. Discounted cumulated gain incorporates a

rank-based discount factor.

The greater the rank, the smaller the share of the document in the cumulated gain

score. A discounting function that progressively reduces the document’s contribution to

the score as its rank increases divides the gain of the document by the log of its rank. This

discounting function is appropriate because, as argued in [Järvelin and Kekäläinen, 2002],

it does not decrease the contribution too steeply (as would, for example, division by rank),

allowing for user persistence in examining further documents. Selecting the base of the

logarithm, sharper or smoother discounts can be computed to model varying user behavior.

Denoting the base of the logarithm by b, we define the discounted cumulated gain vector

DCG recursively as follows:

DCG[i] =

{

CG[i] if i < b

DCG[i− 1] + G[i]
logbi

if i ≥ b
(1.13)

For example, for b = 2, we derive the following DCG vector from CG in Equation 1.12:

DCG = 〈3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61〉 (1.14)

The gain and cumulated gain measures, while insightful on their own, are most useful

in our context because they allow us to compare the quality of two ranked lists. We now
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show how these measures can be extended to allow a comparison between a ranked list and

a theoretically best possible list, which we call ideal.

An ideal list is one in which entries are ordered by gain, in decreasing order. More

formally, for a given query, let there be k, l, and m relevant documents at the relevance

levels 1, 2, and 3, respectively. In the gain vector GI that corresponds to the ideal list,

positions 1, . . . ,m are filled by values 3, positions m + 1, . . . ,m + l are filled by values 2,

positions m+ l+1, . . . ,m+ l+k are filled by values 1, and the remaining positions are filled

by values 0. A sample ideal gain vector, along with the corresponding cumulated gain, and

discounted cumulated gain vectors, may contain the following values:

DI = 〈3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, . . .〉 (1.15)

CGI = 〈3, 6, 9, 11, 13, 15, 16, 17, 18, 19, 19, . . .〉 (1.16)

DCGI = 〈3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 11.21, 11.53, 11.83, 11.83, . . .〉 (1.17)

The CG and DCG vectors may now be normalized by dividing each position in the vec-

tors by the corresponding position in the ideal vectors CDI and DCGI . This normalization

yields the following values for the vectors in our running example:

NCG = 〈1, 0.83, 0.89, 0.73, 0.62, 0.6, 0.69, 0.76, 0.89, 0.84〉 (1.18)

NDCG = 〈1, 0.83, 0.87, 0.78, 0.71, 0.69, 0.73, 0.77, 0.83, 0.81〉 (1.19)

Finally, as noted in [Järvelin and Kekäläinen, 2002], the area between the normalized

ideal vector and the normalized (discounted) cumulated gain vector represents the quality

of the IR technique. Normalized (D)CG vectors for two or more IR techniques also have a

normalized difference. The average of an NCG vector, or of an NDCG vector (referred to

jointly as V ), up to a given rank N summarizes the performance of the technique, and is

given by:

avg(V,N) =
Σi=1...NV [i]

N
(1.20)

To summarize, the cumulated gain-based techniques of [Järvelin and Kekäläinen, 2002]

evaluate the quality of a ranked list by considering the gain that is realized by the list,

typically up to position i. The normalized techniques in this family compare the quality of

a ranked list to that of an ideal list. We use these basic ideas throughout this thesis, though

not always in a setting where the quality of items in a ranked list can be estimated based

on user judgments. In situations where we depart from this typical setting, we specify an

application-dependent formulation for the gain, along with an appropriate ideal list.
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1.1.4 Efficiency of Processing

As mentioned throughout this section, both classic and Web-based Information Retrieval

methods are usually applied to very large document collections, and are expected to yield

sub-second response times in multi-user environments. Therefore IR methods must be built

with efficiency considerations in mind.

The seminal work of Brin and Page [Brin and Page, 1998] in which the PageRank algo-

rithm was first described also devotes significant attention to the scalable implementation of

the Google prototype. This early paper outlines the challenges of large scale Web crawling,

indexing, and searching, and presents the distributed file system construct fundamental to

Google’s architecture called BigFiles, a precursor of the Google File System (GFS) [Ghe-

mawat et al., 2003]. Google subsequently implemented BigTable, a proprietary database

system built on GFS that departs from the typical convention of a fixed number of columns

and is instead described by the authors as a sparse, distributed multi-dimensional sorted

map [Chang et al., 2006]. BigTable in turn supports the MapReduce framework, introduced

by Google in [Dean and Ghemawat, 2006], which enables distributed computation over large

scale datasets in a cluster environment.

The MapReduce framework supports two main operations: Map and Reduce. The Map

operation is executed by the master node, which partitions the problem into sub-problems

and assigns the sub-problems to worker nodes. The Reduce step involves combining the

answers to sub-problems, and returning the combined solution as the final answer. The

MapReduce framework is proprietary to Google.

Apache Hadoop is an open-source software framework that was inspired by MapReduce

and by the Google File System.

An inverted index, also known as an inverted file, is a conceptual data structure used

by many search algorithms in IR and Web search. An inverted index stores a mapping

from content, such as vocabulary terms or phrases, to its location in a document, allowing

full-text search. In [Zobel et al., 1998] the performance of inverted files was extensively

analyzed, demonstrating the scalability, space efficiency, and good update performance of

this data structure.

Inverted files have been used in a variety of applications including some influential

top-K processing algorithms. A seminal paper [Fagin et al., 2003c] presents the threshold

algorithm (TA), which is provably optimal in terms of run-time performance, and is used

for aggregating scores over inverted file entries. Given a query q represented by a set of

index terms, and a collection of inverted files, the TA algorithm determines the k items with

the highest over-all score. The algorithm builds on an intuition that high-scoring items will

appear closer to the top of all relevant inverted lists than would lower-scoring items.
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1.2 Adding a Semantic Dimension to the Web

1.2.1 Semantic Web

Information Retrieval and Web search techniques outlined in Section 1.1 reason over queries

and documents in a corpus by considering the terms that make up these queries and docu-

ments. These techniques manipulate terms as symbols, and do not consider the semantics,

or meaning of the vocabulary.

The Semantic Web, or a Web with meaning, is an ambitious effort that aims to create

a Web-wide machine-processable representation of real-world entities and of relationships

between these entities. The World Wide Web Consortium (W3C) leads the Semantic Web

effort, and gives the following definition of the initiative 3 :

The Semantic Web provides a common framework that allows data to be shared and

reused across application, enterprise, and community boundaries.

According to the Wikipedia entry for Semantic Web (as of September 17, 2009): “At its

core, the Semantic Web comprises a set of design principles, collaborative working groups,

and a variety of enabling technologies. Some elements of the Semantic Web are expressed as

prospective future possibilities that are yet to be implemented or realized. Other elements

of the Semantic Web are expressed in formal specifications. Some of these include Resource

Description Framework (RDF), a variety of data interchange formats (e.g., RDF/XML, N3,

Turtle, N-Triples), and notations such as RDF Schema (RDFS) and the Web Ontology

Language (OWL), all of which are intended to provide a formal description of concepts,

terms, and relationships within a given knowledge domain.”

For the promise of Semantic Web to be realized on the full scale of the Web, Web data

should be published in languages specifically designed for semantic annotation such as RDF,

OWL and XML, so as to enable semantic tagging of entities. For example, a Web page that

mentions the entity Cat must use semantic mark-up that may look like4 :

<item rdf:about=http://dbpedia.org/resource/Cat>Cat</item>

Semantic annotations of this kind refer to entries in an ontology, a formal representation

of a set of concepts that defines the domain for each concept, and specifies the relationship

between concepts. Ontologies provide a machine-processable representation, and support

reasoning and inference.

While the goal of semantically annotating the whole Web remains elusive, due mostly

to the high cost of adoption of a common representation framework, and to the difficulty

(or perhaps impossibility) of schema design and maintenance at Web scale, Semantic Web

technologies have been successfully used in certain domains. We describe some challenges

3Definition from www.w3.org/2001/sw, downloaded on September 17, 2009.

4This example is from en.wikipedia.org/wiki/Semantic_Web, downloaded on September 17, 2009.
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related to the creation and maintenance of ontologies, and give examples of success stories,

in the following section.

1.2.2 Ontologies

The building and maintenance of an ontology is a top-down process that requires an exten-

sive amount of curation. Consider for example the process of creating and maintaining an

ontology in the domain of life sciences. An ontology represents a consensus among domain

experts regarding the state of knowledge in a particular field. This consensus is particularly

difficult to achieve in dynamic fields where knowledge constantly evolves. At the same time,

ontologies are most valuable in such fields, because they do not simply record the state of

the art for posterity, but rather are aimed at supporting community-wide collaboration and

the advancement of science.

In order to create an ontology, domain experts must first agree on the vocabulary.

If an ontology represents a consensus view of several sub-fields within a field (e.g., an

ontology of gene products across species), reaching an agreement with respect to a common

vocabulary may be even more difficult. Having agreed on a vocabulary, the experts must

next establish the hierarchical and semantic relationships that hold among entities in the

domain. Relationships among entities in a scientific domain may be circular, context-

sensitive, or otherwise complex, prompting difficult trade-offs between expressiveness and

complexity of the resulting data model.

An ontology that represents the state of knowledge in a dynamic field must be main-

tained to incorporate advances in the field. This may require adding or retiring concepts,

and changing the previously established relationships between concepts.

Because ontology creation is such an expensive process, ontology mining tools have

been developed. OntoMiner [Davulcu et al., 2004] and TaxaMiner [Kashyap et al., 2005]

automatically construct ontologies using bootstrapping, while Verity [Chung et al., 2002]

automatically constructs a domain-specific taxonomy using thematic mapping.

Despite the challenges that may hinder the creation and maintenance of ontologies, a

number of ontologies have been created in the biomedical domain, and are being used by

a variety of applications such as scientific literature search, biomedical text mining, and

integration of experimental results. For example, the Gene Ontology (GO) 5 project is an

effort to standardize the representation of genes and gene product attributes across species

and datasets. GO annotations have been adopted by a variety of databases, and are the

de facto standard in the domain. Another success story is the Medical Subject Headings

(MeSH) ontology, developed and maintained by the National Library of Medicine 6 . MeSH

is used by Entrez, the Life Sciences Search Engine, as part of the search functionality over

5www.geneontology.org

6www.nlm.nih.gov/mesh
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resources such as PubMed.

1.2.3 Web 2.0

While some automatic ontology mining tools exist that derive new ontologies, or enhance

existing ones, ontologies that are currently used successfully in scientific domains were

created primarily by human experts in a top-down fashion. An alternative to the Semantic

Web, in terms of both ontology creation and content annotation, is a trend commonly

referred to as Web 2.0.

The term Web 2.0 has no clear definition, but usually refers to the emergence of se-

mantics brought about by the operation of Web-based communities. Examples of Web 2.0

applications include social networking sites, wikis, and blogs. In contrast to the Semantic

Web, where an annotation schema, such as an ontology, must be defined before it can be

used to annotate content, social content sites in Web 2.0 give rise to so-called folksonomies

– hierarchical vocabularies of terms that are formed by collective use of the vocabulary.

The term folksonomy was coined by Thomas Vander Wal [Pink, 2005], and refers to a

system of classification derived from the practice and method of collaboratively creating

and managing tags to annotate and categorize content 7 . Folksonomies typically arise in

the context of social tagging sites like Delicious (delicious.com), in which users bookmark

and tag URLs that they find interesting. The tagging activity is social, in that URLs are

tagged by users both for their own consumption, and for the consumption of other users

of the site. The tagging vocabulary converges into a folksonomy particularly because of

the social nature of tagging, since users want to enable others to locate their contributed

content with ease.

Folksonomies contrast with taxonomies and traditional ontologies, which are typically

created and maintained top-down, in a centralized manner.

In philosophy, social epistemology is the study of the social dimension of knowledge or

information [Goldman, 2001]. Social epistemology dates back as far as Plato who, in his

dialog Charmides, poses the question of how a layperson can determine whether to trust

someone who claims to be an expert [Goldman, 2001]. The term social epistemology is used

in two senses. The classical sense deals mostly with truth and belief, and is centered on the

individual. Conversely, the anti-classical approaches focus on the process by which society

as a whole synthesizes knowledge. This interpretation is directly applicable to the creation

of folksonomies, and generally to Web 2.0.

7Definition from en.wikipedia.org/wiki/Folksonomy, downloaded on September 17, 2009.
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1.3 Social Web

1.3.1 Social Content Sites

In Section 1.2.3 we discussed Web 2.0, a set of technologies that support, and embody, the

social synthesis of knowledge. In this section we survey a particularly prominent part of

Web 2.0, namely, the social content sites.

These sites bring about a shift in the traditional paradigm of information dissemination,

in which there are far fewer producers of information than there are consumers. In contrast

to traditional media, and to Internet-based publishing of the pre-social era, users of social

content sites are both producers and raters of information, as well as information consumers.

The wide-spread adoption of the social paradigm on the Web led to tremendous popularity

and significant commercial success of these sites, and signaled a shift in the relationship

between the Web and a typical Web user.

Many social content sites are in operation today, and many others are increasingly

adding social features. Furthermore, many different kinds of social content sites exist, each

catering to a particular activity or a set of activities, and to a particular user base.

For an example of successful social content sites consider Facebook (facebook.com) and

MySpace (myspace.com), two sites that enable a full range of social behavior on the Web.

Both sites support the posting and annotation of content, and the forming of social networks,

and provide a range of direct inter-user communication options like messaging and various

kinds of bulletin boards. In addition to direct communication, content is shared between

users by means of information feeds. An interesting research question that arises in the

context of these full-featured social content sites is how to best aggregate the heterogeneous

data that comprises an information feed, improving the user experience on these sites and

facilitating information discovery.

A recent success story is Twitter (twitter.com), a site aimed exclusively at inter-user

communication via status updates. Twitter can be seen as the antithesis of full-featured sites

like Facebook and MySpace, because of how limited an interaction it supports. Nonetheless,

simple status update functionality seems to have hit a sweet spot in user needs, giving the

site tremendous popularity.

An important category of social content sites focuses on a specific aspect of on-line

social behavior, namely, the sharing and annotation of content. Prominent examples of

such sites are YouTube (youtube.com) for videos, Flickr (flickr.com) for photos, Delicious

(delicious.com) for URLs, and CiteULike (citeulike.org) for academic papers, to name

just a few. These sites all allow users to annotate content with natural language keywords,

or tags, and we refer to them jointly as social tagging sites. We give a more extensive

description of social tagging sites, and particularly of Delicious, in Chapter 2.

Blogs and Wikis are yet another type of social content sites that gained tremendous

popularity in recent years. Some prominent examples include Wikipedia, “the free ency-
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clopedia that anyone can edit” (en.wikipedia.org), LiveJournal (livejournal.com), and

TechCrunch (techcrunch.com). Users of these sites contribute free-text content that ex-

presses opinions, descriptions of events, or other materials such as graphics of video. The

term blogosphere, coined by Brad L. Graham8 , refers to the inter-connectivity among blogs,

and implies that blogs exist together as a connected community, or as a social network in

which everyday users can publish their opinions. Bloggers often publish news and editorial

opinions on important local and national events, and this activity can be viewed as a kind

of grass-roots journalism. Prominent blogging sites like TechCrunch are widely considered

to be as authoritative as traditional news media on the topics they cover. Realizing the

importance of blogging, many traditional media publishers such as CNN, BBC and others,

incorporated blog features into their Web sites.

The final type of a social content site that we mention here deals with opinion aggre-

gation. In sites like Digg (digg.com) and StumbleUpon (stumbleupon.com) users endorse

(with a star or a thumbs-up) sites that they found interesting. The number of endorsements

is aggregated, and a hotlist of the currently most popular sites is computed.

It is interesting to note that, while all social content sites are ultimately aimed at

information sharing in large social groups, each caters to a different self-selected group of

individuals. Recent reports [Richmond, 2009] point to a socio-economic divide between

Facebook and MySpace users, with Facebook users more likely to come from families with

higher levels of education. Other sites are also self-selecting. The prominence of technology-

related content in Delicious draws technologically inclined users to that site, while the

thematic focus of Flickr makes this site attractive to persons with an interest in photography.

The comedian Jerry Seinfeld famously said: “It’s amazing that the amount of news that

happens in the world every day always just exactly fits the newspaper”. This joke expresses

the intuition of why the social contribution of content has become so wide-spread. The

blurring of the line between producers and consumers of content brings about democrati-

zation of information. Users are able to contribute news, commentary, and other types of

information that are of interest to them and to other members of their social surrounding.

An ability to tailor content to one’s needs is an extremely powerful participation incentive,

and serves as basis of a true Information Society.

1.3.2 Social Information Discovery

A factor that has high impact on the user experience on the Social Web is the ease of access

to relevant content. This gives rise to a major difficulty, namely, how do we define relevant

content?

Our personality, including interests and tastes, is shaped in large part by our membership

in social groups. Throughout our lifetimes we belong to a variety of groups; our family,

8Information according to en.wikipedia.org/wiki/Blogosphere, downloaded on September 17, 2009.
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our high school class, the social climate of the country in which we are brought up, and

the circle of our professional peers all influence our opinions and preferences. Our taste in

food, our choice of which electronics products to purchase, which books to read, and how

to dress, are all influenced by our social context.

The Social Web allows us to behave socially on-line. However, the same mechanisms that

govern our socially influenced choices in the physical world still apply to this new context.

In many cases, users explicitly affiliate themselves with relevant and trusted sources of

information. So, a person who considers himself a Liberal Democrat will read liberal media,

and may attend gatherings of like-minded persons in his area. Likewise, a blogger interested

in technology-related content may subscribe to Slashdot and TechCrunch updates through

an RSS aggregator9 . A physical-world endorsement of a friend’s taste in food may translate

to joining the friend’s network of fans on Delicious, or following his status updates on

Twitter.

Users who do not explicitly affiliate themselves with sources of relevant information,

either via subscriptions or via the social networks mechanism, may still be able to discover

information in a social manner. Namely, the system may deduce the user’s preferences

based on his content contributions. An important family of techniques that uses this idea

is based on Collaborative Filtering (CF). The underlying assumption of CF is that people

who agreed in the past tend to agree again in the future. Several CF approaches have been

described in the literature, and we summarize one classic approach, referred to as item-

based CF, here. In item-based CF, which was popularized by Amazon.com and is known as

“people who bought x also bought y”, the system first computes a matrix of item-to-item

similarity. For example, similarity between items a and b may be computed as the angle

between vectors ~a and ~b, where ith vector position is set to 1 if user i purchased the item,

and to 0 otherwise. (Of course, weights may also be used instead of binary values.) Having

constructed the item-to-item similarity matrix, the algorithm generates a prediction for a

given user u. In an alternative approach, known as user-based CF, a user-to-user similarity

matrix is built in the space of items.

An issue that arises in the context of content recommendation that is based on user

behavior is privacy. Privacy is an active area or research, both as it relates specifically to

Collaborative Filtering [Polat and Du, 2003; Canny, 2002], and in the broader context of

privacy preserving data mining [Vaidya et al., 2006].

While the personalization of content described here allows for access to highly relevant

information, it comes with a significant drawback. Our brains have a natural tendency,

based on the conservation of energy, to prefer recognition to discovery. This tendency

leads us to trust familiar sources, and to become indoctrinated in familiar ideas. Receiving

all information from a set of familiar sources may limit a person’s horizons and prevent

9RSS stands for “Really Simple Syndication” and is a family of web feed formats used to publish frequently

updated content. RSS feeds are read using aggregator software.
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true information discovery. This pitfall, which exists both in the physical world and on the

Social Web, can be avoided by social information processing systems, by diversifying offered

content. We discuss this point further in Section 2.3.1.

Much of the information with which we come in contact every day is time-sensitive.

Political news and commentary, party invitations, and restaurant openings are all examples

of information that is relevant only when it is fresh. The assumption that information

is time-sensitive underlies the design of most information presentation mechanism on the

Social Web. For example, status updates on Twitter, RSS feeds of blog data, and status

updates on Facebook all present data in time order. An interesting research question that

arises in this context is how to determine whether or not a particular piece of information

is time-sensitive, and how to present a combination of time-sensitive and time-invariant

results to the user in an intuitive manner.

1.4 Result Presentation for Information Discovery

1.4.1 Shortcomings of Ranking

In Section 1.1 we argued that many more high-quality documents are typically identified

by IR and Web search in real-life scenarios than any one user is willing to read, motivating

the need for ranking. Ranking is intuitive, and is the predominant method or prioritizing

results of potentially higher relevance over those of lower relevance in IR and search appli-

cations. The usefulness of ranking is widely recognized, and it has been applied in other

domains, such as for improving the user experience in relational database applications; see

for example [Ilyas, 2009].

Despite its wide-spread use, ranking has certain drawbacks. In particular, it is limited

in its scope to information discovery tasks in which the user is well-aware of his information

need, and is able to express that need with a query. Finding the phone number of the

Computer Science Department at Columbia University, the date of birth of Albert Einstein,

and a list of citations on the use of ranking in Database Systems are all information discovery

tasks with a precisely phrased information need, and ranking is helpful for such tasks.

However, because only a limited portion of the result set is easily accessible in a ranked

list (e.g., the top-10 or top-20 results), ranking is fundamentally inappropriate for data

exploration. In data exploration a user is iteratively refining his understanding of the

available data, and at the same time gradually re-defining his information need. An example

of a task of this kind is deciding which Computer Science course to take during the current

semester, or what style of shoes to buy this Fall. The commonality between these seemingly

unrelated tasks (other than the reference to the Fall season) is that a query like “CS courses

Fall 2009” or “Fall shoes” does not specify any properties of a desirable answer that can

be used for relevance ranking. That is, according to the queries, all CS courses offered in

the Fall of 2009 and all Fall shoes are equally relevant. The user may in fact have a rough
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idea about the kinds of classes and shoes that he prefers, but he wishes to formulate his

preference in a more informed manner, based on the available items.

In situations such as these the system must help the user formulate his information

need, through an effective information presentation method appropriate for data exploration.

Allowing the user to find relevant items is particularly important when the user is interacting

with a large dataset.

1.4.2 Faceted Search

A popular presentation method appropriate for information discovery is faceted search, also

called faceted navigation or faceted browsing. This method allows the user to access the items

in a collection by facets, defined as mutually exclusive, and collectively exhaustive aspects,

properties or characteristics [Wynar, 1992]. Faceted search is commonly used by on-line

stores, like Amazon.com and Best Buy, for the representation of their product catalogs.

In faceted search systems navigation is typically limited to a single facet at a time.

For example, the user may first choose to look at the “Automobiles” category, then at

“Ferrari”, then at “Red cars”, and will finally arrive at the automobile that he wishes to

buy. A summary statistic, such as the number of items that are classified under the current

facet, is usually provided alongside the facet description.

Faceted search remains an active area of research, and many extensions of the basic

model have been proposed, including a faceted query language [Ross and Janevski, 2004],

an extension of the presentation to include statistics other than item counts [Ben-Yitzhak

et al., 2008], and dynamically suggesting which facet to explore next with the goal of

minimizing navigation time [Roy et al., 2008].

1.4.3 Clustering

Clustering has long been recognized as a valuable data exploration tool. Many general and

domain-specific clustering algorithms exist and have been applied to the grouping together

of similar Web documents, DNA samples, user preferences, etc. While an extensive survey of

clustering is beyond the scope of this thesis, we briefly survey several application scenarios

where clustering has been used for data exploration, and refer the reader to reviews of

clustering [Jain et al., 1999; Berkhin, 2002].

Clustering of text documents has been explored extensively in Information Retrieval,

and we give a few examples here. It has long been recognized that partitioning large sets of

results into coherent groups, and generating descriptions for these groups, greatly improves

a user’s ability to understand vast datasets. This intuition was supported experimentally

in [Leuski, 2001] for collections of text documents. More recently, approaches have been

explored [Bonchi et al., 2008] that use search query logs to cluster search results into coherent

well-separated sets for presentation purposes. In [Dakka and Gravano, 2007] the authors
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combine an offline document clustering method and an online method to generate multi-

document summaries of clustered news articles.

Subspace clustering is a feature selection technique that aims to uncover structure in

high-dimensional datasets. Subspace clustering has been used extensively in data mining,

following the introduction of CLIQUE [Agrawal et al., 1998], an Apriori-style algorithm.

Many extensions of CLIQUE, as well as a variety of new subspace clustering algorithms,

have been proposed and are surveyed in [Parsons et al., 2004; Kriegel et al., 2008]. Subspace

clustering algorithms can generally be classified as bottom-up and top-down. Most bottom-

up algorithms, including CLIQUE, generate potentially overlapping clusters. In contrast,

top-down subspace clustering algorithms usually assign an item to at most 1 cluster.

Clustering and data visualization have been used extensively for the analysis of bio-

logical data [Azuaje and Dopazo, 2005]. Clustering is used for tasks such as analysis of

DNA microarrays, identification of biological networks and pathways, and validation of

computational predictions.

Another wide-spread application of clustering relates to the understanding of complex

networks such as the Web graph, a biological pathway, or a network of users of a collabo-

rative tagging site. Graph clustering is aimed at finding sets of related vertices in a graph,

where relatedness is application-dependent; see [Schaeffer, 2007] for a review.

1.5 Summary of Contributions and Thesis Outline

This thesis explores applied aspects of data management, aimed in particular at improv-

ing the user experience in on-line environments, with the goal of facilitating information

discovery and furthering collaboration. We believe it essential to develop and validate our

methods on real, rather than synthetic, datasets.

Because of the information-based nature of our society, information and knowledge are

often a financial asset. Companies such as AT&T, Google, IBM, Microsoft, and Yahoo!

achieved significant commercial success due in part to the multitude of valuable datasets

that they own and support. All companies on this list, and many others, realize the value

of academic research both for their own growth and for the development of the society at

large, and invest significant resources to support research. Much of the work in this thesis

is based on commercial datasets owned by Yahoo! We thank Yahoo! for giving us access to

the Delicious and Yahoo! Personals datasets that serve as basis for our work in Chapters 2

and 5, respectively.

The World Wide Web is based on the idea of open information exchange. The Web

itself, and many of its important subsets, are publicly available, and can be used as basis

for scientific research. This thesis uses several datasets that fall into this category. The

PubMed document corpus and the Medical Subject Headings ontology, both supported by

the National Center for Biotechnology Information and the National Library of Medicine,
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are used in Chapter 3. The English-language Wikipedia and an ontology of concepts called

YAGO are used in Chapter 4.

We now briefly outline the technical contributions of this thesis.

In Chapter 2 we build on the intuition that ranking on the Social Web should take into

account a user’s social context. We start with a description of the goals and challenges of

context-aware ranking, and present Delicious, a representative social tagging dataset that

motivates our algorithmic work. We go on to analyze the types of social behavior in which

Delicious users engage, and explore the potential of using this behavior for personalized

content recommendation. Finally, we present the main algorithmic contribution of Chap-

ter 2, a novel search paradigm referred to as network-aware search. We explore performance

considerations of our approach, and propose optimizations that make network-aware search

practical on the large scale.

In Chapter 3 we tackle the challenge of enhancing relevance ranking in scientific literature

search. We describe PubMed, the largest bibliographic source in the domain of life sciences,

and consider how a large high-quality ontology of Medical Subject Headings (MeSH) can be

used to relate a user’s query to the annotations of a document. We develop several relevance

measures appropriate for ranking in this domain, and propose efficient evaluation algorithms

for computing relevance on the scale of PubMed and MeSH. We also present results of

a preliminary user study that evaluates the effectiveness of our techniques. In a final

development, we go beyond list-based ranking, and present a two-dimensional visualization

of query results that facilitates data exploration.

In Chapter 4 we build on the idea of using an ontology for relevance ranking, and present

EntityAuthority, a framework for semantically enriched graph-based authority propagation.

EntityAuthority operates over graphs that combine Web pages and semantic entities, and

produces ranked lists of pages and entities as a result. We evaluate the effectiveness of our

method on a graph that combines Wikipedia pages with entities from an automatically-

derived ontology YAGO, and demonstrate an improvement in the quality of ranking.

In Chapter 5 we present BARAC, an algorithm for rank-aware clustering of structured

datasets. We outline the challenges of data exploration in large multi-dimensional datasets

in the presence of ranking, and propose to use clustering. We develop a family of clustering

quality measures appropriate for this domain, and adapt an existing clustering algorithm

to our scenario. We present an extensive experimental evaluation of the scalability of our

techniques on Yahoo! Personals datasets. Finally, we discuss and experimentally validate

the effectiveness of our methods.

Chapter 6 summarizes work that is not directly related to the main theme of this thesis,

but that was carried out as part of doctoral research. In Section 6.1 we describe several

approaches that address data modeling challenges in complex domains. In Section 6.2 we

discuss how classification ensembles from Machine Learning may be used for Parametric

Query Optimization in a Relational Database Engine. In Section 6.3 we describe MutaGe-
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neSys, a system for estimating individual disease susceptibility based on genome-wide SNP

arrays.

Chapter 7 concludes this thesis, summarizing our technical contributions and outlining

directions for future work.

The contributions of this thesis are centered around adding a semantic dimension to

search and ranking in a variety of application scenarios. The overarching goal of this work is

to improve the user experience in richly structured data-intensive environments, facilitating

information discovery. The datasets that motivate our work come from a variety of domains,

but have two common features: they are large and richly structured. These properties lead

us to develop techniques that utilize the rich semantic structure of the data, and that can

be used efficiently on the large scale.

Our work is motivated by the intuition that ranking does not always have to mask the

semantic richness of the data by mapping results onto a global one-dimensional line. In

Chapter 2 we explore ways to partition the user base, and to customize ranking based on

the semantics of a user’s social behavior. In Chapters 3 and 4 we enrich the ranking function

using ontological knowledge bases. In Chapter 5 we make the semantics of the relationship

between the data and the ranking function explicit, and use this relationship to partition

the dataset with respect to the ranking function.

Today’s users live in a global society, and use data in ways that cross application and

domain boundaries. In order to address the needs of users adequately, researchers must

bridge the gap between areas that have historically been disjoint. The work of this thesis

uses and extends techniques from a variety of research areas, such as database systems,

information retrieval, data mining, and machine learning.
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Chapter 2

Search and Ranking in

Collaborative Tagging Sites

This chapter is based on joint work with Sihem Amer-Yahia, Michael Benedikt, Alban

Galland, Cameron Marlow, Laks V.S. Lakshmanan, and Cong Yu. This work appeared

in [Stoyanovich et al., 2008a; Amer-Yahia et al., 2008b; Amer-Yahia et al., 2008a].

2.1 Introduction

2.1.1 Search and Ranking in the Social Context

As we argued in Chapter 1, the advent of the World Wide Web and the emergence of

the Social Web brought about a paradigm shift in the relationship between users and con-

tent. The new breed of Social Web users have a more direct relationship with the content

than do anonymous Web searchers modeled in traditional Information Retrieval. Users of

the Social Web portals build persistent online personas: they provide information about

themselves in stored profiles, register their relationships with other users, and express their

preferences with respect to content. As a result, rich semantic information about the user

is readily available, and can be used to improve the user’s online experience, making him

more productive, more creative, and better entertained online. Social Web users in fact

have an expectation with respect to the quality of served content, and rely on the system

to customize their online experience based on their social and informational context.

Collaborative tagging sites are a particular kind of social content site. In these sites,

users form social networks, and produce content by tagging items with natural language

keywords [Golder and Huberman, 2006]. What kinds of items are being tagged depends

on the focus of the specific site; however, the types of social interaction and the ways of

reaching content are consistent across sites. Some examples of collaborative tagging sites

are CiteULike, which maintains a library of academic papers, Delicious, in which users
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bookmark and tag web pages, Flickr and Snapfish, which focus on photos, and YouTube,

which specializes in videos. The currently predominant ways of reaching content in these

sites are:

• Browsing the most popular items;

• Browsing items by tag;

• Browsing by network.

For example, in Delicious users can view hotlists, which are lists of the currently most-

popular sites. Users can also browse the most popular URLs by tag. Finally, users can

befriend other users and subscribe to their friends’ feeds, which list the latest bookmarked

and tagged URLs.

As collaborative tagging sites grow in size, browsing-based information discovery be-

comes less effective. So, as the size of user’s friendship network increases, managing the

multitude of information feeds becomes more difficult. As more items are tagged by the

user base, the 10 or so most popular items that comprise the hostlist become a less and less

representative tip of the iceberg. As the community grows and includes users with varied

interests, choosing tags by which to browse becomes challenging.

As the size of the data set increases, it is important to assist the user in finding relevant

and interesting content. Further, the ability to define explicit social ties with other users

raises users’ expectations with respect to the quality of served content. In the remainder

of this chapter we propose to leverage the user’s social ties and tagging behavior for more

effective data exploration. We will present two data exploration scenarios in which offered

content is customized on a per-user basis, in accordance with the user’s social and tagging

contexts. The first scenario deals with customized content recommendation, while the

second focuses on network-aware keyword search.

The models and algorithms in this chapter are supported by an experimental evalua-

tion on datasets from Delicious, a representative collaborating tagging site. We start by

describing the Delicious system and identifying the different types of behavior taken on by

its users.

2.1.2 Delicious: a Collaborative Tagging Site

Delicious, formerly known as del.icio.us, is a social bookmarking and tagging service

for storing, sharing, and discovering websites. Delicious is owned by Yahoo! and has more

than five million users and 150 million bookmarked URLs1 .

1The statistics are as of August 18, 2009, according to en.wikipedia.org.
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Figure 2.1: Popular bookmarks in Delicious.

Delicious users bookmark URLs, and optionally assign free-text index terms, called tags.

Users can browse their own bookmarks, as well as bookmarks that were assigned by other

users of the system.

Figure 2.1 presents a portion of a hotlist: a list of the currently most popular URLs,

together with their popularity score (134 for the first URL), and a list of tags that were

assigned to the URL by the user base2 .

In addition to browsing the most popular URLs, users can also browse content by tag.

Figure 2.2 presents a tag cloud, a graphical representation of the most popular tags, with

font size and color corresponding to the popularity of the tag in the system. (Tags that are

popular in the system, and that are also part of the user’s tagging vocabulary are highlighted

in blue.)

Hotlists and tag clouds are both important means of information discovery in Deli-

cious that rely on the system-wide, or global, popularity of URLs and tags, respectively.

Additionally, to facilitate the social sharing of bookmarks among pairs of users, Delicious

supports the creation of networks. A network is a directed graph in which users become

fans of other users, and are then able to browse the recently bookmarked and tagged URLs

2All screenshots in this section were generated on August 16, 2009.
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Figure 2.2: The Delicious tag cloud.

contributed by the individual members of their network.3 We will sometimes refer to the

explicit network of fans in Delicious as the friendship network for convenience. Figure 2.3

shows a list of recent bookmarks created by user Cameron. URLs are displayed in chrono-

logical order, and include a global popularity score (7 for the first URL in the list), and a

list of tags that were assigned to the URL by all members of the user base.

In the remainder of this chapter we will develop a formalism for network-aware search

and content recommendation. In order to present our approach, we now formally describe

the data model. Our model is based on Delicious, but is applicable to other collaborative

tagging systems that have a similar structure.

2.1.3 Data Model

We assume that three sets are given: a set of users U , a set of items I, and a set of tags T .

In Delicious, U includes all registered users, I corresponds to the set of URLs, and T is the

3It is also possible to browse bookmarks of users who are not in one’s network. However, browsing a

network member’s URLs is easier because of more convenient navigation.
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Figure 2.3: Browsing bookmarks of a network member.

set of all tags that were assigned by users to the URLs in the process of tagging. Tagging is

the primary way in which users contribute content to the system. We will use the following

notation to represent tagging.

• Tagged(u, i, t) represents tagging actions: a user u tags an item i with a tag t.

• Tags(u) ⊆ T is the set of tags that were used by user u.

• Tags(u, i) ⊆ T is the set of tags that were used by user u to tag item i.

• Items(u) ⊆ I is the set items that were tagged by user u.

• Items(u, t) ⊆ I is the set items that were tagged by user u with tag t.

• Taggers(i) ⊆ U is the set of taggers of item i.

• Taggers(i, t) ⊆ U is the set of taggers of item i with tag t.
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An additional activity that is complementary to tagging is the users’ participation in

social networks. A social network is a directed graph, in which nodes are users, and edges

correspond to social ties between users. These ties may be explicit, such as friendship,

similar age group, or geographic proximity. An example of an explicit tie in Delicious is

when a user becomes a fan of another user. Social ties may also be implicit, and may be

derived through data analysis. An example of an implicit tie is shared interest in a topic,

and we will describe the semantics of shared interest in the following sections.

We use the following notation to represent a social network.

• Link(u, v) represents a directional relationship between two users u, v ∈ U , and de-

notes that there is an edge from u to v. For example, in Delicious such an edge may

denote that u is a fan of v.

• Network(u) ⊆ U is the set of neighbors of u that is, Network(u) = {v | Link(u, v)}.

2.1.4 Description of the Experimental Dataset

The methods described in this chapter were evaluated over a sample of Delicious to which

we were given access by the Delicious team. The dataset includes tagging actions during

a one-month period in 2006. In addition to tagging actions, our dataset also includes a

snapshot of the social network for the corresponding time period.

The dataset of tagging actions is very sparse and follows a long tail distribution [Kipp

and Campbell, 2006; Golder and Huberman, 2006]: most URLs are tagged by only a handful

of users, and many tags are only used by a few users. Sparse datasets are difficult to process

efficiently, and we applied the following procedure to reduce the size of the dataset. First,

we removed all URLs that were tagged by fewer than 10 distinct users. Additionally, we

removed tagging actions that include uncommon tags: only tags used by at least 4 distinct

users are included in our dataset. This cleaning procedure resulted in cutting the tail of

URLs and tags. As a result, the dataset was reduced to 27% of its original size. Our cleaned

dataset contains 116,177 distinct users who tagged 175,691 distinct URLs using 903 distinct

tags, for a total of 2,322,458 tagging actions.

Reduction of the dataset size was done primarily to allow us to store and access the

data more efficiently in a relational framework. However, while the size of the dataset was

reduced dramatically by our cleaning procedure, the effect of this reduction on keyword

search and content recommendation is limited. This is because only the URLs that were

“unpopular” over all tags and all users were removed. Each of the removed tags was

used by only a handful of Delicious users, and such tags have limited utility for content

recommendation and search. More often than not such uncommon tags form part of a user’s

private vocabulary, and are not intended for social sharing of information. Some examples

of such idiosyncratic tags are “Michael G’s birthday party” and “bug #1293”.
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In the remainder of this chapter, we will focus on tagged URLs, and will neither explicitly

represent nor use URLs that are bookmarked but not tagged. Additionally, because we will

consider a user’s tagging to verify the effectiveness of content recommendation, and, in some

cases, to derive a social network, we focus our attention on taggers – users who contributed

at least one tagging action to the cleaned dataset.

2.1.5 Chapter Outline

In the first part of this chapter (Section 2.2), we study the effectiveness of several hotlist

generation strategies that take into account the user’s tagging behavior, social ties, and

interests. We conclude that leveraging context information significantly improves the quality

of content recommendation.

In the second part of this chapter (Sections 2.3 through 2.6), we develop a novel paradigm

of network-aware search, in which keyword search and ranking are executed over the content

that is recommended by the user’s network.

We review related work in Section 2.7 and conclude in Section 2.8.

2.2 Leveraging Semantic Context to Model User Interests

2.2.1 Introduction

In this section we study how the social context of a user can be used to improve the quality

of content recommendations. In Section 2.1.2 we described the basic types of context that

arise in collaborative tagging sites. In these sites users contribute content by tagging items,

forming social networks, and consuming content, primarily by browsing. An important

information discovery tool in collaborative tagging sites is a hotlist.

Hotlists are a means to expose vital content which has global popularity in the system.

An example of a hotlist is presented in Figure 2.1. However, while globally popular items

usually represent the consensus of many users, we experimentally observe in Section 2.2.3

that such items only account for a small fraction of any individual user’s interests. We thus

look for ways to account for user preferences during hotlist computation.

We first represent the interests of a user by the vocabulary he employs to tag URLs.

The intuition is that if a significant portion of the user’s tagging includes the tag “sports”,

the user is likely interested in sports-related content. This simple observation allows us to

replace a single global hotlist by per-tag lists, and to suggest potentially interesting URLs

by drawing from one or more per-tag lists in accordance with the user’s preferences. As we

demonstrate in Section 2.2.4, tag-driven customization significantly improves hotlist quality,

but its success is still limited by the global aspect.

In the second approach, we propose to model interest using social ties. These ties are

either explicitly stated or derived. An example of an explicit social tie is a network of fans.
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We explore the utility of this network in hotlist generation in Section 2.2.5, and demonstrate

that such ties can indeed be leveraged to generate higher quality hotlists.

Collaborative Filtering is a popular method that uses machine learning to determine

interest overlap between users based on their behavior such as common ratings of items, or

common purchasing and browsing patterns. We adopt an approach similar to Collaborative

Filtering and construct a common interest network that links two users if the sets of URLs

they tagged overlap significantly. We demonstrate in Section 2.2.6 how such networks can

be used to construct personalized hotlists of very high quality.

One factor that limits the effectiveness of common interest networks in Collaborative

Filtering is sparsity: there are often many more items than any one user is able to rate. This

issue is further aggravated in the context of a collaborative tagging site such as Delicious,

where the set of items corresponds to a potentially infinite set of Internet sites. Sparsity is

one of the main reasons why using overlap in items to derive common interest networks is

only effective for a subset of Delicious users in our experiments. Another important reason

is that people rarely agree on everything: you may agree with your mother on cooking, and

with your adviser on research, but your adviser’s opinion on food is hardly relevant. We use

this idea in Section 2.2.7 and demonstrate how tag and item overlap can be combined to

construct per-tag common interest networks. Such networks have wider applicability than

item-only networks, and can be used to construct hotlists of very high quality.

2.2.2 Formalism

We use the following terminology to describe a hotlist generation method M :

• The scope of M refers to the portion of the user base Uscope ⊆ U to which the method

can be applied. The larger the scope of a hotlist generation method, the more users

can potentially benefit from it.

• The seed of M is the set of users Useed ⊆ U who are used to generate hotlists for u ∈

Uscope. In order to produce high-quality hotlists the seed has to be both representative

of a user’s interests, and focused on his interests.

Given a set of items I, and the seed set Useed, we define the score of an item i ∈ I as

the number of users in Useed who tagged item i:

score(i,Useed) = |Taggers(i) ∩ Useed| (2.1)

The goal of a method M is to produce a hotlist of items HList. Without loss of generality,

we assume that we generate top-10 hotlists, |HList| = 10 for all methods.

We quantify the performance of M in terms of coverage, a normalized metric that

represents the overlap between the hotlist and the items tagged by the user during the
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specified time period.

coverage(HList, u) =
|HList ∩ Items(u)|

MIN(|Items(u)|, 10)
(2.2)

Coverage of a method M is the average of per-user coverage over all users in Uscope.

coverage(M) = AV Gu∈Uscopecoverage(HList, u) (2.3)

2.2.3 Using Global Popularity

We first consider the quality of hotlists that are based on global popularity of a URL (this is

what is referred to as a “hotlist” by most systems). For this method, which we call global,

the seed and the scope are the entire user base, while the score of an item i is simply the

number of users who tagged that item.

Useed = Uscope = U

score(i) = |Taggers(i)|

The top-10 best URLs computed using this method constitute the hotlist, and this

hotlist is global, i.e. it is not customized per-user. The left hand-side of Figure 2.4 presents

a hypothetical list of 10 most popular URLs, along with the number of users who tagged

these URLs. The global method recommends the URLs in this list to each user in the

system. Note that the popularity of each URL, recorded in the Votes column in Figure 2.4,

reflects the total number of tagging actions that reference the URL, irrespective of the tag.

The average coverage of global over all 116,177 users in our experiments is 2.7%. This

amount, while quite small, indicates that there is some correlation between the users’ tagging

behavior and globally popular URLs. It also argues for improving the method of producing

hotlists by accounting for users interests.

2.2.4 Combining Global Popularity with Tags

We now model the interests of a user in terms of the user’s tags, and define the interest of

a user u for tag t as the fraction of u’s tagging actions that include t.

interest(u, t) =
|Items(u, t)|

|Items(u)|
(2.4)

Consider the tagging actions of four hypothetical users presented in Figure 2.5. Ann tags

with “news” and “music” with equal frequency, and she uses no other tags. We compute

interest(Ann,“music”) = interest(Ann,“news”) = 1
2 . Dawn also uses two tags, “work”

and “play”, but she tags with “work” more frequently: interest(Dawn, “work”) = 7
8 ,

while interest(Dawn,“play”) = 1
8 .
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Figure 2.4: Hypothetical top-10 hotlists.

We compute separate top-10 URL lists for each tag t ∈ T . Figure 2.4 presents four

hypothetical tag-specific hotlists for tags “news”, “music”, “java”, and “work”. The pop-

ularity of a particular URL in the Votes column reflects the number of tagging actions

where the URL was tagged with the particular tag, and is typically lower than the global

tag-unaware popularity. So, the popularity of cnn.com in the top-10 list for “news” is 610,

which is lower than the popularity of this URL in the global top-10 list. This is because

cnn.com was likely tagged with tags other than “news”, such as “cnn”, “toread”, etc.

Observe that the popularity of items in the top-10 list for “work” is significantly lower

than item popularity in other tag-specific lists. This is because the tag “work” is fairly

broad and rarely describes the content of the URL it annotates. Tags like “work”, “todo”,

“toread”, and “nota bene” are rarely used to assign semantic meaning to a URL. Rather,

these tags are part of the user’s private vocabulary, and are likely not intended for sharing.

With the tag-specific hotlists at our disposal, we experiment with two different ways

of using these lists for user-specific hotlist generation. In the first approach, which we

call best tag, we identify, for each user u, a single tag from among Tags(u) for which

interest(u, t) has the highest value, and use the global top-10 URLs for that tag as the

user’s hotlist. Ties are broken arbitrarily. More formally, for a given t ∈ T ,



CHAPTER 2. SEARCH AND RANKING IN COLLABORATIVE TAGGING SITES 35

Figure 2.5: URLs tagged by four hypothetical Delicious users.

Uscope = {u ∈ U| ∀t′ ∈ Tags(u), interest(u, t) ≥ interest(u, t′)}

Useed = {u ∈ U| t ∈ Tags(u)}

So, for Ann in Figure 2.5, either “news” or “music” may be used for best tag. The tag

“music” is the best tag for Ben, “java” is the best tag for Chris, and “work” is the best tag

for Dawn.

The method best tag can be used for all taggers u ∈ U , and we report the average

coverage over all users (116,177) for this experiment. Focusing on the single best tag brings

coverage to 8.6%, a significant improvement over global. A deeper study of the data reveals

that best tag is most effective for users with comparatively higher values of interest(u, t)

for their best tag.

We draw two conclusions from our observation: first, that accounting for tagging behav-

ior when computing hotlists does improve hotlist quality, and second, that a more general

method for hotlist selection is needed, particularly for cases where no tag can be identified

that clearly dominates a user’s interests.

We thus propose another method, dominant tags, where we identify taggers who have

a strong interest in one or several tags, and then combine the best URLs from the per-tag
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# dominant tags |Uscope| coverage

1 36,736 10.4%

2 16,452 14.4%

3 6,466 17.8%

Table 2.1: Effect of the number of dominant tags on the performance of dominant tags.

top-10 lists into a single custom top-10 hotlist. For a given tag t ∈ T , and a threshold θ,

Uscope = {u ∈ U| t ∈ Tags(u) ∧ interest(u, t) > θ}

Useed = {u ∈ U| t ∈ Tags(u)}

In the current set of experiments, we say that a user u has a strong interest in a tag

t if interest(u, t) > 0.3. This threshold was determined empirically, and needs further

validation in a future study. With an interest threshold set to 0.3, a user can have at most

3 dominant tags. If more than one tag passes the threshold, we draw an equal number of

items from the top-10 lists that correspond to each dominant tag. If two tags t1 and t2

both pass the interest threshold for user u ∈ Uscope, the final list HList consists of the top-5

entries from HList1 and the top-5 entries from HList2. For users with 3 dominant tags, we

choose the top-3 URLs from each HList1, HList2, and HList3 and build a top-9 hotlist.

So, for users Ann and Ben in Figure 2.5, the hotlist is a combination of the top-5 URLs

for “news” with the top-5 URLs for “music” (see Figure 2.4). Chris and Dawn both have a

single dominant tag, and the top-10 list for these users is generated the same way as in the

case of best tag.

Table 2.1 presents the partitioning of the users in our dataset by the number of tags

for which they have strong interest, and presents performance of dominant tags for these

users. Note that dominant tags has less than perfect scope: the total number of users

partitioned in this way is smaller than the entire user base; 49% of users in our dataset have

no dominant tags.

The first row of Table 2.1 reports coverage as an average over the 36,736 users who have

one dominant tag. For those users, the generated hotlist constitutes 10% of all URLs tagged

by each user, on average. This number increases when users have 2 and 3 dominant tags.

Clearly, the more dominant tags there are for a user, the better the coverage. However, a

higher number of dominant tags corresponds to a more limited scope of applicability.

We now turn our attention to the relationship between the strength of a user’s interest

in a tag, and the coverage of the dominant tags method. We do this for users with a single

dominant tag (row 1 in Table 2.1). Table 2.2 summarizes our findings: as expected, the

stronger the user’s affinity for a tag, the better the coverage, but the more limited the scope.

Based on the data in Table 2.2 we observe that, while coverage increases with increasing
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interest |Uscope| coverage

30% 36,736 10%

40% 31,391 11%

50% 25,703 13%

60% 23,927 13%

70% 20,943 14%

80% 19,704 14%

90% 19,392 14%

100% 19,347 14%

Table 2.2: Effect of interest on the performance of dominant tags.

affinity for a tag, a plateau is reached as interest reaches 60%. Hotlists generated by

dominant tags take into account a user’s interests, as derived from his linguistic choices.

However, items in the tag-specific top-10 lists still represent consensus of a very large group

of users: |Useed| is as large as 29,712 for the most popular tag in our experiments, i.e.

29,712 distinct users in our sample used this tag. For users with two or three dominant

tags, multiple top-10 lists are combined, further increasing the size of Useed.

Conceptually, it is not the sheer size of the seed set, but rather the subjective use

of vocabulary that limits the effectiveness of tag-based hotlist generation methods. This

happens because vocabulary alone, in this case in the form of simple tags, cannot precisely

capture meaning. Consider for example the sets of items that Ann and Ben tag with “music”

in Figure 2.5. Under the assumption of tag-based hotlist generation methods, both users

are interested in music. However, Ann and Ben are interested in different kids of music:

Ann prefers alternative rock and heavy metal, while Ben likes bands that may be described

as post-punk or alternative jazz.

Using tags to describe interests maps to the philosophical concept of meaning by inten-

tion (connotation), where the meaning is defined or described. For example, a user may

state that he is interested in music or in sports. Such a description may not be able to

precisely define meaning because of implicit ambiguity. This is contrasted with meaning

by extension (denotation), where the meaning of a concept is expressed by pointing out

examples of the concept. We will develop a hotlist generation approach that uses meaning

by extension in Section 2.2.6, and will combine connotation and denotation in Section 2.2.7.

For reasons outlined above, the opinions and interests of individual users are approxi-

mated in large heterogeneous seed sets. The larger and the more heterogeneous the seed,

the coarser the approximation. We call this effect dilution. To minimize dilution, given a

user u ∈ Uscope, a hotlist generation strategy needs to identify the seed set Useed that is

both representative of the interests of the user u, and focused on the user’s interests.

In the remainder of this section, we seek to reduce dilution by considering explicit and
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implicit social ties between users during hotlist generation.

2.2.5 Computing Hotlists Using the Friendship Network

The goal of this experiment is to explore the utility of the explicit friendship network in

Delicious for hotlist generation. Of 116,177 taggers in our experiments, 36,248 (31%) also

have a social network, and we term such users friendly taggers. Choosing the friendship

network as Useed is justified by the fact that Delicious users tend to pay attention to their

friends tagging actions, which influence their own. In particular, users can subscribe to

feeds and get notified whenever one of the users in their network tags a new URL.

For each friendly tagger, we generate a customized hotlist by drawing 10 URLs with

highest popularity from among URLs tagged by the members of his network. We refer to

this hotlist generation method as friends. The scope of friends is the set of friendly

taggers, and the seed is defined, for a fixed user u, as the network of u.

Uscope = {u ∈ U | ∃v ∈ U : v ∈ Network(u)}

Useed = Network(u)

Consider again the hypothetical users in Figure 2.5, and suppose that Chris is a fan of

Ann and Ben, that is, Network(Chris) = {Ann,Ben}. Then the hotlist for Chris would

combine Items(Ann) and Items(Ben). In this list, bbc.co.uk and pbs.org would be

ranked higher than the other URLs, since these items each have two votes, while other

items each have one vote. Note that the coverage of the resulting hotlist with respect to

Items(Chris) is 0, signifying that, while Ann and Ben may be friends with Chris in real life,

Chris’s interests diverge from those of his friends. Suppose now that Chris is a fan of Dawn,

that is, Network(Chris) = {Dawn}. In this case the hotlist for Chris is Items(Dawn),

which attains a perfect coverage of 1. This example illustrates that explicitly declared

networks, such as a network of fans, may or may not be indicative of the users’ interests,

and we now demonstrate this experimentally.

We focus on a random subset of friendly taggers, 4,644 in all, for our experiments

in this section, and find the coverage of friends to be 42.9%, a significant improvement

over global, which was 3.3% for the sample of friendly taggers in our experiments. Note

that AV G(|Useed|) = 4 for our sample, multiple orders of magnitude less than for previous

methods.

We now explore how tagging can be used to deduce interest overlap among users, and

how such overlap can be used to generate hotlists of very high quality. We report two

experiments: in the first, two users are said to have a social tie if the sets of URLs they

tag overlap significantly; in the second, we enrich the set of derived ties by considering

tag-specific overlap in URLs.
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URL agreement |Uscope| AV G(|Useed|) coverage

30% 1,382 169.4 61.47%

50% 913 136.9 72.82%

Table 2.3: Effect of the agreement threshold on the effectiveness of url interest.

2.2.6 Interest as Overlap in URLs

In this experiment we compute a URL-interest network by considering the overlap in tagged

URLs between users. We quantify URL-agreement between users u and v as the fraction of

URLs tagged by u that were also tagged by v.

url agreement(u, v) =
|Items(u) ∩ Items(v)|

|Items(u)|
(2.5)

When computing URL-based agreement between u and v we do not account for the

tags that were assigned to the URLs in Items(u) and Items(v). So, u may have tagged the

homepage of the Republican National Convention www.gop.com with the tag “good”, while

v may have tagged the same URL with “evil”. Nonetheless, we assume that both u and v

expressed an interest in www.gop.com by tagging that URL, irrespective of their sentiment.

Note that agreement is directional. If url agreement(u, v) is above a certain agreement

threshold θ, we will use URLs tagged by v to derive the hotlist for u. We refer to this

method as url interest. More formally, we first define the scope of the hotlist generation

method as the set of users whose agreement with at least one other user in U is above the

agreement threshold θ:

Uscope = {u ∈ U | ∃v ∈ U : url agreement(u, v) > θ}

We next define the seed for a fixed user u ∈ Uscope:

Useed = {v ∈ U : url agreement(u, v) > θ}

Consider again four hypothetical users whose tagging actions are summarized in Fig-

ure 2.5. URL-agreement of Chris with Dawn equals 1, reflecting that URLs in Items(Dawn)

may be of interest to Chris. On the other hand, url agreement(Dawn,Chris) = 1
2 .

Table 2.3 summarizes the effectiveness of url interest in terms of scope and coverage.

We observe that, while the method achieves very good coverage, it is very limited in its

scope: only 1,382 users can benefit from customized hotlists if 30% agreement is required.

The scope is further limited to 913 users for a minimum agreement of 50%. Note also that

AV G(|Useed|) is lower for the 50% threshold. We believe this to be a case of lower dilution

(fewer users in the Useed) leading to higher coverage.
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The limited scope of url interest is due to the fact that strong agreement of the kind

required by this method is uncommon. To include an edge between two users in the interest

network, we require that they agree on at least 30% of the tagged URLs over-all. We observe

that, while agreement of this kind over all interests may be rare, people more commonly

agree with others on only a part of their interests. We explore this idea in the next set of

experiments.

2.2.7 Interest as Overlap in URLs and in Tags

We now propose to combine interest in a tag, as explored in dominant tags, with agree-

ment based on URL overlap, as in the previous section, to construct a tag-URL-interest

network. We use tag interest to generate a global partitioning of tagging actions, and then

search for URL-agreement within these partitions. We call this method tag url interest,

and propose to use it for the taggers who show strong interest in one or more tags (see

Equation 2.4). Thus, we define the scope of tag url interest as the set of taggers with

strong interest in a tag, and with URL agreement, for that tag, with at least one other user.

We first define a tag-specific version of agreement as:

tag url agreement(u, v, t) =
|Items(u, t) ∩ Items(v, t)|

|Items(u, t)|
(2.6)

The scope of tag url interest is then, for a fixed tag t ∈ T :

Uscope = {u ∈ U | t ∈ Tags(u) ∧ interest(u, t) > θinterest

∧ ∃v ∈ U : tag url agreement(u, v, t) > θagreement}

We next define the seed for a fixed u ∈ Uscope, and for a fixed tag t ∈ T as the set of

users who are in tag-url-agreement with u, and who have used t:

Useed = {v ∈ U|t ∈ Tags(v) ∧ v ∈ tag url agreement(u, v, t) > θagreement}

Consider users Ann and Ben in Figure 2.5. Ben is in perfect agreement with Ann

on “news”, and Ann’s news-related URLs should therefore be included into Ben’s hotlist.

However, while both Ann and Ben tag with “music”, their connotational agreement for this

tag is 0; see Section 2.2.4 for a discussion. The tag url interest method recognizes this

and will not recommend any of Ann’s music-related items to Ben.

We evaluated the effectiveness of tag url interest on a subset of users in our exper-

iments: we choose users with strong interest in exactly 2 tags. Out of 16,452 users with

strong interest in 2 tags, 1,235 were in the scope of tag url interest. We note that, while

the scope of the current method is still limited, it greatly exceeds the scope of url interest:

only 205 users in the scope of tag url interest where also in the scope of url interest.
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method |Uscope| AV G(|Useed|) coverage

dominant tags 1,235 26,855.5 17.2%

tag url interest 1,235 227.4 81.7%

url interest 205 202.9 84.5%

Table 2.4: Relative performance of dominant tags, tag url interest, and url interest.

Table 2.4 summarizes the relative performance of dominant tags, url interest and

tag url interest for the users in Uscope of tag url interest. The first line summa-

rizes performance of dominant tags for users in tag url interest. Because Uscope of

tag url interest is a proper subset of Uscope of dominant tags, we report performance

of dominant tags for all users in tag url interest. In this table, we use 30% as the

threshold for both interest and URL agreement, wherever appropriate.

We note that tag url interest significantly outperforms dominant tags in terms of

coverage. However, for users who are in both tag url interest and url interest, the

latter does better. This represents 205 users for whom tag url resource achieves an

81.7% coverage while url resource achieves an 84.5% coverage. This reinforces the idea

that accounting for agreement over all URLs is stronger than agreement on one tag at

a time. This result also supports our dilution hypothesis: AV G(|Useed|) is smallest for

url interest, followed by tag url interest.

2.2.8 Discussion

As we demonstrated in this section, a user’s tagging and social ties serve as a good indicator

of his interests. Clearly, hotlists generated by observing explicit social ties, or by deriving

social ties based on tagging, are of higher relevance than those produced by global hotlist

generation strategies. In the remainder of this chapter we will expand on this intuition,

and will develop network-aware search – a novel search paradigm where search results are

computed with respect to a user’s social network.

However, before we move on to network-aware search, we would like to make some ob-

servations regarding information discovery in collaborative tagging sites.

Social Information Discovery as a Participation Incentive

Delicious was originally conceived as an on-line bookmarking platform that allowed

users to make their bookmarks portable. Bookmarking was initially viewed as a private

activity, and tagging, particularly social tagging, gained prominence over time. While some

users still view Delicious primarily as a private bookmarking platform, many enjoy the full

range of social features of the site. This is evidenced by the extensive use of the network

feature, and, perhaps most interestingly, by the fact that the tagging vocabulary in Delicious
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converged to form a folksonomy. A folksonomy is a vocabulary, along with a classification

system, that emerges in a bottom-up manner from the collaborative tagging practices of a

social group. Users who tag socially tend to use folksonomy terms in their tagging, enabling

other users to identify their content more easily.

In our work with the Delicious dataset we observed that participation in a network of

fans and social tagging are complementary activities: users who form social networks are

more likely to tag and vice versa 4 .

As we just discussed, many Delicious users contribute content in a socially aware manner.

Therefore, an important technical question, and one that may influence the very survival

of social tagging sites like Delicious, is how to support social information discovery. In

this section we described how a user’s social behavior may be leveraged to generate high-

quality hotlists, and we will present an algorithmic framework for network-aware search in

the remaining sections of this chapter. However, the scope of applicability of our methods

is limited to those users who choose to interact with the collaborative tagging platform

in a collaborative, social manner. We believe that supporting socially aware information

discovery will enrich the user experience, serving as a powerful incentive for continued user

participation. This will, in turn, increase the scope of applicability of our methods.

Finally, we remark that the distinction between private tagging that involves idiosyn-

cratic vocabulary, and public tagging that draws upon a folksonomy of terms, calls for the

study of privacy in the context of collaborative tagging sites.

External Factors that Influence Interest

There are different reasons why a user would bookmark a URL and use specific tags to

label it. Our evaluation of hotlist recommendation strategies shows that a user’s interest

in a URL is influenced by his social ties, many or all of which may be external: formed in

real life, in another social content site, etc. Another external influence over a user’s interest

in a URL or in a tag is the general popularity of that URL or tag. Bursts in interest have

been observed and studied in the past [Cohen and McCallum, 2003]. Indeed, some tags

appear at certain periods of time and indicate a trend in the general public or among a

community of users (e.g., people tend to visit travel sites more often during holiday time).

Wars, health, and news also tend to follow similar trends, while other tags, such as cooking

or professional photography, have a steadier popularity.

Persistence of Interest and Agreement

Collaborative Filtering is based on a strong underlying assumption that people who

4We do not provide actual figures here so as not to disclose Yahoo!’s sensitive statistics.
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agreed in the past tend to agree again in the future, and conversely that items that are

similar will continue to be similarly liked or disliked by a given user. Consequently, existing

systems do little to detect or predict changes in user preferences. During our experimental

evaluation we found that the assumption of persistence of interest and agreement does not

always hold in Delicious. Derived social ties, particularly those based on resource agreement,

were rarely conserved from one time period to the next. We identified the short lifespan of

URLs as the main reason: many URLs are only tagged actively for a period of 1-2 weeks.

A promising direction for future work is incorporating time into the analysis of interest and

agreement. Another direction is to derive interest networks based on clusters of similar

URLs, rather than on individual URLs. A similar approach is taken in [Wu et al., 2006b],

in which the authors study the relationship between items, tags, and users in scope of a

unified probabilistic generative model.

2.3 Network-Aware Search

2.3.1 Introduction

In Section 2.1 we described collaborative tagging sites. These sites are gaining popularity,

and while browsing is still the predominant way of reaching content, ranked keyword-based

search will become more important as the size of networks and tagged content expand.

An important question that we address in the remainder of this chapter is how to support

network-aware search – a mechanism that will return the top-ranked answers to a query

consisting of a set of tags, given a user with a particular network. Such a mechanism is

important not only for supporting search within these sites, but also for incorporating a

user’s network and tagging behavior in general web search [Heymann et al., 2008].

Information Retrieval generally assumes content to be relatively static, while user in-

terests are dynamic, expressed via keyword queries [Baeza-Yates and Ribeiro-Neto, 1999].

On the other hand, the Publish/Subscribe model assumes static publisher needs and dy-

namic streaming content [Wu et al., 2006a]. In collaborative tagging sites, both content

and interest are dynamic. Users tag new photos on Flickr and new videos on YouTube

every day and develop interest in new topics. In the remainder of this chapter we model

collaborative tagging sites as follows: users in the system can be either taggers or seekers.

Taggers annotate items with one or more tags. A query is composed of a set of tags and

is asked by a seeker. A linking relation connects seekers and taggers, thereby forming the

network associated with each seeker. In practice the set of seekers and the set of taggers

may overlap, and our model and algorithms will not preclude this possibility.

Given a seeker, a network of taggers, and a query in the form of a set of tags, we wish

to return a ranked list of most relevant items. In Section 2.2 we demonstrated that a user’s

social context, expressed by his network and tagging, can be used to improve the quality of

content recommendation in collaborative tagging sites. In the remainder of this chapter, we
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go on to formalize network-aware search in these sites, and define the problem of efficiently

processing top-k queries in the presence of dynamic scores.

In this work we do not answer the orthogonal question of when search and ranking

should be made network-aware, and when globally popular items should be returned as

answers instead. Indeed, network-awareness may in some cases hinder true information

discovery. A Liberal Democrat who wants to educate himself about the Republican view

on health care reform is unlikely to find informative resources from among those tagged by

his friends, also Liberal Democrats. Likewise, a Western physician looking to expand his

horizons and learn about treatment protocols offered by the Eastern medicine must look

beyond his immediate circle of colleagues for information. In such cases, the search system

must realize that the user’s information need cannot be satisfied when tapping the user’s

network alone, and must fall back on the content contributed by the user base at large for

results.

Nonetheless, cases abound where network-aware search is the right choice. We discussed

in Section 2.2.8 that users of collaborative tagging sites like Delicious already contribute

content in a social manner. Therefore, allowing socially aware consumption of content

is not only natural, but also makes socially aware tagging worth-while. As the size of

the users’ networks increases, so does the need for network-aware content aggregation. A

programmer who adds several Java experts to his network expects to find Java-related

content contributed by those experts with ease. A group of fans of a music band who live in

close geographic proximity to each other expect to be notified of band-related news, parties,

and performances that other fans endorse. Family members who live on several continents

and in a variety of time zones expect to have easy access to photos from family gatherings.

In the following sections we introduce a general class of scoring functions that reflects this

intuition. This class includes ranking functions that are appropriate in many application

scenarios, such as hotlist generation, popularity among friends, and popularity among a

network of peers in the same age group or geographic location. Our core question is then

how to achieve efficient top-k processing of network-aware search queries.

We consider what sort of storage structures are needed to support such queries. In the

network-unaware setting, one would use per-tag inverted lists, listing items ranked by their

score. A naive extension of this is to generate similar lists for each (tag,seeker) pair since

items have a different score per seeker’s network. Items would then be sorted according

to their network-aware score in each inverted list. The well-known top-k algorithms [Fa-

gin, 2002] could then be directly applied to aggregate over tags in a query. We refer to

this storage strategy as Exact, since it requires storing exact scores for each item for each

(tag,seeker) pair. This strategy can clearly benefit from the efficiency of traditional top-

k algorithms. However, materializing each of these lists would be prohibitive in terms of

space, since there are potentially as many lists per tag as there are seekers. Consequently,

we explore dynamic computation of scores, given a seeker’s network and a tag, as a way of
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achieving a balance between processing time and storage space. Note that while traditional

top-k algorithms aggregate scores on different keywords at query time, they assume the

inverted lists are ordered by exact scores, even if exact scores of list entries are not avail-

able. The most straightforward dynamic approach materializes only per-tag inverted lists.

These inverted lists are seeker-independent, so their entries cannot contain exact per-seeker

scores but only upper-bounds for each item, i.e., its max score over all seekers. We refer

to this strategy as Global Upper-Bound. We develop generalizations of top-k processing

algorithms to incorporate network-aware search. In particular, we modify the classic NRA

(No Random Access) and TA (Threshold Algorithm) to account for score upper-bounds and

dynamic computation of exact scores (Section 2.4).

The Exact and Global Upper-Bound strategies represent two extremes in the space-

time trade-off. While Global Upper-Bound will offer considerable savings in space, we

expect query processing to take much longer, since the upper-bounds may be very coarse.

The finer the upper-bounds, the closer they are to exact scores for a given seeker, which

affects the order of entries in the inverted lists. We explore two refinements in Section 2.5.

Our first refinement identifies groups of seekers whose “network-aware” scores are close.

The score upper-bound computed for such a group will then be tighter than the global

upper-bound. These groups represent seekers who exhibit similar networking behavior.

We refer to this strategy as Cluster-Seekers. This strategy leads to one inverted list per

(tag,cluster) pair. At query time, we find the (tag,cluster) inverted lists associated with that

seeker and aggregate over them. We will see that the Cluster-Seekers strategy performs

faster than Global Upper-Bound and consumes less space than Exact.

The performance of Cluster-Seekers depends on finding good clusterings. We explore

quality metrics that measure how well the order of entries in a per-cluster inverted list

reflects their order in a seeker-specific inverted list, for seekers who belong to that cluster.

Next, we explore Cluster-Taggers, a strategy that aims to group taggers in networks

based on similarity in their tagging behavior. Each tagger cluster is associated with an

inverted list, where items are ranked by their upper-bound within the cluster of taggers. At

query time, we determine the tagger clusters associated with a given seeker and compute

scores by aggregating over the inverted lists associated with these tagger clusters. Taggers

in a seeker’s network may belong to different clusters, and so multiple inverted lists per tag

may be relevant for a given seeker. We thus may have to aggregate over a larger number

of inverted lists, albeit with tighter upper-bounds per list. In our experiments, which we

present in Section 2.6, we found that Cluster-Taggers imposes little space penalty com-

pared to Global Upper-Bound, and outperforms Cluster-Seekers in both space overhead

and query time. However, not every seeker will benefit from this approach.
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Figure 2.6: Seekers, networks and tagging actions.

2.3.2 Formalism

The data model uses as its starting point the formalism defined in Section 2.1.3, expanding

it slightly to make notation more convenient. Here again, we assume that three sets are

given: users U , items I, and tags T . As before, we represents relationships between elements

in these sets with two relations: Tagged(u, i, t) and Link(u, v).

Often we will be interested in iterating over all users in one of the projections of Link

or Tagged. The projection on the first component of Link is the Seekers set; we will be

interested in queries from these users. The projection on the first component of Tagged

represents the Taggers set. We want the tags assigned by these users to influence the way

answers to queries are scored. It is convenient to use the following notation.

Recall from Section 2.1.3 that, for a user u ∈ Seekers, Network(u) is the set of neighbors

of u, i.e., Network(u) = {v | Link(u, v)}. Recall also that we denote by Items(u, t) = {i |

Tagged(u, i, t)} the set of items tagged with t by tagger u ∈ Taggers.

We elaborate on a few natural implicit ties that may exist between users in G. Let

Items(v) be the set of items tagged by user v with any tag. Then we could define Link(u, v)

to mean that of the items tagged by u, a large fraction are also tagged by v, i.e., |Items(u)∩

Items(v)|/|Items(u)| > θ, where θ is a given threshold. This type of a social tie was explored

in Section 2.2.6, and we referred to is as the URL-interest network.

Alternatively, we could define Link(u, v) if and only if v tags a sufficient fraction of the

items tagged by u with the same tag as u, i.e., |{i | ∃t : Tagged(u, i, t)∧Tagged(v, i, t)}|/|{i |

∃t : Tagged(u, i, t)}| > θ. We presented a similar relation as the tag-URL-interest network
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in Section 2.2.7.

The techniques of this chapter do not assume any particular semantics of how the

networks are obtained. Nonetheless, experimental results, which will be presented in Sec-

tion 2.6, may be sensitive to the properties of the network, and performance trade-offs will

need to be re-evaluated if semantics of the network change.

Figure 2.6 shows our running example of seekers, their networks, and their tagging

actions. The network of seeker Jane overlaps with Leia’s and Amanda’s. This is reflected

in Tagged, where taggers common to Jane and Leia tag various items.

Seekers issue queries in the form of a set of keywords. In order to focus on aggregation

rather than the orthogonal text matching issues, we treat keywords and tags alike, and our

scoring method is based on exact string matching. More specifically, given a seeker u and

a query Q = t1, ..., tn, we define the score of an item i for u with respect to a tag tj as a

monotone function f of the number of taggers in u’s network who tagged i with tag tj :

scoretj (i, u) = f(|Network(u) ∩ {v | Tagged(v, i, tj)}|) (2.7)

We define the overall query score of an item i for a seeker u ∈ Seekers as a monotone

aggregation g of the scores for the individual keywords in the query:

score(i, u) = g({scoret1(i, u), ..., scoretn(i, u)}) (2.8)

While the framework is general enough to permit arbitrary monotone functions f and

g, we will set f to be the identity function, and g = sum, for ease of exposition. As we

demonstrated in Section 2.2, when content is recommended based on implicit common-

interest networks, the resulting lists are good predictors of relevance to the seeker. Hence

we use common-interest networks in our experiments.

2.3.3 Problem Statement

Given a query Q = t1, ..., tn, issued by user u, and a number k, we want to efficiently

determine the top k items, i.e., the k items with the highest overall score.

In the next section, we address the following questions: given the input data modeled

using the logical relations Link and Tagged, what information should we pre-compute in

order that well-known top-k algorithms can be leveraged, and how should we adapt these

algorithms to work correctly and efficiently in our setting?

2.4 Inverted Lists and Top-K Processing

We wish to compute the top-k items that have been tagged by people in a seeker’s network

with query relevant tags. As is typically done in top-k processing, we organize items in

inverted lists and study the applicability of typical top-k algorithms in our setting.
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Figure 2.7: Inverted lists for Global Upper-Bound and Exact, for the tag music.

2.4.1 Computing Exact Scores

Typically, in Information Retrieval, one inverted list is created for each keyword [Baeza-

Yates and Ribeiro-Neto, 1999]. Each entry in the list contains the identifier of a document

along with its score for that keyword. Storing scores allows one to sort entries in the inverted

list, enabling top-k pruning [Fagin et al., 2003c]. While in classic IR each document has

a unique score for a keyword (typically, tf-idf [Baeza-Yates and Ribeiro-Neto, 1999] or

probabilistic [Fuhr and Rölleke, 1997]), one characteristic of our problem is that the score

of an item for a tag depends on who is asking the query, i.e., on the seeker’s network. One

straightforward adaptation is to have one inverted list per (tag,seeker) pair and sort items

in each list according to their score for the tag and seeker. Therefore, each item will be

replicated along with its score in each relevant (tag,seeker) inverted list. We refer to this

solution as Exact, and illustrate it on the right-hand side of Figure 2.7.

For each tag, Exact stores as many inverted lists as there are seekers. We will demon-

strate in Section 2.6 that this approach leads to very high space overhead.

We now review top-k processing in the context of Exact.

2.4.2 Top-K Processing with Exact Scores

Existing top-k algorithms are directly applicable to Exact. Rather than describe them

in detail, we give a brief overview of NRA (No Random Access) and TA (Threshold Algo-

rithm) [Fagin et al., 2003c], two representative algorithms.

In NRA, the inverted list for each query keyword is assumed to be sorted on the exact

score of items. In the first phase, the algorithm maintains a heap which contains the current

candidate entries for the top-k (there could be many more than k of these). The inverted
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lists are scanned sequentially in parallel. When a new entry is found, it is added to the heap

along with its partial (exact) score. If the item was seen before, its score in the heap entry

is updated. For every heap entry, a worst-case score and a best-case score is maintained.

The worst-case score is based on the assumption that the item does not appear in those

lists where it is so far unseen. The best-case score assumes that the item’s score in a list

where it is unseen equals the bottom score of the heap (for that list). Items in the heap are

sorted on their worst-case score, with ties broken using best-case scores, and subsequent

ties broken arbitrarily. The algorithm stops when none of the entries outside of the top-k

items examined so far has a best-case score higher than the worst-case score of the kth item

in the buffer. The output of NRA consists of the set of top-k items in the buffer, for which

we have only partial score and hence no rank information. Subsequent work (e.g., [Ilyas et

al., 2002]) has adapted NRA so as to obtain exact rank information.

NRA can be directly applied in the context of Exact by picking the lists which correspond

to the current seeker and query keywords and aggregating over them as described above.

In TA, the inverted lists are sorted on score as for NRA, but random access is assumed in

addition to sequential access. The algorithm accesses items in the various lists sequentially,

and the lists are processed in parallel. TA maintains a heap, where items are kept sorted on

their complete score. When a new entry is seen in any list under sequential access, its scores

from other lists are obtained by random access. If its overall score is more than the score of

the kth entry in the heap, the items are swapped. Otherwise this new entry is discarded. At

any stage, the bottom score (seen under sequential access) is maintained for every list and

is used to compute a threshold. No unseen item can have a score higher than the threshold,

so if the score of the kth highest heap entry is greater than or equal to the threshold, then

the algorithm stops. The output consists of the top-k list in the buffer, including items

and their scores (and hence their ranks). Unlike in NRA, a far smaller portion of the lists

needs to be explored, and the heap never needs to contain more than k items. However,

this comes at the price of potentially many more random accesses.

TA can be applied directly in the context of Exact.

We now turn to describing our space-saving strategy and how top-k processing is adapted

to fit it.

2.4.3 Computing Score Upper-Bounds

In order to save space in storing inverted lists, we factor out the seeker from each per-tag

list and maintain entries of the form (item,taggers) where taggers are all taggers who tagged

the item with the tag. In this case, every item is stored at most once in the inverted list for

a given tag, as opposed to being replicated potentially once for each seeker. The question

now is which score to store with each entry. The answer to this question will determine

how the lists are ordered. Since scores are used for top-k pruning, it is safe to store, in

each per-tag inverted list, the maximum score that an item could have for the tag across all
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possible seekers. We refer to such maximum score as the score upper-bound. Given a query

keyword tj, the score upper-bound of an item i for tj can be expressed as:

ub(i, tj) = MAXu∈Seekers|{v | Tagged(v, i, tj)} ∧ v ∈ Network(u)|

In other words, the score upper-bound is the highest score an item could have for a tag.

We refer to an inverted list organization based on these ideas as the Global Upper-Bound

strategy. We will assume that the inverted lists are supplemented by the Link relation

indexed by the seeker and the Tagged relation indexed by tag and item; these will support

our equivalent of random access. They also support efficient computation of exact scores,

given a seeker and an item.

Figure 2.7 shows the inverted list for tag music according to the Global Upper-Bound

strategy and its counter-part in Exact. Notice that Exact may store one item multiple

times across lists (e.g., item i19 is stored with seekers Jane, Amanda, and Leia). In the case

of Global Upper-Bound, an item is stored only once with its highest score (e.g., the score

of item i19 in Global Upper-Bound is higher than its score in the lists of Leia and Amanda

since it corresponds to its score for Jane). While the per-seeker inverted lists in Exact are

shorter than in Global Upper-Bound, the overall space consumption of Exact is expected

to be much higher. However, the relative ordering of items in the inverted list for Global

Upper-Bound does not necessarily reflect that of any per-seeker order in Exact (e.g., i19

is scored lower than i5 in Leia’s list while it is scored higher in the Global Upper-Bound

list). This may cause Global Upper-Bound to scan many more entries in the inverted lists

than Exact, thereby increasing query processing time. We next describe adaptations of NRA

and TA that use score bounds; their application to the bounds in Global Upper-Bound will

serve as another baseline (for processing time) in our experiments.

2.4.4 Top-k Processing with Score Upper-Bounds

We assume a function that does a “local aggregation”, taking a seeker and a pair (item,

taggers) from an inverted list and calculating the number of taggers that are friends of the

seeker. We also assume a function computeExactScore(i, u, tj) that computes the value of

Equation 2.8 by both retrieving the taggers of item i (for tag tj) and counting the number

of friends of u who tagged with tj. Such a function can be implemented as a SQL aggregate

query over the join of Link and Tagged.

2.4.4.1 NRA Generalization

Algorithm 1 shows the pseudo-code of gNRA. For any query, the inverted lists (ILt) corre-

sponding to each query keyword t are identified and are accessed sequentially in parallel,

using a criterion such as round-robin. When an item is encountered in a list, we: (i) record

the upper-bound of the item and (ii) compute the exact score of the item for that tag using
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the taggers component of the IL entry. If the item has not been previously encountered, it

is added to the heap along with its score. If it is already in the heap, the score is updated.

Thus scores of items in the heap are partial exact scores and correspond to the notion of

worst-case score of classic NRA. The set of bottom (i.e., last seen) bounds of the lists is used

to compute best-case scores of items: for any item, its best-case score is the sum of its

partial exact score and the bottom bounds of all lists where the item has not been seen. If

an item is unseen anywhere, its partial exact score is 0 and its best-case score is the sum

of bottom bounds over all lists. The heap is kept sorted on the worst-case score, with ties

broken using best-case score, and then arbitrarily. The stopping condition is similar to that

for classic NRA: none of the items outside the top-k of the heap has a best-case score that

is more than the kth item’s worst-case score. However, for classic NRA, it is sufficient to

compare the kth item’s worst-case score in the heap with the largest best-case score of an

item in the heap outside of the top-k items. In our case, this would not be sound, since the

lists are only sorted on bounds, not necessarily on scores. Thus, a completely unseen item

can have a best-case score higher than the largest best-case score in the heap. Thus, we

compare the maximum of the largest best-case score outside of top-k in the heap and the

sum of all bottom bounds with the worst-case score of the kth item in the heap, stopping

when the latter is higher.

Algorithm 1: Bounds-Based NRA Algorithm (gNRA)

Require: seeker u, Query Q;

1: Open inverted lists ILt for each keyword t ∈ Q;

2: while worstcase(kth heap item) ≤ max{BestcaseUnseen, max{bestcase(j) | j ∈ heap− top-k}}

do

3: Get next list ILt using round-robin;

4: Get entry e = (i, ub, taggers) in ILt;

5: Update the bottom bound of ILt;

6: Compute partial exact score of i for t using itemTaggers;

7: If i is not in heap add it, otherwise update its partial exact score;

8: Update best-case scores of items in heap, and re-order heap;

9: BestcaseUnseen = sum of bottom bounds over all lists;

10: end while

11: Return top-k set of items from heap.

At this point, we are guaranteed that the set of items in the top-k of the heap belong

to the final top-k list. If the exact score (and rank) is of interest, we need to compute the

exact score of items in the heap on those lists where they are not seen. We can do this

by computing exact scores (our analog of Random Access) for the remaining terms of the

top-k heap items. 5

5Thus, gNRA in our setting is really “generalized Not many Random Accesses”.
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Note that during exact score computation when a cursor is moved we get the entry

e = (i, ub, itemTaggers) in memory without a search, and can thus get the exact score

using a local exact score computation. We will reuse the term “sequential access” (and the

abbreviation SA) to refer to the combination of advancement of a cursor and local exact

score computation. In our algorithm, these two always occur in tandem. We will reuse

the term “random access” (RA) to refer to the calls to computeExactScore, which in this

algorithm occur only in phase 2. The ability to quickly get the scores to be aggregated in

memory allows sequential access to be much more efficient than random access, as in the

classical case. We discuss this further in Section 2.6.

Several optimizations are possible to the basic algorithm above. Clearly, we have no

need to update scores of items in the heap whose best-case is below the worst-case of the

kth highest heap item, nor do we need to re-order these as the lower bounds are updated.

It is also possible to check whether an element is a candidate for entry into the top-k prior

to performing an exact score computation, by checking its new upper bound against the

worst-case score of the current kth item; this optimization can be easily incorporated into

the algorithm above.

2.4.4.2 TA Generalization

Algorithm 2: Bounds-Based TA Algorithm (gTA)

Require: seeker u, Query Q

1: Open inverted lists ILt for each keyword t ∈ Q;

2: while score(kth heap item) ≤ sum of bottom bounds over all lists do

3: get next list ILt using round-robin;

4: Let e = (i, ub, itemTaggers) be the next entry in ILt;

5: Update the bottom bound of ILt;

6: if i not in current top-k then

7: Use local aggregation to get exact score of i in ILt using itemTaggers;

8: Use computeExactScore to get exact score of i in other lists;

9: if i’s overall score > kth score in heap then

10: Swap kth item with i; keep top-k heap sorted;

11: end if

12: end if

13: end while

14: Output the heap as is.

We now present gTA – our adaptation of TA that works with score upper-bounds. Al-

gorithm 2 shows the pseudo-code. Given a query Q from a seeker u, all relevant inverted

lists are identified. We access them sequentially in parallel. When an entry is seen for the

first time under sequential access in a list, we compute its exact score in that list (as part
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of SA) and perform exact score computations on the other lists (a set of RAs). Thus, we

always have complete exact scores for the items in the buffer. For each list, we remember

the bottom bound seen. The threshold is the sum of the bottom bounds over all lists. The

algorithm stops whenever the score of the kth item in the heap, which is kept sorted on

score, is no less than the threshold. At this stage, we can output the top-k items together

with their scores and hence rank them.

As with gNRA, there are slight modifications that can save accesses: when we find a new

item i we could iteratively retrieve scores in other lists, curtailing the iteration if we find

that the best-case of i is below the exact score of the kth item in the heap.

To summarize, both variants of Global Upper-Bound (gNRA and gTA) differ from Exact

in that the former needs to compute the exact score of an item for a tag and seeker at

query time. Using a simple variation of the argument in [Fagin et al., 2003c], we can show

that both Global Upper-Bound variants are instance optimal over all algorithms that use

the same upper-bound based storage. In the case of gTA, this means that gTA based on a

round-robin choice of cursors uses no more sequential accesses than any other “reasonable”

algorithm, up to a linear factor. Reasonable here means that the algorithms cannot make

a call to computeExactScore for an item until the item has been reached under sequential

access. This is the analog of the “no wild guesses” restriction of [Fagin et al., 2003c]. Similar

statements can be made for gNRA: Algorithm 1 is optimal, up to a constant factor, in number

of sequential accesses made, over algorithms that perform only sequential accesses. If we

consider the optimization where exact score computations are done only for items that have

a best-case score above the current kth highest-score, we find that it is optimal in terms of

the number of exact score computations.

However, any of these optimality statements only justify the use of these query process-

ing algorithms once a storage structure is fixed; they do not justify the storage structures

themselves. The accuracy of upper-bounds in the inverted list is clearly the key factor in the

efficiency of top-k pruning. The finer the upper-bound, the closer it is to the item’s exact

score and the faster an item can be pruned. Therefore, we need to explore further optimiza-

tions of our inverted list storage strategies. The clustering-based approaches introduced in

the next section work by identifying upper-bound based inverted lists for a (query,seeker)

pair and then applying either gNRA or gTA. They will differ on which lists are identified and

on how the clusters are formed.

2.5 Clustering and Query Processing

As discussed in Section 2.4, the greater the difference between the score upper-bound and

the exact score of an item for a tag, the more processing may be required to return the top k

results for a given (seeker,query) pair. The aim of this section is to describe methods which

reduce the difference between exact scores and upper-bounds by refining upper-bounds. The
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core idea is to cluster users into groups and compute score upper-bounds within each group.

The intuition is that by making a cluster contain users whose behavior is similar, the exact

scores of users in the cluster will be very close to their upper-bound score. The remaining

question is thus: which users should the clustering algorithm group together to achieve that

goal.

2.5.1 Clustering Seekers

For a given seeker, the score of an item depends on the seeker’s network of taggers. There-

fore, a natural approach is to cluster the seekers based on similarity in item scores. Given

any clustering of seekers, we form an inverted list ILt,C for every tag t and cluster C, con-

taining all items tagged with t by a tagger in
⋃

u∈C Network(u), with the score of an item

being the maximum score over all seekers in the cluster. That is, an item i in the list

gets score maxu∈Cscoret(i, u). Query processing for Q = t1 . . . tn and seeker u proceeds by

finding the cluster C(u) containing u and then performing aggregation (using one of the

algorithms in Section 2.4) over the collection of inverted lists ILti,C(u).

Figure 2.8: An example of Cluster-Seekers.

Global Upper-Bound is a special case of Cluster-Seekers where all seekers fall into

the same cluster and the same cluster is used for all tags. That is not the case in general

with Cluster-Seekers as illustrated in Figure 2.8, where Jane and Leia fall into the same

cluster C1 for the tag music, but into different clusters for the tag news. Clustering seekers

independently for each tag allows for tighter upper-bounds, and thus for a better clustering

outcome. This is because, while Jane and Leia may have highly overlapping networks of

friends for music, resulting in a high overlap in the items and item scores, their networks

for the tag news may be dissimilar.

Upper-bounds within each list are computed for members of the associated cluster, which
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makes the bounds necessarily tighter. For example, item i7 has a tighter upper-bound in

cluster C2 for tag music than in Global Upper-Bound in Figure 2.7. It is necessary to

compute seekers’ clusters on a per-tag basis in order to reflect (i) the overlap in networks

among different seekers and (ii) the overlap in tagging actions of taggers in clusters. Indeed,

if we generated a set of clusters which are agnostic to the tags, we could end up creating a

cluster containing Jane, Leia and Amanda (since they share some taggers in their networks).

The score upper-bounds for such a cluster would be coarser (e.g., i19 would have a score

upper-bound equal to 65 for tag news while it is equal to 30 in C2!).

One can easily show that, for single keyword queries, as we refine the clustering, the up-

per bounds can only get tighter, and hence the processing time of the generalized threshold

algorithms of the previous section can only go down, regardless of the seeker. In partic-

ular, Exact is optimal over all algorithms that use Cluster-Seekers, for any clustering,

assuming single-keyword queries.

For multi-keyword queries, clustering, while resulting in tighter upper-bounds, may not

always improve processing time. Consider a seeker u and a top-1 query Q = t1, t2. Assume

that, for this seeker, the lists of scores for the two keywords are ILt1,u = (x:10, i1:3, i2:2, . . .),

where the . . . is a long tail of scores below 2; ILt2,u = (i′1:20, i
′
2:19, . . . , i

′
1000:19, . . . , x:15).

Suppose a clustering puts this seeker in her own cluster, thus making the bounds exact

for her! Under gNRA, we would have to keep making sequential accesses until we reach the

entry x:15 in the second list. However, it is possible that in Global Upper-Bound (the

coarsest possible clustering), the global inverted lists for the two keywords are: ILt1 =

(x:10, i1:3, i2:2, . . .); ILt2 = (x:22, i′1:20, i
′
2:19, . . . , i

′
1000:19). The entry x might have a much

coarser (i.e., higher) bound in Global Upper-Bound and hence may bubble to the top of

the second list. Now, gNRA, after one round-robin, gets the full exact score of x (still 25 for

u). After this the algorithm will stop, since this score is higher than the sum of all bottom

scores. This example shows that an ideal clustering would take into account both the scores

and the ordering.

How do we cluster seekers? Ideally, we would find clusters that are optimal for the

running time of one of our algorithms in Section 2.4. However, as we show in [Amer-Yahia

et al., 2008a], finding a clustering that would minimize the worst-case running time over all

users is NP-hard. We also show that finding a clustering that minimizes the average-case

running time is NP-hard.

Given these complexity results, we must rely on heuristic methods to find clusters of

seekers. One natural approach is based on overlap of the seekers’ networks. The intuition

is that, given two seekers u and u′, the higher the number of common taggers in their

networks, the higher the chance that the score of an item for those networks be similar.

However, two taggers may have different tagging behavior for different tags. Therefore, we

propose to compute per-tag network overlap between seekers.

Given the set of all seekers in Seekers and a tag t, we can construct a graph where nodes
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are seekers and an edge between two seekers u and u′ is created if and only if |Network(u, t)∩

Network(u′, t)| ≥ θ, where Network(u, t) is the set of users in Network(u) who tagged at

least one item with tag t. The threshold θ is application-dependent. Once the graph is

instantiated, we apply off-the-shelf graph clustering algorithms in Section 2.6 to generate

clusters. We report the space/time performance of Cluster-Seekers in Section 2.6.4.

2.5.2 Evaluating and Tuning Clusters

The Cluster-Seekers approach depends on finding good clusterings, which in turn depends

on being able to predict the performance of a clustering. Clearly, we cannot test a clustering

on all keyword combinations for all users, and for all values of k. We begin with a measure

comparing the orderings produced by the clustering with the exact orderings for a particular

user; we will average this over users. Although many metrics that can be used to compare

lists are considered in the literature (see for example [Fagin et al., 2003a]), we need one

that is both correlated with the performance of our algorithms and simple to compute.

We discuss here one such measure, a variant of Normalized Discounted Cumulative Gain

(NDCG). This measure was introduced in [Järvelin and Kekäläinen, 2002]), and is described

in detail in Section 1.1.3.2.

Recall that NDCG compares the order of items in a ranked list to the order of items in

an ideal list. For a tag t and a seeker u, let the ideal list Lideal represent the list of items

for u and t ranked by exact scores. Let Lapprox represent the list of items in a cluster,

ranked by score upper-bounds. Consider for example the inverted lists for the tag “music”

presented in Figure 2.7. In order to quantify how well the Global Upper-Bound approach

will perform for seeker Jane, we take Jane’s exact list as Lideal, and compare it to the

Global Upper-Bound list as Lapprox.

Note that Lapprox is not simply a reordering of Lideal. Rather, the underlying domain

of Lapprox is the superset of the domain of Lideal. This is because Lapprox lists items

that are relevant to any seeker in the cluster, not just to the particular seeker u. So, the

global upper-bound list in Figure 2.7 includes the item i9 which is not present in Jane’s

list.

Let D be a vector of length equal to the length of Lideal, where, for each i, D(i) records

the maximum over j ≤ i of the position of the j th item in Lideal within Lapprox. (All

vectors are 1-based for convenience.) D will have the following values for Jane in our

example: {1, 2, 3, 6, 7, 8, 10, 10, . . .}. D(i) represents the delay in getting to the top i items

of Lideal. We use D to assign values to the gain vector (see Section 1.1.3.2), with low gain

corresponding to high delay and vice versa:

G(i) =
i

D(i)
(2.9)

The delay for reaching item i is at least i, as was the case for the first three items for
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Jane, and we set the corresponding value in the gain vector to 1 in such cases. If item i is

reached after considering more than i items in Lapprox, the gain will have a value between

0 and 1. Note that the delay vector for the ideal list is always {1, 2, 3, 4, . . .}, and so the

ideal gain vector has 1 in each position.

Intuitively, G(i) represents the quality of the clustered list if we are looking for the

seeker’s top i items. For top-k multi-keyword queries, the highest scoring item may be

significantly further down on an individual list than k. We will thus sum the quantity G(i)

over i, discounting higher values of i, since it is less likely that the tail of the seeker’s list

will be visited.

We use the gain vector described above to compute the Normalized Discounted Cumu-

lated Gain (NDCG) as per Section 1.1.3.2, using a discount factor b = 2. NDCG measures

the quality of a clustered list for a given seeker and keyword. A value of 1 is the optimum,

which is realized by the ideal list, while values close to 0 indicate a list that is far from

ideal. The quality over all seekers can be estimated by averaging over a randomly selected

collection of seekers.

We will see in Section 2.6 that the performance of both NRA and TA variants for a

clustering is correlated with a function of NDCG. Specifically, for a multi-keyword query Q,

the performance of Q of the “aggregate NDCG of Q”, where the aggregate averages over a

sample of seekers and maximizes over the keywords in Q.

The NDCG can be used to compare two clusterings – for example, those done via

different clustering algorithms, or different parameters within a clustering algorithm. It can

also be used to decide whether increasing the number of clusters will significantly impact

performance. Since the NDCG is a per-keyword quantity, it can be calculated offline.

2.5.3 Clustering Taggers

Another clustering alternative is to organize taggers into different groups which reflect

overlap in their tagging behavior. We refer to this strategy as Cluster-Taggers. That

is, for each tag t we partition the taggers into clusters. We again form inverted lists on a

per-cluster, per-tag basis, where an item i in the inverted list for cluster C and tag t gets

the score:

MAXu∈Seekers|Network(u) ∩ C ∩ {v | Tagged(v, i, t)}|,

i.e., the maximum number of taggers in cluster C who are linked to u and tagged item i

with tag t, over all of the seekers u. To process a query Q = t1 . . . tn for seeker u, we find

the set of clusters of the taggers in Network (u), and then perform an aggregation over the

inverted lists associated with all (tag,cluster) pairs. Members of a seeker’s network may fall

into multiple clusters for the same tag, thereby requiring us to process more lists for each

tag (as opposed to one list per tag in the case of clustering seekers).
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How do we cluster taggers? For some tag t, we instantiate an undirected graph where

nodes are taggers and there exists an edge between two nodes v and v ′ if and only if:

|Items(v, t) ∩ Items(v′, t)| ≥ θ where t. Again, threshold θ depends on the application.

We now summarize the differences between clustering seekers based on network overlap

(Cluster-Seekers) and clustering taggers based on overlap in tagging behavior (Cluster-

Taggers). At query time, Cluster-Seekers identifies one inverted list per (tag,seeker)

pair since a seeker always falls into a single cluster for a tag. In Cluster-Taggers there

are potentially multiple inverted lists per (tag,seeker) pair, given that a seeker will generally

have multiple taggers in his network which may fall into different clusters.

Unlike Cluster-Seekers, Cluster-Taggers does not replicate tagging actions over

multiple inverted lists. In fact, we will show that there is no significant penalty in space of

Cluster-Taggers over Global Upper-Bound. Space consumption of clustering is explored

in Section 2.6.

As for processing time, while Cluster-Seekers benefits all seekers, Cluster-Taggers

does not. Indeed, we find that Cluster-Taggers can hinder seekers that are associated with

many tagger clusters and hence many inverted lists. Still, we show that there is a significant

percentage of seekers that can benefit from Cluster-Taggers and that this population

can be identified in advance. Cluster-Taggers also has advantages for maintenance under

updates; while Cluster-Seekers requires multiple exact score computations and updates

to maintain as new tagging events occur, Cluster-Taggers requires only a single exact

score computation and a single update per tag, assuming to re-clustering. This is because

in Cluster-Taggers, items are not replicated across clusters.

2.6 Experimental Evaluation

2.6.1 Implementation

We implement the gNRA and gTA algorithms in Java on top of an Oracle 10g relational

database. Our experiments are executed on a MacBook Pro with a 2.16GHz Intel Core 2 Duo

CPU and 1GB of RAM, running MacOS X v10.4. The database server is running on a 64-bit

dual processor Intel Xeon 2.13GHz CPU with 4GB or RAM, running RedHat Enterprise

Linux AS4. This platform, while not necessarily representative of production deployment,

was sufficient for the purposes of our experimental evaluation which was conducted in a

platform-independent manner (see Section 2.6.2).

Our schema consists of the following relations:

• TaggingActions(itemId,taggerId,tag) stores raw tagging actions.

• Link(tag,seekerId,taggerId) encodes the Link relation between seekers and tag-

gers, on a per-tag basis. The network of a seeker is a union of all taggers associated

to it.
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• InvertedList(tag,clusterId,itemId,ub) stores inverted lists of items per tag, per

cluster. A tree index is built on (tag, ub) to support ordered access. This table also

stores per-tag inverted lists for Global Upper-Bound.

• SeekerClusterMap(seekerId,clusterId,tag) stores the assignment of seekers to

clusters.

• TaggerClusterMap(taggerId,clusterId,tag) stores the result of clustering Taggers.

Given a seeker u, and a tag t, an SA is implemented as moving a cursor over the result

of the query:

Select IL.itemId, IL.ub, count(*) as ‘‘score’’

From InvertedList IL, TaggingAction T, Link L

Where L.seekerId = :u And T.tag = :t

And L.taggerId = T.taggerId And T.tag = L.tag

And T.tag = IL.tag And T.itemId = IL.itemId

Group by IL.itemId, IL.ub

Order by IL.ub descending

Appropriate indexes are built on the selection and join columns to ensure efficient access.

The role of aggregation in this query is to compute partial exact scores of items with respect

to the current “inverted list”. An RA, i.e., a calculation of computeExactScore on a single

item i, is given as follows:

Select count(*) as ‘‘score’’

From TaggingAction T, Link L

Where L.seekerId= :u And T.tag= :t And T.itemId= :i

And L.taggerId = T.taggerId And L.tag = T.tag

Both queries are for Global Upper-Bound, and are augmented by a join with

SeekerClusterMap for Cluster-Seekers, and with TaggerClusterMap for Cluster-Taggers.

We use a SQL-based implementation for convenience only. The exact difference in cost

between SAs and RAs, and hence the overall performance time of the algorithms, may vary

significantly from a native implementation of the algorithms using inverted lists. In order

to make the performance analysis implementation-independent, we will quantify the query

execution time of all algorithms using the number of SAs and RAs. This will allow us to

draw conclusions regarding the relative performance of our algorithms in comparison to

Exact and in comparison to each other.

We found that, as is the case with traditional top-k algorithms, RAs in our implementa-

tion are significantly more expensive than SAs. The relative cost varies slightly depending

on the tag, but a single RA is about 10 times more expensive than a single SA.
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We use Graclus [Dhillon et al., 2007], an efficient clustering implementation over undi-

rected weighted graphs. Graclus provides two clustering methods. Ratio Association (ASC)

maximizes edge density within each cluster, while Normalized Cut (NCT) minimizes the

sum of weights on edges between clusters [Dhillon et al., 2007]. More formally, given two

sets of nodes Vi and Vj, we denote by links(Vi,Vj) the sum of edge weights between nodes

in Vi and nodes in Vj. We denote by degree(V) the sum of weights on edges incident on

the nodes in V. The objective of ASC is:

maximize

n
∑

i=1

|links(Vi,Vi)|

|Vi|

The objective of NCT is:

minimize

n
∑

i=1

|links(Vi,V \ Vi)|

degree(Vi)

2.6.2 Data and Evaluation Methods

We use a sample of Delicious for our experimental evaluation. Properties of the dataset

are described in Section 2.1.4, and we recall here that the dataset contains 116,177 distinct

users who tagged 175,691 distinct URLs using 903 distinct tags, for a total of 2,322,458

tagging actions.

We choose 4 tags (software, programming, tutorial, and reference) from the 20 most

popular. Popularity of a tag is measured by the total number of tagging actions involving

it: the most popular tag has been used about 100,000 times, while the 20th most popular

was used about 34,000 times. We evaluate the performance of our methods over 6 queries

of varying lengths, to which we refer by the first letters of each tag. The queries were SP

for software programming, TR for tutorial reference, PR for programming reference, SPT

for software programming tutorial, SPR for software programming reference, and SPTR

for software programming tutorial reference. We chose these four tags because they are

thematically related and may be meaningfully combined in a query.

As we described in Section 2.1.2, Delicious has an explicit notion of friendship. How-

ever, users may have various semantics for it. Since we are interested in networks that

reflect affinities in item preference, in our experiments we use a network derived from the

tagging data via common interest. This choice is supported by our experimental results

in Section 2.2, where we find that a common-interest network reflects the user’s interests

more closely than does the explicit friendship network. In the network that was used for

the purposes of our experimental evaluation, there is a link between a seeker and a tagger

if they tagged at least two items in common with the same tag.

Due to the choice of the network, only seekers who are also taggers are included in

the experimental evaluation. However, as mentioned in Section 2.3.2, the techniques of
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tag |Network| AVG|Network|(v) | MAX|Network|(v) |

Software 25545 8 607

Programming 21853 21 983

Tutorial 16895 23 1068

Reference 24697 34 1098

Table 2.5: Characteristics of Network for four tags.

Figure 2.9: Performance of gNRA and gTA as k varies.

this chapter do not commit to any particular network semantics. This particular common-

interest network is used for the purposes of our experimental evaluation only.

Table 2.5 lists the number of users per tag (|Network|), as well as the average and

maximum cardinalities of Link, i.e., the size of a seeker’s network. These numbers were

computed with respect to our sample of Delicious.

We use the following sampling methodology to select users for our performance evalua-

tion. For each tag and for each seeker we compute the total number of tagging actions that

are relevant to that seeker (i.e., the total number of tagging actions by all taggers linked

to the seeker), and rank seekers on this value. We notice that the top 25% of the seekers

together correspond to 75%-80% of all tagging actions for the four tags in our experiments.

For each query we identify three mutually exclusive groups of seekers: Seekers-25 are in the

top 25% of ranks for each query keyword, Seekers-50 are in the top 50% of ranks for each

query keyword, but not in the top 25%, Seekers-100 are the rest. For each query we draw

10 seekers uniformly at random from each group, for a total of 30 seekers per query. This

methodology allows us to capture the variation in performance for different types of seekers:

popular tags correspond to many more items for Seekers-25 than for Seekers-100.

We evaluate the performance of our algorithms with respect to two metrics.

• Space overhead is quantified by the number of entries in the inverted lists.
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Seekers-25 Seekers-50 Seekers-100

query GUB Exact GUB Exact GUB Exact

SP 1674 52 12920 134 18036 61

PR 479 13 3923 87 12982 61

TR 1262 14 4813 92 18476 121

SPT 938 78 4107 112 17985 195

SPR 1495 67 8972 194 14976 131

SPTR 907 119 2229 119 10986 189

Table 2.6: Performance of gNRA for Global Upper-Bound and Exact.

• Execution time is expressed by the number of sequential and random accesses (SAs

and RAs). The raw number of accesses varies significantly between seekers even when

the query is fixed. Hence, we focus on relative improvement obtained by gNRA and

gTA compared to Global Upper-Bound. Unless otherwise stated, we report average

percent improvement over the baseline for 30 seekers per query, with separate averages

given for Seekers-25, Seekers-50 and Seekers-100. In order to reduce sensitivity to

outliers, we use truncated mean, removing the minimum and maximum values before

computing the average.

2.6.3 Performance of Global Upper-Bound

We start with some general comments about how the number of SAs and RAs increases

with k, for both gNRA and gTA. The qualitative behavior depends on the characteristics

of the seeker’s network. Consider the query software programming for 3 selected users in

Figure 2.9. For a fixed user, gNRA and gTA exhibit the same trend in both SAs and RAs.

How the number of accesses increases with k is a function of the distribution of exact scores.

For example, the number of SAs for gNRA for seeker u2 increases dramatically for k = 40.

When looking at the distribution of exact scores for this seeker we notice that the items

can be classified into 3 categories with respect to their score: the first 36 items score higher

than 3, followed by 60 items with a score of 2. The remaining 405 items (79%), have a score

of 1, and constitute the tail of the distribution of scores for seeker u2. The spike in accesses

occurs when k becomes high enough that it becomes necessary to explore the long tail.

Space overhead. The space overhead of Global Upper-Bound is presented in Figure 2.10,

displayed as a horizontal line marked GUB, and corresponds to 74,181 inverted list entries.

We see that Global Upper-Bound achieves savings of about two orders of magnitude over

Exact (a horizontal line marked EXACT that corresponds to 4,284,854 inverted list entries).

However, as argued in Section 2.4, the Global Upper-Bound strategy, while optimal with

respect to space overhead, may suffer from high query execution time.
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Execution time. Table 2.6 compares the number of SAs for gNRA under Global Upper-Bound

to the number of SAs for Exact. The numbers represent averages per query, per category of

seekers. We observe that Global Upper-Bound under-performs Exact by up to two orders

of magnitude, and that users in Seekers-100 are at a particular disadvantage. gTA under

Global Upper-Bound shows a similar trend.

2.6.4 Clustering Seekers

We experiment with 3 clustering algorithms: ASC, NCT (see Section 2.6.1) and a random

clustering for reference, RND, which assigns seekers to random clusters. We cluster over

the common-interest network of seekers: there is an edge between two nodes u and v if

these users tagged at least one item in common. This graph is undirected, and edges are

weighted by the number of items tagged in common.

Figure 2.10: Space overhead of Cluster-Seekers.

Space Overhead. Figure 2.10 summarizes the space overhead of clustering seekers as the

cluster budget varies from 10 to 500 clusters. Global Upper-Bound has lowest overhead,

with 74,181 total inverted list entries, while Exact has 62,973,876 entries.

Space overhead of NCT ranges between 533,346 rows for 10 clusters and 4,284,854

rows for 500 clusters; ASC stores between 472,401 and 6,794,890 rows; while RND stores

between 643,994 and 14,543,547 rows. ASC and NCT both achieve an order of magnitude

improvement in space overhead over Exact. At this stage, we discard RND due to relatively

poor space utilization, fix the number of clusters at 200, and continue our experiments with

ASC (4,448,717 rows) and NCT (2,984,377 rows).

Execution Time. Tables 2.7 and 2.8 quantify the performance of gNRA and gTA with

Cluster-Seekers when NCT and ASC are used for clustering. We list improvement in
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NCT (% improvement over GUB) ASC (% improvement over GUB)

Seekers-25 Seekers-50 Seekers-100 Seekers-25 Seekers-50 Seekers-100

query SA Total SA Total SA Total SA Total SA Total SA Total

SP 35 34 76 75 78 77 83 79 85 84 89 89

TR 54 53 78 77 78 80 80 72 76 75 85 84

PR 37 35 75 74 70 70 63 59 82 81 82 82

SPT 31 28 41 38 73 71 74 66 80 76 85 83

SPR 52 46 58 55 73 71 73 67 81 78 89 87

SPTR 40 34 49 45 64 60 68 56 78 70 82 77

Average 42 38 63 61 73 72 74 67 80 77 85 84

Table 2.7: Performance of gNRA for Cluster-Seekers with 200 clusters.

NCT (% improvement over GUB) ASC (% improvement over GUB)

Seekers-25 Seekers-50 Seekers-100 Seekers-25 Seekers-50 Seekers-100

query SA Total SA Total SA Total SA Total SA Total SA Total

SP 36 34 66 65 73 73 80 80 82 81 87 87

TR 54 54 72 72 76 75 72 72 77 77 82 82

PR 38 37 74 74 68 67 64 64 81 81 79 78

SPT 34 35 46 45 74 73 72 73 81 80 84 84

SPR 53 52 57 56 67 66 74 74 78 77 85 85

SPTR 41 42 50 49 63 61 68 67 77 78 82 81

Average 43 42 61 60 70 69 72 72 79 79 83 83

Table 2.8: Performance of gTA for Cluster-Seekers with 200 clusters.

the number of sequential accesses (# SA) and in the total number of accesses, which

is simply # SA + # RA. We observe that both gNRA and gTA with Cluster-Seekers

significantly outperform Global Upper-Bound with both types of clustering. Consider the

average improvement in the total number of accesses achieved by gNRA in Table 2.7. With

NCT, gNRA makes 38-72% fewer total accesses compared to Global Upper-Bound, and with

ASC the total number of accesses is improved by 67-87%. We observe a similar trend for gTA:

NCT improves average total accesses by 42-69%, while ASC improves by 72-83%. Further,

we observe that ASC outperforms NCT on both sequential and total accesses in all cases

for gTA (Table 2.8), and in all cases except one in gNRA, query TR for Seekers-50, where

NCT is better by 2%. Finally, note that in most cases percent-improvement over Global

Upper-Bound is highest for Seekers-100, followed by Seekers-50. However, this trend needs

to be related to the findings in Table 2.6: for Seekers-100 Global Upper-Bound performs

worst compared to Exact, and so there is significant room for improvement. Also note that

improvement in # SA is similar to improvement in the total number of accesses. This is

because performance of gNRA is heavily dominated by sequential accesses, while in gTA, #

RA is bounded by SA · (n− 1) for a query of length n.



CHAPTER 2. SEARCH AND RANKING IN COLLABORATIVE TAGGING SITES 65

Seekers-25: NDCG vs. degradation over EXACT
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Figure 2.11: Correlation between NDCG and sequential accesses for Seekers-25.

2.6.5 Effectiveness of the Clustering Quality Metric

In Section 2.5.2 we described a clustering quality metric that uses Normalized Discounted

Cumulative Gain (NDCG) (see Section 1.1.3.2) to quantify the run-time degradation of

a cluster compared to Exact. We now demonstrate that our clustering quality metric

correlates with the run-time performance of gNRA.

For gNRA, sequential accesses (SA) dominate the run time by a large margin, and we use

SA to quantify run times in this experiment. Recall that Exact achieves best performance

because inverted lists are ordered by exact score. Using the terminology of Section 2.5.2,

Exact uses Lideal lists. In contrast, Global Upper-Bound and Cluster-Seekers use in-

verted lists in which the order of items approximates the order in Lideal, and we refer to

such lists as Lapprox. In the remainder of this section we will study the correlation between

our variant of NDCG and the percent degradation in run time performance, compared to

Exact, as measured by the number of sequential accesses.

Figure 2.11 presents the relationship between NDCG and run time performance for

Seekers-25, for all clustering methods and all queries. We make the following observations

based on these results. NDCG and percent degradation over Exact appear to be strongly

correlated. As expected, a lower value of NDCG leads to a higher degradation over Exact,

and vice versa. Using Spearman Rank Correlation, a non-parametric test appropriate for

nonlinear correlations of the kind that is observed, we ascertain that the correlation is

statistically significant. The two-sided p-value was less than 1.14 ∗ 10−6 for individual

queries, and less than 1.65 ∗ 10−39 for the dataset as a whole. Similar results hold for the

other groups of users in our experiments, Seekers-50 and Seekers-100.

Tables 2.9, 2.11, and 2.12 lists average NDCG, and average percent degradation over
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Seekers-25

NDCG % degr. over Exact

query GUB NCT ASC GUB NCT ASC

SP 0.0575 0.0841 0.2232 2594 1128 306

TR 0.1155 0.1653 0.2602 796 382 180

PR 0.0796 0.1215 0.1745 2034 737 354

SPT 0.0936 0.1366 0.2963 963 569 123

SPR 0.0737 0.1283 0.2170 1571 626 286

SPTR 0.1098 0.1674 0.2883 739 362 135

Table 2.9: Using NDCG to predict performance of Cluster-Seekers for Seekers-25.

Cluster-Seekers Cluster-Taggers

query # SA Total # SA Total

SP 82 82 97 97

TR 78 78 94 94

PR 82 82 97 96

SPT 83 83 97 97

SPR 86 86 95 95

SPTR 83 83 96 96

Table 2.10: Percent-improvement of Cluster-Seekers and Cluster-Taggers, compared

to Global Upper-Bound.

Exact, with averages computed for each query and each clustering method. These results

are in line with the performance numbers in Tables 2.6 and 2.7. Here, again, higher values

of NDCG correlate with lower values of percent degradation compared to Exact. Global

Upper-Bound has consistently lower NDCG, leading to poor query-execution times, while

ASC has highest values of NDCG, and best run-time performance compared to other meth-

ods. A similar trend holds for gTA. The same trends hold when the total number of accesses

rather than the number of SAs is used to measure run-time. Recall that NCT outperformed

ASC for Seekers-50 for query TR (see Table 2.8). NDCG captures this, assigning the high-

est value to NCT for this query and user sample. NDCG does mis-predict the relative

performance of ASC and NCT in a single case, for the query TR on Seekers-100.

We established that our proposed clustering quality metric correlates with run time per-

formance. This metric may be used in practice to tune clustering, or to trigger a re-clustering

once NDCG drops below a certain threshold, which may be determined empirically. While

the correlation between NDCG and run time performance is nonlinear, we can still conclude

with confidence that higher values of NDCG correspond to better performance.
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Seekers-50

NDCG % degr. over Exact

query GUB NCT ASC GUB NCT ASC

SP 0.0270 0.0735 0.1088 8605 1893 1229

TR 0.0435 0.1206 0.1084 3935 728 813

PR 0.0391 0.0894 0.1093 4268 945 753

SPT 0.0459 0.0766 0.1436 3221 1735 537

SPR 0.0381 0.0846 0.1319 4039 1407 487

SPTR 0.0670 0.1099 0.1847 1684 766 154

Table 2.11: Using NDCG to predict performance for Seekers-50.

Seekers-100

NDCG % degr. over Exact

query GUB NCT ASC GUB NCT ASC

SP 0.0100 0.0802 0.1080 26238 5388 2707

TR 0.0176 0.0728 0.0895 31835 4198 3609

PR 0.0183 0.0933 0.0430 19179 5051 3562

SPT 0.0261 0.0857 0.1023 7597 1664 977

SPR 0.0277 0.0833 0.1034 9293 1927 892

SPTR 0.0421 0.0914 0.1236 4103 1376 606

Table 2.12: Using NDCG to predict performance for Seekers-100.

2.6.6 Clustering Taggers

We cluster taggers using a variation of the underlying link relation in our experimental

network: there is an edge between two taggers if they tagged at least one item in common

with a given tag. Edges are weighted by the number of items tagged in common.

Space Overhead. Figure 2.12 presents the space overhead of Cluster-Taggers on a

logarithmic scale. As expected, space overhead of this method is significantly lower than

that of Exact and of Cluster-Seekers. Space overhead of NCT ranges from 115,168 rows

for 10 clusters to 167,141 rows for 500 clusters; the overhead of ASC is between 100,922

and 180,881 rows; RND consumes between 160,432 and 259,216 rows. These numbers are

all comparable to the optimal space consumption of Global Upper-Bound: 74,181 entries,

which is explained by the lack of duplication of entries in the lists.

Execution Time. In the best case, given a keyword, all taggers relevant to a seeker will

reside in a single cluster; then, only one inverted list will be processed at query time for

that keyword. In the worst case, all taggers in the seeker’s network will reside in separate

clusters. For 200 clusters and tag Reference, there are 34 taggers per seeker, on average
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Figure 2.12: Space overhead of Cluster-Taggers.

(Table 2.5).

Cluster-Taggers has low space overhead; here, query execution time is the aspect of

performance where we wish to realize an improvement. Since we found ASC to perform

well in terms of time in other contexts (e.g., see Section 2.6.4), we now focus our attention

on ASC with 200 clusters.

Even under the most effective clustering, a seeker may still be mapped to many clusters.

An extreme case in our dataset is a seeker who mapped to 80 clusters for the two-keyword

query SP (this seeker has 323 taggers). As a result, the number of SAs of gNRA increased

26 times compared to Global Upper-Bound, clearly an unacceptable performance. We

observed empirically that gNRA with Cluster-Taggers outperforms Global Upper-Bound

when at most 3∗queryLength clusters are identified for the seeker. Therefore we propose to

use Cluster-Taggers for a subset of the seekers – those who map to at most 3∗queryLength

clusters. In our dataset between 46-68% of seekers map to at most 3 clusters per tag. Using

Cluster-Taggers for a subset of the seekers means that the outcomes of both clusterings,

Cluster-Seekers and Cluster-Taggers, must be stored, bringing additional space over-

head. However, storing Cluster-Taggers induces relatively low space overhead, and may

result in superior processing times, which we demonstrate next.

Table 2.10 compares the run-time performance of Cluster-Taggers and Cluster-Seekers

to Global Upper-Bound. We used ASC with 200 clusters for both Cluster-Taggers and

Cluster-Seekers. We used a different sampling methodology for this experiment. For

each query, we identified the set of seekers who map to at most 3 clusters for each keyword

and sampled 10 seekers uniformly at random from that set. Cluster-Taggers outperforms

Cluster-Seekers for all queries in our experiments, and achieves 94-97% improvement over
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Global Upper-Bound for this class of seekers. This is because tagging actions of a particular

tagger are not replicated across clusters in the Cluster-Taggers clustering scheme. As a re-

sult, per-cluster inverted lists in Cluster-Taggers are typically shorter, and upper-bounds

are much closer to exact scores of the items.

2.7 Related Work

Top-k Processing: Top-k algorithms aim to reduce the amount of processing required

to compute the top-ranked answers, and have been used in the relational [Carey and

Kossmann, 1997], XML [Marian et al., 2005], and other settings. The core ideas of these

algorithms are overviewed in [Fagin et al., 2003c; Fagin, 2002]. A common assumption is

that scores are used to maintain dynamic thresholds during query processing, in order to

efficiently prune low-scoring answers.

Even in work where the underlying query model is distributed [Michel et al., 2005], or

where the aggregation computation is expensive [Hwang and Chang, 2007], this assump-

tion of pre-computation remains in place. In our work, we extend Fagin-style algorithms

to process score upper-bounds – since pre-computed scores for each individual seeker are

too expensive to store (given that they depend on a seeker’s network) – and we explore

clustering as a way to refine upper-bounds and reduce the size of the inverted lists.

Clustering: Graph clustering algorithms are plentiful and generally work on graphs with

(possibly weighted) edges. Most of the work on clustering has focused on minimizing cluster-

ing time and considering additional constraints such as producing same-size clusters. In our

experiments, we use Graclus, an open-source graph clustering software that is based on two

variants of the popular k-means algorithms: normalized cut and ratio association [Dhillon

et al., 2007].

Socially Influenced Search: Although the potential of using social ties to improve

search has been recognized for some time, this is still subject of ongoing work. Current

research has focused on judging the impact of various notions of user affinity and socially-

influenced scoring functions on search quality [Mislove et al., 2006; Zhou et al., 2008;

Li et al., 2008]. In contrast, our work develops indexing and query evaluation methods

which apply to a wide class of scoring functions and networks.

User Experience in Collaborative Tagging Sites: The idea of motivating partici-

pation by displaying the value of contribution is characteristic of collaborative reviewing

sites [Rashid et al., 2006] but has received little attention in the study of collaborative tag-

ging sites. Impact of reviews has been studied extensively in the e-commerce arena, and it

has been shown that reviews impact sales [Chen et al., 2007; Chevalier and Mayzlin, 2006;
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Ghose and Ipeirotis, 2006]. Most of the current scientific literature dealing with user-

contributed reviews concerns text analysis to distill reviews [Popescu and Etzioni, 2005],

sentiment detection [Pang and Lee, 2004; Pang and Lee, 2005], and the impact of reviews

on product sales [Bickart and Schindler, 2001; Ghose and Ipeirotis, 2007; Kim et al., 2006;

Lio et al., 2007]. In contrast, very little has been done to extract value in collaborative

tagging systems and provide participation incentives to users.

Deriving Semantics from Social Tagging: Wu et al. [Wu et al., 2006b] present a

probabilistic generative model that uses tagging to obtain the emergent semantics in so-

cial annotations. The authors study the relationship between resources, tags, and users by

means of co-occurence analysis, and map these elements to a multi-dimensional conceptual

space, where each dimension represents a category of knowledge. The authors demonstrate

how these distributions may be learned and subsequently used to derive tag ambiguity in-

formation. They go on to show how their probabilistic model may be used for semantic

search and discovery in social tagging sites like Delicious.

Collaborative Filtering: Collaborative Filtering (CF) is a popular method which is based

on using machine learning to derive and compare user profiles in order to determine overlap

of interest between users. A user profile is built from explicit or implicit data. The system

can explicitly ask users to rate an item on a numerical scale, or to rank a collection of

items from most to least favorite. The system can also record items that a user browsed or

purchased, and analyze item viewing times. CF compares data collected from the user to

similar data collected from others and calculates a list of recommended items for the user.

Several methods have been developed to address data sparsity. Most of them (item-based

and user-based) rely on statistical approximation [Bell et al., 2007; Park and Pennock,

2007].

Our method differs from CF in that we express a user’s interest qualitatively rather

than quantitatively, using tags and derived ties. In [Agichtein et al., 2006], it is shown

that ranking in Web search can be improved by incorporating user behavior. Similarly,

we show that incorporating tagging behavior improves ranking in producing hotlists. This

motivates the need to better understand the principles behind designing a recommender

tagging system, as was briefly discussed in [Golder and Huberman, 2006]. According to

a study of del.icio.us tagging practices described in [Kipp and Campbell, 2006], tagging

exhibits self-organizing patterns. In our work we explore how users can be classified into

groups based on their tagging behavior, and how such groups can be used to improve the

quality of recommended hotlists.
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2.8 Conclusion

In this chapter we presented the types of semantic context that exist in collaborative tagging

sites, and showed how such context can be used to improve the quality of search and ranking.

We first explored how a user’s social behavior and tagging can be used to produce high-

quality hotlists. We then presented network-aware search, a first attempt to incorporate

social behavior into searching in collaborative tagging sites.

We defined a model in which item scores are based on popularity among a network

of related users, and formalized top-k processing in this context. We demonstrated how

traditional algorithms can be extended to compute the best answers in a network-aware

manner, and proposed clustering seekers and taggers as a way to balance between processing

time and space consumption.

Incorporating a user’s social context into search and ranking is central to supporting

personalized social consumption of information, and provides a valuable participation in-

centive in collaborative tagging sites and beyond. A user who is able to access relevant

information with ease in a social manner is likely to engage the system more actively, both

by contributing content and creating social ties, and by consuming content provided by

other users. Socially-influenced search uses the semantics of social connections, and has as

one of its goals information discovery and the formation of knowledge. In the following chap-

ter we will consider a different but related aspect of information discovery. There, search

and ranking are likewise aimed at information discovery, and are based on the semantic

knowledge in domain ontologies.
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Chapter 3

Semantic Ranking for Life Sciences

Publications

This chapter is based on joint work with Kenneth A. Ross and William Mee and will appear

in [Stoyanovich et al., 2010].

3.1 Introduction

Many scientific domains, most notably the domain of life sciences, are experiencing unprece-

dented growth. The recent complete sequencing of the Human Genome, and the tremendous

advances in experimental technology are rapidly bringing about new scientific knowledge.

The ever-increasing amount of data and semantic knowledge in life sciences requires the

development of new semantically rich data management techniques that facilitate scientific

research and collaboration.

Literature search is a central task in scientific research. In their search users may pursue

different goals. For example, a user may need an overview of a broad area of research

that is outside his main field of expertise, or he may need to find new publications in an

area in which he is an expert. PubMed (www.pubmed.gov) is perhaps the most significant

bibliographic source in the domain of life sciences, with over 18 million articles at the time

of this writing. Indexed articles go back to 1865, and the number of articles grows daily, and

increases steadily from year to year. PubMed articles are manually annotated with terms

from the Medical Subject Headings (MeSH) controlled vocabulary. MeSH organizes term

descriptors into a hierarchical structure, allowing searching at various levels of specificity.

The 2008 version of MeSH contains 24,767 term descriptors that refer to general concepts

like Anatomy and Mental Disorders, as well as to specific concepts like Antiphospholipid

Syndrome and Cholesterol.
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Figure 3.1: A portion of the MeSH polyhierarchy.

3.1.1 Overview of MeSH

MeSH terms are classified into an is-a polyhierarchy: the hierarchy defines is-a relationships

among terms, and each term has one or more parent terms [Kaiser, 1911]. Figure 3.1

presents the portion of MeSH that describes autoimmune diseases and connective tissue

diseases. The hierarchy is represented by a tree of nodes, with one or several nodes mapping

to a single term label. For example, the term Rheumatic Diseases is represented by the node

C17.300.775.099.

Interestingly, the MeSH hierarchy is scoped: two tree nodes that map to the same term la-

bel may not always induce isomorphic subtrees. The term Rheumatoid Arthritis (RA) maps

to two nodes in Figure 3.1, and induces subtrees of different sizes. Node C20.111.199 repre-

sents the autoimmune aspect of RA and induces a subtree of size 5, while C17.300.775.099

refers to RA as a rheumatic disease, and induces a subtree of size 7. (Subtree size is noted

next to the name of the node.) Scoping is an important technique for modeling complex

polyhierarchies. Placing a concept in several parts of the hierarchy models different aspects

of the concept, while accommodating different context in different parts of the hierarchy

adds to the expressive power and reduces redundancy.

In MeSH it is almost always the case that if one term is a descendant of another in one

part of the hierarchy, it will not be an ancestor of that same term in a different part of the

hierarchy.1

PubMed and other NCBI-managed repositories can be searched with Entrez, the Life

1There is a single exception: Ethics is the parent of Morals in the Humanities branch of the hierarchy,

while Morals is the parent of Ethics in the Behavior and Behavioral Mechanisms branch.
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Sciences Search Engine2. Entrez implements sophisticated query processing, allowing the

user to specify conjunctive or disjunctive boolean semantics for the search query, and to

relate the search terms to one or several parts of the document: title, MeSH annotations,

text of the document, etc. In order to improve recall, Entrez automatically expands query

terms that are related to MeSH annotations with synonymous or near-synonymous terms.

For example, the simple query mosquito will be transformed by Entrez to “culicidae”[MeSH

Terms] OR “culicidae”[All Fields] OR “mosquito”[All Fields]. Entrez also expands the

query with descendants of any MeSH terms. For example, the query “blood cells”[MeSH

Terms] will match articles that are annotated with “blood cells” or with “erythrocytes”,

“leukocytes”, “hemocytes”, etc.

3.1.2 Challenges of Bibliographic Search

The need to improve recall differentiates bibliographic search from general web search.

In web search it is often assumed that many documents equivalently satisfy the user’s

information need, and so high recall is less important than high precision among the top-

ranked documents. Conversely, in bibliographic search the assumption (or at least the hope)

is that every scientific article contributes something novel to the state of the art, and so

no two documents are interchangeable when it comes to satisfying the user’s information

need. In this scenario the boolean retrieval model, such as that used by Entrez, guarantees

perfect recall and is the right choice.

However, there is an important common characteristic of bibliographic and general

web search: many queries return hundreds, or even thousands, of relevant results. Query

expansion techniques that maximize recall exacerbate this problem by producing yet more

results. For example, the fairly specific query Antiphospholipid Antibodies AND Thrombosis,

which looks for information about a particular clinical manifestation of antiphospholipid

syndrome, returned 2455 matches using the default query translation in January 2009. A

more general query that looks for articles about connective tissue diseases that are also

autoimmune returns close to 120,000 results.

Because so many results are returned per query, the system needs to help the user

explore the result set. Entrez currently allows the results to be sorted by several metadata

fields: publication date, first author, last author, journal, and title. This may help the

user look up an article with which he is already familiar (i.e., knows some of the associated

metadata), but does not support true information discovery.

A useful and well-known way to order results in web information retrieval is by query

relevance. Retrieval models such as the Vector Space Model [Baeza-Yates and Ribeiro-Neto,

1999] have the query relevance metric built in, while the boolean retrieval model does not.

In this chapter we propose to measure the relevance of a document to the query with respect

2www.ncbi.nlm.nih.gov/sites/gquery
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to the MeSH vocabulary. We illustrate some semantic considerations and challenges with

an example.

Example 3.1.1 Consider the Entrez query “Connective Tissue Diseases” [MeSH Terms]

AND “Autoimmune Diseases” [MeSH Terms], evaluated against PubMed. Figure 3.1 rep-

resents these query terms in the context of the MeSH hierarchy. The query will match all

documents that are annotated with at least one term from the induced subtrees of the query

terms.

One of the results, a document with pmid = 17825677, is a review article that discusses

the impact of autoimmune disorders on adverse pregnancy outcome. It is annotated with

the query terms “Autoimmune Diseases” and “Connective Tissue Diseases”, and also with

several terms from the induced subtrees of the query terms: “Arthritis, Rheumatoid”, “Lu-

pus Erythematosus, Systemic”, “Scleroderma, Systemic”, and “Sjögren’s Syndrome”. The

article is also annotated with general terms that are not related to the query terms via the

hierarchy: “Pregnancy”, “Pregnancy Complications”, “Female”, and “Humans”.

Another result, an article with pmid = 19107995, describes neuroimaging advances in the

measurement of brain injury in Systemic Lupus. This article matches the query because it is

annotated with “Lupus Erythematosus, Systemic”, which is both a connective tissue disease

and an autoimmune disease. The article is also annotated with broader terms “Brain”,

“Brain Injuries”, “Diagnostic Imaging”, and “Humans”.

Based on this example, we observe that, while both articles are valid matches for the

query, they certainly do not carry equal query relevance. The first article covers the fairly

general query terms, as well as several specific disorders classified below the query terms

in MeSH. In contrast, the second article answers a limited portion of the query, since it

focuses on only one particular disorder. In this work we propose several ways to measure

semantic relevance of a document to a query, and demonstrate how our semantic relevance

can be computed efficiently on the scale of PubMed and MeSH.

An important dimension in data exploration, particularly in a high-paced scientific field,

is time. An article that contributes to the state of the art at the time of publication may

quickly become obsolete as new results are published. Semantic relevance measures of

this chapter can be used to retrieve ranked lists of results, or they can be combined with

data visualization techniques that give an at-a-glance overview of thousands of results. We

develop a two-dimensional skyline visualization that plots relevance against publication

date, and show how such skylines can be computed efficiently on the large scale.

Ranking that takes into account hierarchical structure of the domain has been considered

in the literature [Rada and Bicknell, 1989; Lin, 1998; Ganesan et al., 2003]. Such ranking

typically relates two terms via a common ancestor; see Section 3.6 for a discussion of these

methods. When terms appear in the hierarchy in multiple places, with subtly different

meanings, it is unclear how such distance-based measures should be generalized. Instead,
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in this chapter we develop new families of ranking measures that are aimed specifically at

ranking with scoped polyhierarchies like MeSH, where terms may occur in multiple (partially

replicated) parts of the hierarchy. We argue that the semantics of a term is best captured

by its set of descendants across the whole hierarchy, and develop measures of relatedness

that depend on the nature of the overlap between these sets of descendants.

Computing similarity based on sets of descendants is algorithmically more complex than

simpler graph distance measures. We pay particular attention to efficiency, and provide an

extensive experimental evaluation of our methods with the complete PubMed dataset and

the full MeSH polyhierarchy, demonstrating that interactive response times are achievable.

3.1.3 Chapter Outline

The remainder of this chapter is organized as follows. We formalize semantics of query

relevance for scoped polyhierarchies in Section 3.2. We present the data structures and

algorithms that implement the query relevance measures on the large scale in Section 3.3.

Section 3.4 describes an evaluation of efficiency, and Section 3.5 presents a user study. We

present related work in Section 3.6, and conclude in Section 3.7.

3.2 Semantics of Query Relevance

We now formalize the data model, and define the semantics of several similarity measures,

using the polyhierarchy in Figure 3.2 for demonstration. Term labels are denoted by letters

A,B,C, . . ., and nodes are denoted by numerical ids 1, 2, 3, . . .. Term > represents the root

of the hierarchy, and maps to node 0.

3.2.1 Motivation

We wish to assign a score to documents whose MeSH terms overlap with the query terms.

Our notion of “overlap” includes cases where a document term represents a sub-concept of

a query term. If a query is {A,B} in Figure 3.2, and the document contains MeSH terms

C and D, then both C and D contribute to the overlap because they are sub-concepts of A

and B. C is actually a subconcept of both A and B.

Our first similarity measure, which we formalize in Section 3.2.3, simply counts the

number of elements in common between the descendants of the MeSH terms in the query

and those in the document. According to this measure, concepts such as C that appear in

multiple parts of the hierarchy count once. However, we might want to count C more than

once because it contributes to the matching of both query terms.

The alternative of simply counting every occurrence of a term label can be naive. Sup-

pose that the query is {C} and that the document mentions term G but not C or H. One

could argue that double-counting G is inappropriate, since the only reason we have two G
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Figure 3.2: A sample scoped polyhierarchy.

instances is because C appears in multiple parts of the hierarchy. Within the context of

the concept C, G really only appears once. This motivates us to refine the measure to only

double-count when the ancestor concept in the query is different. We develop a similarity

measure that models this intuition in Section 3.2.4.

The measures mentioned so far are sensitive to the size of the hierarchy. Because A

has more descendants than B, an intermediate-level match in the A subtree may give a

much larger score than a high-level match in the B subtree. The effect of this bias in

scores would be that highly differentiated concepts in the hierarchy would be consistently

given more weight than less differentiated concepts. To overcome this bias, we consider an

additional scoring measure in Section 3.2.5 that weights matches in such a way that each

term in the query contributes equally to the overall score.

3.2.2 Terminology

Definition 3.2.1 A scoped polyhierarchy is a tuple H = {T ,N , ISA,L}, where T is a set

of term labels, N is a set of nodes, ISA : N → N is a many-to-one relation that encodes the

generalization hierarchy of nodes, and L : N → T associates a term with each node. When

ISA(n, n′) holds, we say n′ is a parent of n, and n is a child of n′. Every node except the

root has exactly one parent node. n′ is an ancestor of n if (n, n′) is in the reflexive transitive

closure of ISA. (Thus a node is its own ancestor and its own descendant.)

We will use the following notation for convenience. For a term t ∈ T , we denote by N(t)

the set of nodes n with label t (i.e., having L(n) = t). For a set of terms T ⊆ T , we denote

by N(T ) the set of nodes in
⋃

t∈T N(t). Likewise, for a set of nodes M ⊆ N , we denote by

L(M) the set of labels of nodes in M .
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Definition 3.2.2 The node-scope of a term t ∈ T , denoted by N ∗(t), is the set of nodes

that have an ancestor with the label t: N ∗(t) = {n|∃n′, t = L(n′) ∧ ancestor(n′, n)}.

The node-scope of a set of terms T ⊆ T , denoted by N ∗(T ), is the set of nodes that

have an ancestor with the label in T : N ∗(T ) =
⋃

t∈T N∗(t).

In Figure 3.2, the node-scope of the term C is N ∗(C) = {3, 8, 9, 6, 11}, the same as the

node scope of a set {C,G,H}.

Definition 3.2.3 The term-scope of a term t ∈ T , denoted by L∗(t), is the set of term

labels that appear among the nodes in N ∗(t): L∗(t) =
⋃

n∈N∗(t) L(n).

We define the term-scope of a set of terms T ⊆ T analogously, and denote it by L∗(T ) =
⋃

t∈T L∗(t).

The term-scope of the term C in Figure 3.2 is L∗(C) = {C,G,H}, while L∗({B,C}) =

{B,C,G,H, F}.

We use node-scope and term-scope to compare two sets of terms D and Q, where D is

the set of terms that annotate a PubMed document, and Q is the set of query terms.

3.2.3 Set-Based Similarity

Our first measure, term similarity, treats the sets D and Q symmetrically, and quantifies

how closely the two sets are related by considering the intersection of their term-scopes:

TermSim(D,Q) = |L∗(D) ∩ L∗(Q)| (3.1)

Term similarity may be used on its own, or it may be normalized by another quantity,

changing the semantics of the score. For example, normalizing term similarity by the size

of the term-scope of the query expresses the extent to which the query is answered by the

document. We refer to this quantity as term coverage. Dividing the term similarity by the

term-scope of the document expresses how specific the document is to the query. We refer

to this quantity as term specificity. Finally, we may divide term coverage by the size of the

union of the two term scopes, deriving Jaccard similarity.

TermCoverage(D,Q) =
|L∗(D) ∩ L∗(Q)|

|L∗(Q)|
(3.2)

TermSpecificity(D,Q) =
|L∗(D) ∩ L∗(Q)|

|L∗(D)|
(3.3)

TermsJaccard(D,Q) =
|L∗(D) ∩ L∗(Q)|

|L∗(D) ∪ L∗(Q)|
(3.4)
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3.2.4 Conditional Similarity

Set-based similarity treats the query and the document symmetrically, and may prioritize

one set over the other in the final step, as is done in term coverage and term specificity.

Conditional similarity prioritizes the query over the document from the start, by placing

the term-scope of the document within the context of the term-scope of the query.

As we argued in Section 3.2.1, simply counting the paths between two terms can be

naive, as we may be double-counting due to structural redundancy in the hierarchy. We

thus define conditional term-scope by using ancestor-descendant pairs of terms, not full term

paths. In the following definition, q is a query term and d is a document term.

Definition 3.2.4 Let d and q be terms, and let Pd,q be the set of node pairs (nd, nq) satis-

fying the following conditions:

• nd ∈ N∗(d), i.e., nd has an ancestor with label d;

• nq ∈ N∗(q), i.e., nq has an ancestor with label q;

• nq is an ancestor of nd.

Conditional term-scope of d given q, denoted by L∗(d|q), is the set of label pairs (L(n1), L(n2)),

where (n1, n2) ∈ Pd,q.

Conditional term-scope of a set D given a set Q, denoted L∗(D|Q), is the union of

conditional term-scopes of all d ∈ D given all q ∈ Q: L∗(D|Q) =
⋃

d∈D,q∈Q L∗(d|q).

For example, L∗(G|C) = {(C,G), (G,G)}, while L∗(G|{A,B}) = {(A,G), (B,G), (C,G),

(C,G), (G,G)}. Note that L∗(q|q) enumerates all pairs of terms (s, t), where s, t ∈ L∗(q)

such that there is a term-path from a node labeled with t to a node labeled with s. So,

L(C|C) = {(C,G), (C,H), (C,C), (G,G), (H,H)}.

We define conditional similarity as:

CondSim(D,Q) = |L∗(D|Q)| (3.5)

3.2.5 Balanced Similarity

Balanced similarity is a refinement of conditional similarity that balances the contributions

of query terms to the score. Balanced similarity is given by the formula:

BalancedSim(D,Q) =
1

|Q|

∑

q∈Q

CondSim(D, q)

CondSim(q, q)
(3.6)

The relative contribution of each query term q to the score is normalized by the number

of terms in the query, |Q|. For each term q, we compute the conditional similarity between

the document D and the term q (as per Equation 3.5), and normalize this value by the
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maximum possible conditional similarity that any document may achieve for q, which is

CondSim(q, q).

3.3 Efficient Computation of Query Relevance

In this section we describe the data structures and algorithms that support computing

similarity measures of Section 3.2 at the scale of PubMed and MeSH. We do all processing

in main memory to achieve interactive response time, and must control the size of our data

structures so as to not exceed reasonable RAM size. Our data structures are at most linear

in the size of PubMed, and at most quadratic in the size of MeSH.

We maintain annotations and publication date of PubMed articles in a hash table

Articles, indexed by pmid. The version of PubMed to which we were given access by

NCBI consists of about 17 million articles, published up to September 2007, and we are

able to store publication date and annotations of all these articles in RAM. There are

between 1 and 96 annotations per article, 9.7 on average.

In this work we focus on queries that are conjunctions or disjunctions of MeSH terms,

and rely on the query processing provided by Entrez to retrieve query matches. We do

not discriminate between AND and OR queries for the purposes of ranking. This is an

item for future work. A query is represented in our system by a set of MeSH terms:

Query : {t1, . . . , tm}.

3.3.1 Exact Computation

We maintain the following data structures that allow us to compute values for the relevance

metrics in Section 3.2. There are 24,767 terms and 48,442 nodes in MeSH 2008, the version

of MeSH that we use in this work. For each term t ∈ T , we precompute and maintain the

following information in one or several hash tables, indexed on the term label.

• N(t), the set of nodes that have t as its label. An average term labels 2 nodes. 50%

of the terms label only a single node. The term WAGR Syndrome labels 19 nodes,

the most of any term in MeSH.

• L∗(t), the set of term labels in the term-scope of t (see Definition 3.2.3). An average

MeSH term has 6.4 terms in its term-scope. The term Amino Acids, Peptides, and

Proteins has the most terms in its term-scope: 2902. Recall that t ∈ L∗(t); 67% of

the terms have only their own label in their term-scope.

• N∗(t), the set of nodes in the node-scope of t (see Definition 3.2.2). On average

|N∗(t)| = 9.6. At least 1 and at most 6458 nodes are in the node-scope of any term

in MeSH. The term Amino Acids, Peptides, and Proteins has the largest node-scope.

• |L∗(t|t)|, the size of conditional term scope of t, an integer value (see Definition 3.2.4).
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For each node n ∈ N , we maintain its term label L(n), and the path from the top of

the hierarchy to n.

• L(n), the term label of n.

• The node-path from the top of the hierarchy to n. The average length of a node-

path is 5, the longest path has length 12. (While one could traverse the hierarchy to

construct this path as needed, it saves time to have all paths precomputed, and the

space investment is modest.)

Algorithm 3: Procedure TermSim

Require: Q = {q1 . . . qn}, R = {pmid1 . . . pmidm}

1: Compute L∗(Q) =
⋃

i L∗(qi)

2: for pmid ∈ R do

3: Retrieve D = {d1 . . . dm} from Articles

4: Compute L∗(D) =
⋃

i L
∗(di)

5: termSim(D,Q) = |L∗(D) ∩ L∗(Q)|

6: end for

Algorithm 3 describes how term similarity (Eq. 3.1) is computed for a query Q and a set

of documents R. To compute the term-scope of a term t (lines 1 and 4), we retrieve L∗(t)

with a hash table lookup. Each lookup returns a set of terms, and the size of each such set

is linear in the size of the hierarchy. In practice, for terms that denote general concepts,

L∗(t) may contain hundreds, or even thousands of term labels, while for terms that denote

very specific concepts, L∗(t) will contain only a handful of labels. Next, we take a union of

the term-scopes of individual terms, which requires time linear in the size of the input data

structures in our implementation. This computation happens once per query, and once for

every document. Finally, having computed the term-scope of the document, we determine

the intersection L∗(D) ∩ L∗(Q) (line 5). This operation takes time linear in the size of the

data structures, and is executed once per document.

Algorithm 4 computes conditional similarity (Eq. 3.5) for a query Q and a document D.

Term-scope and node-scope of Q are computed on lines 1 and 2. Then, for each document,

we compute DQ, the set of its terms that are in the term-scope of the query, and retrieve

the node-scope of DQ (lines 5 and 6). We then find all pairs of nodes n′ ∈ N∗(Q) and

n ∈ N∗(DQ) such that there is a path from n′ to n. Each document is processed in time

proportional to |N ∗(Q)| · |N ∗(DQ)|, which can be high for queries and documents with large

node-scopes.

Algorithm 5 computes balanced similarity (Eq. 3.6) by considering each query term q

separately, and invokingCondSim for each document. Computing conditional similarity one
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Algorithm 4: Procedure CondSim

Require: Q = {q1 . . . qn}, R = {pmid1 . . . pmidm}

1: Compute L∗(Q) =
⋃

i L∗(qi)

2: Compute N ∗(Q) =
⋃

i N∗(qi)

3: for pmid ∈ R do

4: Retrieve D = {d1 . . . dm} from Articles

5: Compute DQ = D ∩ L∗(Q)

6: Compute N ∗(DQ)

7: S = ∅

8: for n′ ∈ N∗(Q) do

9: for n ∈ N ∗(DQ) do

10: if ancestor(n′, n) then

11: S = S ∪ (L(n′), L(n))

12: end if

13: end for

14: end for

15: condSim(D,Q) = |S|

16: end for

query term at a time has lower processing cost than the corresponding computation for the

query as a whole, as is done in CondSim, as we will see during our experimental evaluation.

3.3.2 Computation with Score Upper-Bounds

In the previous section we saw that evaluating similarity of a set of documents with respect

to a query can be expensive, particularly for queries and documents that are annotated

with general MeSH terms. We now show how score upper-bounds can be computed more

efficiently than exact scores.

Score upper-bounds can be used to limit the number of exact score computations in

ranked retrieval, where only k best entries are to be retrieved from among N documents,

and k � N . If score upper-bounds are cheaper to compute than actual scores, then we

can compute score upper-bounds for all documents, order documents in decreasing order of

score upper-bounds, and compute exact score values as needed, until the k best documents

have been retrieved. Processing, and thus exact score computation, can stop when the score

upper-bound of the document being considered is lower than the actual score of the current

kth best document. In addition to computing score upper-bounds for all documents, and

evaluating exact scores for M documents, where k ≤M ≤ N , the algorithm must perform

a certain number of sorts, to determine the current kth score at every round.

Consider again the computation of term similarity in Algorithm 3, which computes the
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Algorithm 5: Procedure BalancedSim

Require: Q = {q1 . . . qn}, R = {pmid1 . . . pmidm}

1: Compute weighti = |Q| · L∗(t|t) for each qi ∈ Q

2: for pmid ∈ R do

3: score = 0

4: for qi ∈ Q do

5: score = score + weighti · CondSim(qi, pmid)

6: end for

7: balancedSim(D,Q) = score

8: end for

value of the expression in Equation 3.1. We can transform this equation using distributivity

of set intersection over set union, and observe that a natural upper-bound holds over the

value of term similarity:

TermSim(D,Q) = |(
⋃

d

L∗(d)) ∩ (
⋃

q

L∗(q))| =

|
⋃

d,q

L∗(d) ∩ L∗(q)| ≤
∑

d,q

|L∗(d) ∩ L∗(q)|

The value of TermSim(D,Q) cannot be higher than the sum of the sizes of pair-wise

intersections of term-scopes of terms from D with terms from Q. To enable fast computation

of this upper bound, we precompute |L∗(s)∩L∗(t)| for all pairs of terms s and t. The number

of entries in this data structure, which we call PairwiseTermSim, is quadratic in the size of

MeSH. In practice, we only need to record an entry for the terms s and t if L∗(s)∩L∗(t) 6= ∅.

There are over 613 million possible pairs of MeSH terms, but only 158,583 pairs have a non-

empty intersection of their term-scopes.

For a query of size |Q| and a document of size |D|, we need to look up |Q| ∗ |D| entries

in PairwiseTermSim, and compute a sum of the retrieved values. The difference between

the size of a set of terms, and the size of the term-scope of that set can be quite dramatic,

and so computing upper-bounds is often much cheaper than computing actual scores. We

will demonstrate this experimentally in Section 3.4.

Let us now consider how score upper-bounds can be computed for conditional similarity

(Eq. 3.5), which counts the number of pairs of terms q ∈ L∗(Q) and d ∈ L∗(D) such that

there is a node-path from q → d. This quantity is bounded by the sum of sizes of L∗(d|q)

for all pair of terms d and q.

CondSim(D,Q) = |
⋃

d,q

L∗(d|q)| ≤
∑

d,q

|L∗(d|q)|
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To facilitate the computation of this upper-bound, we store the value of L∗(s|t) for

all pairs of terms s and t with intersecting term-scopes. We call this data structure

PairwiseCondSim. This data structure has the same number of entries as PairwiseTerm-

Sim.

Finally, for balanced similarity, we observe that:

BalSim(D,Q) =
1

|Q|

∑

q

L∗(D|q)|

L∗(q|q)
=

1

|Q|

∑

q,d

L∗(d|q)

L∗(q|q)

We re-use the PairwiseCondSim data structure for the computation of score-upper

bounds for balanced similarity. We evaluate the performance improvements achieved by

using score upper-bounds for ranked retrieval in Section 3.4.

3.3.3 Adaptive Skyline Computation with Upper-Bounds

As we argued in the Introduction, it is sometimes important to present more than a handful

of query results. We propose to use a two-dimensional skyline visualization [Börzsönyi et

al., 2001] that is based on the familiar concept of dominance. A point in multi-dimensional

space is said to belong to the skyline if it is not dominated by any other point, i.e., if no other

point is as good or better in all dimensions, and strictly better in at least one dimension.

A skyline contour is defined inductively as follows:

• A point belongs to the first skyline contour if and only if it belongs to the skyline of

the whole data set.

• A point belongs to the kth contour if and only if it belongs to the skyline of the data

set obtained by removing points from the first through k − 1st contours.

Skyline contours are useful for highlighting points that are close to the skyline, and that

might be of interest to the user.

Publication date is a natural attribute in which to consider bibliography matches, and

we use it as the x-axis of our visualization. The y-axis corresponds to one of the similarity

measures described in Section 3.2. Figure 3.3 shows a skyline of results for the query G-

Protein-Coupled receptors, for term specificity with 5 skyline contours. Points of highest

quality are close to the origin on the x-axis and away from the origin on the y-axis. Points

on the first contour are marked in white, points on the second contour are beige, and point

on the last contour are red. When points are selected using the mouse, a window showing

the full citation is displayed.

Our prototype implementation is running outside of the NCBI infrastructure, and we are

using the Entrez query API, eUtils, to evaluate queries, and receive back ids of PubMed

articles that match the query. The eUtils API can be asked to return query results in

order of publication date. NCBI requests that large result sets be retrieved in batches, so
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Figure 3.3: Two-dimensional skyline representation of results for the query G-Protein-

Coupled receptors.

as not to overload their system. In the remainder of this section we describe a progressive

algorithm that computes a two-dimensional skyline of results using score upper-bounds.

We implemented a divide-and-conquer algorithm based on the techniques in [Bentley,

1980]. Our algorithm processes results one batch at a time, with batches arriving in order

of article publication date, from more to less recent. Articles within each batch are also

sorted on publication date, and we use this sort order as basis for the divide-and-conquer.

The algorithm receives as input a sorted list of documents R = {pmid1 . . . pmidN},

the query Q = {q1 . . . qn}, an integer k that denotes the number of skyline contours to be

computed, a similarity measure Sim, and SkylineSoFar: a list of documents, sorted on

publication date, that were identified as belonging to the skyline when processing previous

batches, along with contour number k. Note that a result that was assigned to the skyline

during a previous batch will remain on the skyline, with the same contour number, for the

remainder of the processing. This is because documents are processed in sorted order on

the x-axis.
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The divide-and-conquer algorithm processes the batch by recursively dividing the points

along the median on the x-axis. When all points within an x-interval share the same x value,

the algorithm sorts the points on the y coordinate, identifies contour points as the k best

points in the interval, and assigns to each of the top-k points a contour number. Let us

refer to this sub-routine as AssignLinearDominance. Contour number assignments are then

merged across intervals, from left to right, and contour numbers of points on the right are

adjusted. The SkylineSoFar data structure is supplied to the left-most interval when a

batch is processed.

The algorithm assumes that the values of the x and the y coordinates are readily available

for each document. However, as we discussed in Section 3.3, the similarity score of the

document may be expensive to compute, while the score upper-bound may be computed

more efficiently. We therefore modify the AssignLinearDominance subroutine to use score

upper-bounds as in Section 3.3.2. Exact scores are still computed, but the number of

these computations is reduced. Using score upper-bounds allows us to compute the two-

dimensional skyline more efficiently, as we demonstrate next.

3.4 Experimental Evaluation

In this section we present our experimental results that quantify the cost of exact score

computation, and demonstrate the improvement achieved by using score upper-bounds in

the computation. Techniques for this processing were described in Sections 3.3.2 and 3.3.3.

Experiments in this section consider the run-time performance of three measures: term

similarity, conditional similarity, and balanced similarity.

In the first set of our experiments, we study the advantage of using score upper-bounds

for ranked list retrieval, for the various values of K. In the second set of experiments, we

consider the performance improvement that is achieved when score upper-bounds are used

for skyline computation, for various settings of the number of contours.

3.4.1 Experimental Platform

We evaluated the performance of our methods on a Java prototype. Figure 3.4 describes

the system architecture and the data flow. Processing is coordinated by the Query Manager

that receives a query from the user and communicates with PubMed via the eUtils API

(arrow 1). Results are returned in batches, sorted in decreasing order of publication date

(arrow 2). Query Manager receives results one batch at a time and communicates with

the In-Memory DB, which implements the data structures and algorithms of Section 3.3.

In-Memory DB and Query Manager communicate via Java RMI (arrows 3, 4). In-Memory

DB runs on a 32-bit machine with a dual-core 2.4GHz Intel CPU and 4GB of RAM, with

RedHat EL 5.1. Given a query and a list of PubMed ids, In-Memory DB can compute

score upper-bounds or actual scores for each document, or it can compute the set of skyline
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Figure 3.4: System architecture.

contours. Results are read by Query Manager (arrow 4), which can optionally pass them

to the visualization component.

For the purposes of our evaluation all processing was done by In-Memory DB, to reduce

communication cost. When a system like ours is deployed, some of the processing, e.g. sky-

line computation, can be moved to the client to reduce server load. All performance results

are based on measuring processing times inside In-Memory DB. We report performance in

terms of wall-clock time. All results are averages of three executions.

3.4.2 Workload

Our performance experiments are based on a workload of 150 queries. We were unable

to get a real PubMed query workload from NCBI due to privacy regulations, and so we

generated the workload based on pairwise co-occurrence of terms in annotations of PubMed

articles. The rationale is that, if two or more terms are commonly used to annotate the

same document, then these terms are semantically related and may be used together in a

query. We generated the query workload as follows.

We took the set of all PubMed documents that were published during the month of

January 2007, 124,413 documents in all, and computed pair-wise co-occurrence of terms

in those documents. 20,848 out of a total of 24,767 MeSH terms are used to annotate

documents in this sample. For all pairs of terms t1 and t2, we recorded the number of

documents that are annotated with both t1 and t2, and compared this to the number of

documents annotated with t1 alone, and with t2 alone. We refer to the sizes of these three

document sets as D(t1 ∧ t2), D(t1), and D(t2), respectively.

Over 2.5 million pairs of terms were used together to annotate at least one document

in our set. From among those, we selected pairs that contained terms that were neither too

common not too uncommon. We removed terms that annotate more than 100 documents

and fewer than 3 documents in the sample. Extremely common terms, such as Human

and Female are likely too general to be used in a query. Very uncommon terms may be
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# queries 150

size of L∗(Q) 2 to 454, avg 43, med 22

# results 1,024 to 179,450, avg 28,079, med 9,562

Table 3.1: Characteristics of the query workload.

Term Similarity(sec)

med avg min max

Score 0.412 1.342 0.013 13.238

UB 0.062 0.177 0.005 1.242

top-1 0.228 0.557 0.009 5.127

top-10 0.228 0.566 0.009 5.128

top-20 0.226 0.567 0.009 6.565

top-50 0.228 0.578 0.010 5.080

top-100 0.228 0.568 0.010 5.092

Table 3.2: Ranked retrieval: processing times of Term similarity for 150 queries.

informative, and could be used as part of a query. However, since the objective of our work

is to assist the user in exploring large result sets, and since achieving good performance is

more challenging for larger result sets, we decided to bias our experimental evaluation in

that direction.

Further, to ensure that combining the terms is semantically meaningful, we selected

pairs of terms that occur together at least 10% of the time that either of the terms occurs

on its own. This is the case when |D(t1∧t2)|
|D(t1)| ≥ 0.1 and |D(t1∧t2)|

|D(t2)| ≥ 0.1. After this step we

were left with 7958 pairs of terms.

From among 7958 pairs of terms (call this P ), 487 were pairs with a common subtree

in MeSH (call this PO, for overlapping). These pairs are interesting because they can be

meaningfully combined into an OR query. We thus chose 50 pairs of terms from P \ PO

to create AND queries, 50 pairs from PO for AND queries, and 50 pairs from PO for OR

queries.

Table 3.1 summarizes the properties of 150 queries in our workload. The number of

results is calculated with respect to the entire PubMed corpus on which we run our perfor-

mance experiments.

3.4.3 Ranked Retrieval with Score Upper-Bounds

Tables 3.2, 3.3, and 3.4 summarize the performance of 150 queries in our workload with

term similarity, conditional similarity, and balanced similarity, respectively. We compare

the execution time of computing exact scores for all results (Score) against the time of

computing score upper-bounds for all results (UB). We then report the run-time of com-
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Conditional Similarity(sec)

med avg min max

Score 0.387 4.408 0.004 274.230

UB 0.060 0.195 0.005 2.210

top-1 0.273 2.016 0.010 83.063

top-10 0.273 2.010 0.010 84.063

top-20 0.272 1.989 0.010 83.061

top-50 0.273 2.001 0.014 83.132

top-100 0.273 2.001 0.014 83.132

Table 3.3: Ranked retrieval: processing times of Conditional similarity for 150 queries.

Balanced Similarity(sec)

med avg min max

Score 0.372 3.760 0.006 195.420

UB 0.059 0.177 0.005 1.236

top-1 0.246 1.558 0.009 55.365

top-10 0.245 1.550 0.010 55.441

top-20 0.248 1.560 0.010 55.460

top-50 0.245 1.582 0.010 55.457

top-100 0.246 1.566 0.012 55.444

Table 3.4: Ranked retrieval: processing times of Balanced similarity for 150 queries.
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Figure 3.5: Total runtime of ranked retrieval.

puting the top-1, top-10, top-20, top-50, and top-100 results, in which upper bounds are

computed for all items, and exact scores are computed for only the promising items. We

observe that execution time of Score can be high, particularly for the conditional and bal-

anced similarity metrics. In contrast, score upper-bounds can be computed about an order

of magnitude faster, in interactive time even in the worst case. This behavior is expected,

since, as we discussed in Section 3.3.2, the time to compute upper bounds is proportional

to |D| · |Q|, while computing the score is a function of the size of the term-scope of the

query and of the document, which is typically much higher. According to our findings score

upper-bounds can be computed about an order of magnitude faster than scores.

Figure 3.5 compares the total run-time of Score, UB, and ranked retrieval with k =

1, 10, 20, 50, 100, for all queries. Observe that term similarity computes fastest, while con-

ditional similarity is slowest. It takes approximately the same amount of time to compute

the top-k for different values of k.

Figures 3.6, 3.7 and 3.8 present run-time improvement of using score upper-bounds for

top-k computation vs. computing exact scores, for three similarity measures. Performance

of the vast majority of queries is improved due to using upper-bounds, for all similarity

measures. The actual run-time improvement was up to 9.1 sec for term similarity, and

between 0.7 and 0.8 sec on average for different values of k. For conditional similarity, the

improvement was up to a dramatic 191 sec, and the average improvement was about 2.4

sec. For balanced similarity, using score upper-bounds improved run-time by up to 140 sec,

and between 2.0 and 2.2 sec on average, for different values of k.

While performance improved for most queries, it degraded for some queries due to the

overhead of sorting. This overhead was noticeable only in short-running queries, and abso-
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Figure 3.6: Term similarity: percent improvement in runtime of top-k when score upper-

bounds are used.

lute degradation was insignificant: at most 0.081 sec for TermSim, 0.254 sec for CondSim

and 0.213 sec for BalancedSim.

3.4.4 Skyline Computation with Upper-Bounds

In this section we consider the performance impact of using score upper-bounds for skyline

computation, described in Section 3.3.3. We computed the skyline with 1, 2, 5, and 10

contours for 150 queries in our workload. Tables 3.5, 3.6, and 3.7 present the median,

average, minimum, and maximum execution time for three similarity measures. For each

number of contours, and for each similarity measure, we list two sets of numbers. The Exact

line lists the performance of computing the skyline without the upper-bounds optimization,

and the UB line lists the performance with the optimization. Recall that, whether we first

compute exact scores for all documents (as in Exact), or first compute score upper-bounds

for all documents, and then compute exact scores only for promising documents (as in UB),

the result will be the same correct set of skyline points. So, the difference we are studying

is with respect to performance only.

We observe that the Exact skyline performs in interactive time for the majority of

queries, for all similarity measures. Median results are sub-second in all cases. We also

observe that UB skyline outperforms Exact skyline. Note that these results are for the

total execution of each query. Long-running queries typically execute in multiple batches,

and The user is presented with the initial set of results as soon as the skyline of the first

batch is computed, and does not have to wait for entire processing to complete.

In our experiments, we are able to predict whether a query will be long-running based
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Figure 3.7: Conditional similarity: percent improvement in runtime of top-k when score

upper-bounds are used.

on the number of results that the query returns. In fact, exact skyline computation for all

queries that return fewer than 20,000 results completes in under 2 seconds. The information

about the size of the result set is provided to us at the start of the execution by the

eUtils API, and we can use this information to decide whether to apply the upper-bounds

optimization. 45 out of 150 queries in our workload return over 20,000 results, and we refer

to these as the large queries in the remainder of this section.

Figure 3.9(a) summarizes the total cumulative run-time of Exact and UB skylines for

all queries in our experiments (exact all and UB all entries), and for the large queries (exact

large and UB large), for the term similarity measure. We note that over 75% of the total

time is spent processing 30% of the workload. We also observe that the time to compute

the exact skyline stays approximately the same as the number of contours changes, both

for the entire workload and for the large queries, while the time to compute the UB skyline

increases with increasing number of contours. Finally, observe that UB skylines compute

faster in total than their exact counterpart. The same trends hold for conditional similarity

(Figure 3.10(a)) and balanced similarity (Figure 3.11(a)).

Figures 3.9(b), 3.10(b), and 3.11(b) plot the percent-improvement of UB skyline over

Exact against the percentage of the large queries for which this improvement was realized.

Query execution time was improved for the vast majority of large queries.
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Figure 3.8: Balanced similarity: percent improvement in runtime of top-k when score upper-

bounds are used.

3.5 Evaluation of Effectiveness

We now present a qualitative comparison between our similarity measures, and evaluate

them against two baselines.

3.5.1 Baselines

As before, we refer to the the set of MeSH terms derived from the query as Q, and to the

set of MeSH terms that annotate a document as D.

Our first baseline is a distance-based measure, designed explicitly for MeSH, that com-

pares two sets of terms based on the mean path-length between the individual terms [Rada

and Bicknell, 1989]. For terms d and q, dist(d, q) is the minimal number of edges in a path

from any node in N ∗(d) to and node in N ∗(q). Consider nodes C and F in Figure 3.2.

There are two paths between these nodes: C → A→ E → F of length 3, and C → B → F

of length 2, and so dist(C,F ) = 2. We define path-length as:

MeanPathLen(D,Q) =
1

|D||Q|

∑

d∈D

∑

q∈Q

dist(d, q) (3.7)

This measure captures the distance between document D and query Q, and we transform

it into a similarity:

MeanPathSim(D,Q) =
1

1 + MeanPathLen(D,Q)
(3.8)
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(a) Total run-time. (b) % improvement with UB for large queries.

Figure 3.9: Run-time performance of skyline computation for term similarity.

K
Term Similarity(sec)

med avg min max

Exact 1 .4295 1.356 .016 13.225

UB 1 .299 .684 .014 5.687

Exact 2 .43 1.355 .016 13.202

UB 2 .3705 .825 .018 6.771

Exact 5 .4285 1.356 .016 13.209

UB 5 .448 1.036 .022 8.263

Exact 10 .4295 1.358 .016 13.222

UB 10 .4835 1.265 .022 9.647

Table 3.5: Skyline computation: processing times for TermSim for 150 queries.

A known limitation of distance-based measures is an implicit assumption that edges

in the taxonomy represent uniform conceptual distances, which does not always hold in

practice. In Figure 3.2, the path distance between G and A is 2, the same as between G

and B. However, one can argue that G is more closely related to B than to A because B

has a smaller subtree, and so G represents a larger portion of the meaning of B than of

A. Several information-theoretic measures have been proposed to overcome this limitation,

and we use the one proposed by Lin [Lin, 1998] to derive our second baseline. Lin [Lin,

1998] demonstrated that his measure has a high degree of correlation with several other

related measures [Resnik, 1995; Miller, 1990; Wu and Palmer, 1994].

For two taxonomy nodes s and t, we denote the lowest common ancestor by LCA(s, t).

The information content of a node s, denoted by P (s), is the size of the subtree induced by

s. Lin [Lin, 1998] defines similarity between nodes s and t as: sim(s, t) = 2×logP (LCA(s,t))
logP (s)+logP (t) .
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(a) Total run-time. (b) % improvement with UB for large queries.

Figure 3.10: Run-time performance of skyline computation for conditional similarity.

K
Conditional Similarity(sec)

med avg min max

Exact 1 .4305 4.471 .009 274.301

UB 1 .343 2.377 .017 107.673

Exact 2 .424 4.471 .008 274.296

UB 2 .4055 2.796 .019 136.881

Exact 5 .4285 4.473 .009 274.311

UB 5 .4855 3.351 .019 167.917

Exact 10 .4275 4.472 .008 274.305

UB 10 .546 3.859 .019 197.304

Table 3.6: Skyline computation: processing times for CondSim for 150 queries.

To use this similarity for MeSH, we need to apply it to a polyhierarchy, with multiple

nodes per term. We take a similar approach as in MeanPathSim, and say that the similarity

between terms d and q is the highest similarity between any two nodes s and t, where

s ∈ N∗(d) and t ∈ N ∗(q). To handle multiple terms per query and per document, we

define:

MeanInfoSim(D,Q) =
1

|D||Q|

∑

d∈D

∑

q∈Q

sim(d, q) (3.9)
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(a) Total run-time. (b) % improvement with UB for large queries.

Figure 3.11: Run-time performance of skyline computation for balanced similarity.

K
Balanced Similarity(sec)

med avg min max

Exact 1 .4275 3.861 .01 199.521

UB 1 .3345 1.925 .018 72.955

Exact 2 .433 3.833 .01 195.194

UB 2 .389 2.345 .019 95.654

Exact 5 .4365 3.803 .01 195.13

UB 5 .4785 2.841 .02 116.974

Exact 10 .4365 3.806 .01 195.163

UB 10 .506 3.17 .019 132.334

Table 3.7: Skyline computation: processing times for BalancedSim for 150 queries.

3.5.2 User Study

3.5.2.1 Methodology

We recruited 8 researchers, all holding advanced degrees in medicine, biology, and bioinfor-

matics. All are experienced PubMed users, with usage between several times a week and

several times a day. Users were asked to come up with one query in their field of expertise,

and to subsequently rate results returned by our system.

Rather than rating articles in the result, we asked our users to rate annotation sets: sets

of MeSH terms that occur together as annotations of these articles. We opted for this kind of

evaluation for several reasons. First, MeSH annotations of some articles are imprecise, that

is, more general or more specific than the content of the article warrants. Second, abstracts

of articles are often unavailable, making it difficult to judge the quality of content. Third,
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presenting sets of MeSH terms for evaluation adds coverage and statistical power to our

results, because we are deriving a judgment about a common class of annotations, which

itself maps to a set of articles.

For a fixed query, and for a fixed similarity, all articles that are annotated with the same

set of terms receive the same score. Additionally, several different annotation sets may map

to the same score, and so ties are common. Scores are incomparable across measures, and

we use ranks for our comparison.

Furthermore, term similarity typically assigns fewer distinct scores than other measures,

and so its ranking is more discrete, while baselines generate more continuous ranks than do

our measures. In order to meaningfully accommodate ties, and to make ranks comparable

across measures, we assign ranks in the following way. To each result in a set of 1 or more

ties, we assign the rank as the average row number of the ties. For example, if annotation

sets s1, s2 and s3 tie for the highest score, followed by sets s4 through s10 that tie for the

second highest score, then s1, s2 and s3 are assigned a rank of 6
3 = 2, and the following 7

sets are assigned a rank of 49
7 = 7.

Many queries return thousands of results, and we cannot expect that the users will

evaluate the quality of results exhaustively. We focus on a sub-set of results that is most

informative about either the performance of a particular similarity measure, or about the

relative performance of a pair of measures. Results are ranked according to TermSim,

CondSim, BalancedSim, MeanPathSim, and MeanInfoSim. For a pair of measures

M1 andM2, we choose 10 results from each of the following categories:

• topM1: in top 10% of ranks forM1 but not for M2

• topM2: in top 10% of ranks forM2 but not for M1

• botM1: in bottom 10% of ranks for M1 but not forM2

• botM2: in bottom 10% of ranks for M2 but not forM1

Results are chosen to maximize rank distances. So, a result that is at rank 1 forM1 and

at rank 100 for M2 will be chosen before another result that is at rank 10 for M1 and at

rank 100 forM2. Finally, we generate pairs of results to be compared to each other by the

user. We never compare topM1 to topM2, and bottomM1 to bottomM2. Comparing top

against bottom for the same method helps us validate that method on its own. Comparing

top of one method against bottom of another allows us to compare a pair of methods against

each other.

Figure 3.12 shows our evaluation interface. The user is presented with two annotation

sets, Match 1 and Match 2, and rates each set on a three-point scale. Clicking on a

term name opens its definition in MeSH. Clicking on example article link shows the title

and abstract (when available) of an article where the annotation set is used. The user also
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Figure 3.12: User study interface.

compares the matches with respect to how well they answer the query, on a three-point

scale. Both scales include a “not sure” option, so as not to force a judgment when the user

is not comfortable making one.

3.5.2.2 Results

Results in this section are based on 8 queries, each evaluated by a single user. We collected

670 individual judgments, and 335 pairwise judgments. In this section, we analyze the

performance of each of our similarity measures individually, and then describe the relative

performance of our measures, and compare them to the baselines. For results r1 and r2,

user U issues a pair-wise relevance judgment U : r1 = r2 if he considers results to be of

equal quality, U : r1 > r2 if r1 is better, or U : r1 < r2 if r2 is better. (We exclude the cases

where the user was unable to compare the results.) Likewise, a similarity measureM issues

a judgment with respect to the relative quality of r1 and r2 by assigning ranks. Because

users only judge a pair of results that are far apart in the ranking, the case M : r1 = r2

never occurs.

A similarity measure may agree with the user’s assessment, or it may disagree, in one of

two ways: by reversing the rank order of r1 and r2, or by ranking r1 and r2 differently while

the user considers them a tie. For ease of exposition, we incorporate all three outcomes:

agreement (A), tie (T ) and rank reversal error (E), into a single agreement score, defined

as: agreement(U ,M, Q) = A+0.5·T
A+T+E

. Worst possible score is 0, best possible is 1. Table 3.8
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TermSim CondSim Balmy MeanPath MeanInfo

Q1 0.56 0.51 0.51 0.71 0.65

Q2 0.49 0.50 0.50 0.52 0.49

Q3 0.67 0.63 0.63 0.39 0.48

Q4 0.66 0.66 0.66 0.40 0.48

Q5 0.42 0.43 0.43 0.33 0.67

Q6 0.48 0.51 0.60 0.48 0.50

Q7 0.43 0.45 0.45 0.63 0.44

Q8 0.47 0.47 0.47 0.31 0.57

Avg 0.52 0.52 0.53 0.47 0.54

Table 3.8: Agreement between similarity measures and user judgments.

presents the agreement between the user and each similarity measure, for each query.

Due to the scale of our study we are unable to draw statistically significant conclusions

about the relative performance of the measures. However, we point out some trends that

emerge based on the data in Table 3.8, and which we plan to investigate further in the future,

see Section 3.5.3 for a discussion. None of the measures seem to agree with user’s judgment

for queries Q2 and Q8. These queries do not exhibit polyhierarchy features: each term maps

to a single node in MeSH. Our measures appear to outperform the baselines for queries

Q3, Q4, and Q6. All these queries include at least one term that exhibits polyhierarchy

features: either the term itself maps to two or more nodes and induces subtrees of different

shape, or its descendant terms do. Baselines appear to outperform our measures for queries

Q1, Q5, and Q7. Query Q1 exhibits no polyhierarchy features. For a two-term query

Q8, each term maps to two nodes in MeSH, but the subtrees are isomorphic, i.e., there is

structural redundancy in this part of the hierarchy. Query Q5 exhibits true polyhierarchy

features, yet the information theoretic baseline seems to be more in-line with the user’s

judgment for this query.

Table 3.9 presents the relative performance of our measures against the baselines. We

present averages across queries, but note that performance for individual queries is in line

with the trends in Table 3.8. Here, we are using judgments about a pairs of results such

that one of the results has a high rank with respect to one method and a low rank with

respect to another. We present the average percentage of user judgments that were in-line

with the judgment made by the similarity measure. For example, in the entry for TermSim

and MeanPath the user agreed with TermSim 46% of the time, and with MeanPath 28% of

the time, and considered the remaining 26% of the cases as ties.

We also compared the relative performance of our measures for queries, for which there

was a difference in performance. For Q6, BalancedSim outperforms CondSim, which in turn

outperforms TermSim. For Q3, TermSim outperforms other measures. These findings are
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MeanPath MeanInfo

TermSim 46% / 28% 31% / 36%

CondSim 41% / 31% 36% / 36%

BalSim 42% / 29% 36% / 35%

Table 3.9: Term similarity, Conditional similarity and Balanced similarity compared to

baselines.

in line with results in Table 3.8.

3.5.3 Assessment of Results

Several issues make ranking difficult in our context. First, all results are already matches,

i.e., all are in some sense “good”. So, ranking by ontology is a second-order ranking among

documents that may not be all that different from each other in terms of real relevance.

However, as we demonstrate in Section 3.5.2.2, ontology-related score is correlated with

quality as judged by the users in some cases. This occurs when terms appear in multiple tree

locations and induce subtrees of different shape, a distinguishing feature in MeSH. Second,

our user study is small, and so we cannot expect to demonstrate statistical significance. We

plan to deploy the system and obtain more information by studying user feedback.

A user’s perception of quality is informed by many aspects. Our work is motivated

by the hypothesis that one of these aspects is captured by ontological relationships. This

was supported by observations made by several users that they appreciated the presence of

both general concepts, e.g., Neurodegenerative Disease, and related concepts that are more

specific, e.g., Alzheimer and Parkinson.

Nonetheless, other aspects of user’s quality perception may require a more sophisticated

ontology than MeSH. Even when the ontology is helpful in principle, users may disagree

with the classification, as observed by one user in our study. Semantic relationships, e.g., a

connection between a protein and a disease, may be known to experts but are not present in

MeSH, and are therefore unavailable for scoring. In future work, we plan to combine MeSH

with other information sources that provide additional information about relationships be-

tween concepts. We also plan to incorporate weighting of terms, perhaps on a user-by-user

basis, based on external information.

Due to the scale of our study, we do not establish which ranking is best for which kind

of query, and when a query is amenable to ontology-aware ranking. We will investigate

this in the future. For some queries our methods appear to do better, while for others the

competing methods appear to do better. While no method dominates another for all queries,

our methods seem to outperform the path-based overall, while performing comparably with

the information theoretic measure.
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3.6 Related Work

Ranking in Hierarchical Domains: Ranking that takes into account hierarchical struc-

ture of the domain has been considered in the literature. Ganesan et al. [Ganesan et al.,

2003] develop several families of similarity measures that relate sets or multisets of hier-

archically classified items, such as two customers who buy one or several instances of the

same product, or who buy several products in the same hierarchy. This work assumes that

items in the sets are confined to being leaves of the hierarchy, and that the hierarchy is a

strict tree. In our work we are comparing sets of terms in a scoped polyhierarchy, and we

do not restrict the terms to being leaves.

Rada and Bicknell [Rada and Bicknell, 1989] consider the problem of ranking MEDLINE

documents using the MeSH polyhierarchy, the same problem as we consider in our work.

The authors propose to model the distance between the query and the document as the

mean path-length between all pairs of document and query terms. This measure is one of

several distance-based measures that have been proposed in the literature, see also [Lee and

Myoung Ho Kim, 1993]. A known limitation of these measures is an assumption that links

in the taxonomy represent uniform conceptual distances.

In an alternative approach, several information-theoretic measures have been proposed

that can be used to measure semantic relatedness between concepts in hierarchical domains,

see for example [Lin, 1998; Resnik, 1995]. These measures are similar to the distance-based

methods in that they typically relate two concepts via a common ancestor. However, rather

than simply counting the length of the path to the ancestor, the information content of

the ancestor (the size of its subtree) is factored into the measure. The intuition is that a

common ancestor that is very general is not as informative as one that is more specific.

In our work we propose several alternative ways to relate a document to a query, by

measuring the overlap among common descendants (rather than ancestors) of all nodes

labeled with two concepts. To the best of our knowledge, our work is the first to explicitly

model semantic relatedness in a scoped polyhierarchy in which a term may appear in many

parts of the hierarchy with subtly different meanings in each context. The question of how

contributions of different terms, or different meanings of the same term, are reconciled in the

final score is central to our approach. We explicitly model and explore alternative semantics

of combining the contributions of individual pairs of terms to the over-all similarity score.

Despite the extra computation needed for measures based on sets of descendants rather than

ancestors, we demonstrate experimentally that interactive response times are still possible

even when processing tens of thousands of documents.

Weighted Set Similarity: A number of efficient algorithms have been developed for

the computation of similarity between weighted sets [Arasu et al., 2006; Chaudhuri et al.,

2006; Sarawagi and Kirpal, 2004; Hadjieleftheriou et al., 2008]. In [Sarawagi and Kirpal,

2004], inverted list indexes are constructed, and a variant of the Threshold Algorithm [Fagin
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et al., 2003c] is used to allow for early termination of processing. In a recent work, Had-

jieleftheriou et al. [Hadjieleftheriou et al., 2008] develop indexing structures and processing

algorithms for computing the similarity of weighted sets in order to evaluate set similarity

selection queries. A query Q and a document D are compared based on corpus-derived

weights of substrings of length q, termed q-grams, of which Q and D are comprised. The

similarity between a query and a document is computed based on the combined weight of

the q-grams that are common to D and Q, normalized by the weights of D and Q. This

approach is conceptually similar to ours in that we also consider the set of elements, in our

case MeSH terms, that are common to D and Q. However, unlike in [Hadjieleftheriou et

al., 2008], the elements we consider come from a hierarchy, and incorporating the structure

of the hierarchy into the similarity score is central to our approach.

Techniques of [Sarawagi and Kirpal, 2004; Hadjieleftheriou et al., 2008], and of other

approaches that use inverted lists for processing, would require high space overhead in our

setting. This is because an inverted index for a term must include not only the documents

indexed with that term, but also the documents indexed with the term’s descendants in

MeSH. Processing with inverted lists is a term-at-a-time (TAAT) [Turtle and Flood, 1995]

technique, in which query terms are processed one by one and partial document scores are

accumulated. In our system we use document-at-a-time (DAAT) [Turtle and Flood, 1995]

techniques, in which the documents are processed one by one and complete document scores

are computed. DAAT strategies are known to be more appropriate for context-sensitive

queries, in which score contributions from individual terms cannot be viewed independently,

and score aggregation is crucial [Turtle and Flood, 1995], as is the case in our scenario.

Ontology Matching: Ontology matching uses a wide range of similarity measures to

compare two or more ontologies. Ontology matching techniques in which comparison is

based on taxonomic structure, bear some similarity to our approach. A particular class

of similarity measures represents ontologies as labeled graphs and compares nodes in these

graphs using lexical and structural features [David and Euzenat, 2008]. Pairwise node

similarities are then aggregated into collection-wide measures. In our work we focus on

structural similarity between sets of ontology terms, and consider them in the context of

scoped polyhierarchies that do not naturally lend themselves to a graph-based representa-

tion.

Ontology Languages: The OWL Web Ontology Language was developed as part of

the W3C Semantic Web Initiative3 , with the goal of assigning explicit semantic meaning to

the information, and of presenting the semantics in machine-processable form. Hierarchies

are modeled in OWL by means of the rdfs:subClassOf feature, and multiple inheritance is

allowed. However, scoped polyhierarchies like MeSH cannot be expressed directly in OWL.

Such hierarchies can be simulated with constructs rdf:Property and rdfs:rdfssubPropertyOf

3http://www.w3.org/TR/owl-guide
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which are typically used to model relationships in OWL, and by restricting the scope of the

inheritance relationship with rdfs:domain.

Skylines: Efficient computation of skyline results has been receiving significant at-

tention of the database community. We build on the classic divide-and-conquer algo-

rithm [Bentley, 1980], and adapt it to our application scenario and performance needs

by incorporating processing with score upper-bounds. Tan et al. [Tan et al., 2001] develop

progressive skyline computation methods, while Jin et al. [Jin et al., 2004] propose an ef-

ficient algorithm for the mining of thick skylines in large databases. In our work we also

compute skylines progressively, by relying on a sort order in which results are supplied, and

we are able to compute multi-contour skylines efficiently on the large scale. Our scenario

differs from prior work in that coordinates of skyline points may be costly to compute,

motivating us to use score upper-bounds.

Bibliographic Search in Life Science: A variety of web-based systems for biblio-

graphic search in life sciences have been developed, see [Kim and Rebholz-Schuhmann, 2008]

for a review. The system that is closest to our approach, GoPubMed [Doms and Schroeder,

2005], uses three ontologies - the Gene Ontology, MeSH and Uniprot, to organize PubMed

query results. Results are presented in a faceted hierarchy that includes ontology terms,

authors, journals, and publication dates. When multiple MeSH terms appear in the query

or annotate query results, the system allows the user to navigate by each of these terms.

Unlike in our work, no attempt is made to reconcile the contributions of multiple MeSH

terms into a single score.

3.7 Conclusions

MeSH is a sophisticated, curated real-world ontology with about 25,000 terms. It has the

interesting property that terms can appear in multiple parts of the hierarchy. Each time a

term appears, its meaning is scoped, i.e., the meaning of the term depends on its position

in the hierarchy. This observation challenges most past work which has been developed

assuming that a term has a unique node in the generalization hierarchy.

We have attempted to capture the semantics of a term by looking at all of the term’s

descendants, across the whole hierarchy. We developed three similarity measures that relate

sets of terms based on the degree of overlap between the sets of their descendants. We have

demonstrated that each of these measures can be computed in interactive time for the

complete MeSH ontology, at the scale of the complete PubMed corpus. We have also shown

how computing score upper-bounds can be used to reduce the cost of identifying the best-

matching documents, or of computing the skyline of the dataset with respect to score and

publication date.

Enabling efficient and effective search and ranking that accounts for semantic knowl-

edge is valuable for information discovery, particularly in domains in which high-quality
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ontologies are available. Ontologies represent consensus of the scientific community with

respect to the state of the knowledge in a particular domain. Wide-spread use of ontology-

aware information discovery techniques is valuable not only for the end user, but also for

the evolution of the ontologies: a community of users that sees a benefit in ontology-aware

querying and ranking will keep the ontology up-to-date.

In this chapter we saw how a manually constructed ontology may be used for information

discovery in an annotated document corpus, under the assumption that all documents in

the corpus are of high quality. In the following chapter we will consider how ontologies can

be used for search and ranking over the Wikipedia corpus, where there is a variation in

both quality and relevance.
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Chapter 4

Semantically Enriched Authority

Propagation

This chapter is based on joint work with Srikanta Bedathur, Klaus Berberich, and Gerhard

Weikum, which appeared in [Stoyanovich et al., 2007].

4.1 Introduction

In Chapter 3 we presented a semantic framework that uses ontology annotations of scientific

publications to rank query results. In the present chapter, we build on the idea of using an

ontology for relevance ranking, and present EntityAuthority: a framework for semantically

enriched authority propagation on graphs that combine documents, entities, and ontological

concepts, in order to improve the ranking of keyword query results.

We apply the techniques of this chapter to Wikipedia, a community-curated encyclope-

dia corpus. Wikipedia may be considered as the middle ground between centrally-curated

digital libraries like PubMed, in which documents are of high quality, and the World Wide

Web, in which there is significant variation in document quality. Like the World Wide Web,

Wikipedia gives rise to a natural link structure, and it is therefore appropriate to apply

link analysis methods in this setting. Like PubMed documents, Wikipedia pages may be

annotated with terms from a ontology, and it is therefore appropriate to use ontology-aware

query processing and raking techniques.

4.1.1 Semantically Enriched Ranking

The classic link analysis methods, such as PageRank [Brin and Page, 1998] and HITS [Klein-

berg, 1999], use the page-level Web graph for authority propagation. These approaches

have been extremely influential. They are, however, fundamentally inappropriate for the

emerging style of semantic Web search that aims to provide users with entities (e.g.,
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products or scholars) and semantic attributes rather than pages [Cafarella et al., 2007;

Chakrabarti, 2004; Doan et al., 2006a; Chu-Carroll et al., 2006; Hearst, 2006; Madha-

van et al., 2007; Nie et al., 2007]. Recently, techniques have been proposed for analyz-

ing link structure, and for computing rankings of objects in relational databases or in

entity-relationship graphs [Anyanwu et al., 2005; Balmin et al., 2004; Chakrabarti, 2007;

Cheng and Chang, 2007]. However, these methods do not consider Web data or do not

connect the object ranking back to the Web pages where the objects appear. In contrast,

we jointly consider both the page-level and entity-level linkage structures and utilize their

mutual reinforcement for ranking the results of keyword queries against Web data. We

focus on keyword search as this is by far the most common information discovery method

for most users. In our framework we consider two kinds of results: queries can return either

pages or entities.

We utilize information-extraction techniques [Agichtein and Sarawagi, 2006; Cohen et

al., 2003; Cunningham, 2005; Doan et al., 2006b] to identify semantic entities embedded in

the text of Web pages, and to transform the page-level graph into a generalized data graph,

with typed nodes that represent pages or entities, and with typed and weighted edges. We

keep the entity part of this graph as noise-free as possible by mapping entities to nodes

in a richly structured high-quality ontology that describes entities, concepts, and seman-

tic relationships. More specifically, we use the popular open source GATE/ANNIE toolkit

(http://gate.ac.uk/) for named-entity recognition, and various heuristics for entity dis-

ambiguation. According to a recent study that evaluates entity extraction systems [Marrero

et al., 2009], ANNIE supports 12 entity types, and achieves precision and recall in excess

of 70%. While the study finds ANNIE to be inferior to several other systems because it

produces a higher number of false positives, and is sensitive to orthographic features likes

capitalization, this toolkit represented the state of the art at the time when this work was

conducted, and is still among the highest-performing open source systems today.

For the ontology part of our generalized data graph we employ the YAGO knowledge

base, which combines information from the Wikipedia category system and the WordNet

thesaurus into a rigorously structured and highly accurate ontology [Suchanek et al., 2007].

We assume and aim to exploit that there is mutual reinforcement between the authorities

of pages and entities: pages become more valuable if they contain highly authoritative

entities, and entities become more important if they are mentioned by highly authoritative

pages. This resembles the HITS method [Kleinberg, 1999] for Web-graph link analysis and

the ObjectRank method [Balmin et al., 2004], but our approach operates on a generalized

data graph that gives us a much richer substrate for ranking.

Consider for example the query “NBA team”. When issued against a leading search

engine on March 31st, 2007, this query returned links to the official homepage of the Na-

tional Basketball Association, to the NBA-related area of ESPN.com, and to several team

directories. The results were highly relevant but not specific to the user’s information need:
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it was not apparent from the top-10 results which teams play in the NBA, and there were

no links to any of the teams’ homepages. We observe that super-authorities dominated

the query result, and team homepages did not start appearing until rank 38. (Results

were very similar for the re-phrased query “National Basketball Association team”.) We

consider this and similar queries in our experimental evaluation and demonstrate how our

EntityAuthority ranking methods can benefit such situations.

The results of such queries can be either entities or pages. The former may be preferred

by a skilled user who has the proper context to interpret a concise list of entries such as

“Miami Heat”, “Dallas Mavericks”, and “Chicago Bulls”. The latter is appropriate for a

non-expert user who wants to see an entire textual page, with relevant entities highlighted,

providing him with at-a-glance contextual information. We will show that EntityAuthority

ranking is beneficial for this type of Web-page ranking because it exploits the semantic

connections and mutual authority propagation among pages, entities, and concepts.

4.1.2 Chapter Outline

In the remainder of this chapter we introduce EntityAuthority, and demonstrate its effective-

ness on Wikipedia datasets. Section 4.2 presents the generalized data graph: a semantically-

enriched model of the web graph that maintains information about web pages, and about

the semantic entities that are contained in the pages. In Section 4.3 we describe several

novel authority propagation measures that utilize the structure of the enriched web graph

to a different extent. Section 4.4 details our prototype implementation, and Section 4.5

presents results of our experimental evaluation that demonstrate the effectiveness of our

methods.

4.2 Data Model

In this work, we operate on a directed graph data model that integrates standard Web pages

and their link structure with the entities extracted from these pages and with semantic

relationships among entities. Figure 4.1 illustrates the key components in our data model

using an example based on Web pages related to database research. The data model, which

we call the Generalized Data Graph, or GDG for short, consists of three parts:

• the Enriched Web Graph that is derived using the underlying Web data collection

• the Onto Graph, which represents a richly structured ontological resource

• the Onto Map, a semantic layer that connects the Enriched Web Graph with the Onto

Graph.

We now describe the Generalized Data Graph and its components in greater detail.
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Figure 4.1: Example of a Generalized Data Graph.

4.2.1 Enriched Web Graph

Formally, Enriched Web Graph, or EWG for short, is a directed, labeled, and weighted graph

GD = (VD, ED, Lv) where VD is a set of nodes, ED ⊆ VD×VD is a set of edges between nodes,

and Lv is a set of node annotations. Each node v ∈ VD is assigned a label lv ∈ Lv. These

labels can simply be Page, InfoUnit, or richer concept names such as Person, Organization,

etc., that can be obtained through a sophisticated information extraction software. Each

edge e = (v1, v2) also carries a weight whose value depends on the type of nodes v1 and v2.

EWG is the outcome of enriching the standard page-level content and link structure with

entities that can be extracted from each page individually. Thus each node in the EWG

corresponds to either a Web page or an information unit (an InfoUnit for short). An

InfoUnit is a (short) textual snippet that is annotated as an instance of an entity by an

information extraction tool such as GATE/ANNIE. This should be contrasted with the

notion of an ontological entity/concept, which is the outcome of corpus-wide reconciliation

of InfoUnits.

To make this distinction clear, consider two pages P1 and P2 that mention “UW” and

“University of Washington” respectively. During the initial stage of information extraction,

these text snippets are identified as potential entities and are thus marked as InfoUnits.

Note that no effort at this stage is made to determine whether these two snippets refer to
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the same entity or not.

4.2.2 Onto Graph

We model the underlying ontological resource as a directed, weighted graph GO = (VO, EO, Le)

on a set of nodes VO which correspond to entities/concepts and EO is a multi-set of edges

between these entities. Note that we make no distinction between instances and concepts in

this work. Each edge in EO is annotated with a label from the set of labels, Le that indicates

the relationship between entities connected by the edge. For example, bornIn, locatedIn, and

instanceOf are some of the labels available in YAGO – the precompiled ontology that we

use. Each of these edges is assigned a weight representing the ontology’s confidence in the

relationship.

4.2.3 Onto Map

The next component in our model, Onto Map, forms the layer connecting the InfoUnits

extracted from the corpus with entity and concept nodes in the ontology. Onto Map models

a collection-wide entity reconciliation process that maps InfoUnits onto entities and concepts

of the Onto Graph. This is represented in Figure 4.1 with solid edges from InfoUnits to

Onto Graph layer. In order to support inherent ambiguities in the entity reconciliation

process, our model allows for mapping of a single InfoUnit to more than one concept or

entity. For example, the InfoUnit “UW” is mapped to both “University of Wisconsin” and

“University of Washington”.

4.2.4 Structure of the Generalized Data Graph

The Generalized Data Graph (GDG) that we obtain from extracting entities from pages,

mapping them to the ontology, and connecting entities and concepts by semantic relation-

ships, provides us with a rich cross-reference structure that reflects the authority of both

pages and entities. This graph consists of the following kinds of typed and weighted, di-

rected edges, where all weights are normalized so that the weights of a node’s outgoing

edges sum up to one:

• Hyperlinks between pages normalized by the source page’s out-degree (as in standard

PageRank);

• Edges from a page to each entity or concept that has been extracted from the page,

weighted by the confidence in the extraction and mapping to the corresponding on-

tology node;

• Edges from entities to the concepts to which they belong, weighted with the ontology’s

confidence in the relationship and typed as an isa edge;
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• Edges from an entity to each of the pages where it appears (i.e., backward pointers

of the information extraction and mapping process), weighted by the extraction and

mapping confidence.

Note that the weights on the edges from entities to pages are not necessarily the same

as those from pages to entities, because of the normalization step: a page may contain only

a few entities, but these entities may appear in many pages.

We do not currently include semantic relationship edges between entities and concepts,

e.g.,bornIn, locatedIn, childOf, etc.

4.2.5 Query Result Graph

In Section 4.3 we will describe how the Generalized Data Graph may be used to compute

authority of various graph nodes. At the high level, authority can reflect either a global

query-independent importance, or it can be made query-dependent. A query-dependent

ranking may be achieved by, for example, first applying a content-only retrieval procedure,

and then ranking over the query-relevant subset of the data.

We now describe a heuristic procedure that constructs a Query Result Graph: a query-

relevant subset of the Generalized Data Graph.

Suppose that we first evaluate a keyword query against both pages and ontology nodes,

and compile a list of qualifying items. We consider an item as qualifying if it contains the

query words or has a compact neighborhood in the data graph that contains them. We will

describe how such a compact neighborhood may be identified in Section 4.4.2.

The resulting items – pages, entities, and concepts, may already carry their initial

relevance scores that reflect frequencies or other kinds of prominence information. We

can now construct a Query Result Graph (QRG for short) from these results, incorporating

relevance scores into node weights.

The QRG consists of all initial results whose relevance score is above some predefined

threshold. This threshold may be set to 0, capturing all qualifying items. Next, for each

item we determine all its predecessors and all its successors in the GDG (these are nodes that

point or are pointed to by the initial results), and we add these nodes to the QRG. We may

then look up all successors of predecessors and all predecessors of successors and add them,

too. How many sets of successors and predecessors will be added can be tuned heuristically.

Having identified a subset of GDG nodes that will be included into the GRG, we now add all

edges from the GDG that connect two QRG nodes. This query-dependent graph construction

is similar to the procedure proposed in the original HITS method [Kleinberg, 1999].

Edge weights can optionally be re-scaled by multiplying the weight of an edge x → y

with the relevance score of the target node y, or with some minimum value µ if y was not

among the initial query results. This is similar to a biased random-walk model in which

a hypothesized Web surfer prefers target nodes whose contents has high relevance scores.
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Regardless of whether this re-scaling is applied or not, edge weights need to be re-normalized

because not all outgoing edges of a GDG node need be present in the QRG.

4.3 Authority Measures

We now present different models for computing page and entity authority values. The

measures of this section can be applied to the complete Generalized Data Graph, or they

can be applied to the Query Result Graph – a query-specific subset of the GDG.

One immediate candidate for computing a notion of importance on the graph would

be to apply PageRank, or strictly speaking a weighted-edges variant of PageRank [Bharat

and Henzinger, 1998; Borodin et al., 2005] as if all nodes of the graph were pages. But we

will see below that we can apply mathematically related but semantically more meaningful

computations on this richer graph.

The following authority measures can be computed on either the GDG or the QRG. These

measures utilize the rich structure of the graph to a different extent. The first measure

uses only the page nodes of the graphs and then propagates page authority to entities and

concepts; it is thus called Page-Inherited Authority (PIA). The second measure, which is

much more elaborate and one of this chapter’s main contributions, uses the full graph and

is coined Entity-deriVed Authority (EVA).

4.3.1 Page-Inherited Authority

For PIA we consider only the pages in the GDG or the QRG and their incident page-to-page

edges. For each page, we compute either the edge-weighted PageRank or the page authority

according to HITS. Let AP (p) denote the authority of page p, and let P(x) denote the set

of pages that point to ontology node x in the GDG (i.e., the pages from which x has been

extracted). Further, let w(x→ y) denote the weight of the edge from x to y. We define the

page-inherited authority of x as:

AP (x) =
∑

p∈P(x)

AP (p)× w(p→ x)

According to PIA, an entity or concept is important if it appears in important pages,

while the importance of a page is pre-determined by a page-links-only authority model.

4.3.2 Entity-Derived Authority

One can argue that importance of a page does not depend solely on the link structure of

the web graph. So, a page may be viewed as important if it mentions important entities

or concepts. This consideration leads to a mutual reinforcement model between pages and

entities. For example, a Web page such as www.cs.stanford.edu is important because
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it mentions authorities like Jeffrey Ullman and Hector Garcia-Molina, and that these are

in turn authorities because they are referenced by many important Web pages such as

Citeseer-top-authors, DBLP-top-authors, and www.sigmod.acm.org.

To express this intuition we propose an alternative authority propagation model, which

we call Entity deriVed Authority, or EVA. EVA is defined by the following mutually-recursive

equations that define AP – the page-level authority score, and AO – the entity-level author-

ity score:

AP (p) =
∑

x∈O(p)

AO(x)× w(x→ p) +
∑

q∈P(p)

AP (q)× w(q → p)

AO(x) =
∑

p∈P(x)

AP (p)× w(p→ x) +
∑

y∈O(x)

AO(y)×w(y → x)

Here, p and q are pages, x and y are entities or concepts, P(z) denotes the set of pages

to which a page, entity, or concept points, and O(z) denotes the set of ontology nodes to

which a page, entity, or concept points.

This model is mathematically related to HITS, where there is mutual reinforcement

between hubs and authorities, but the semantic interpretation of EVA is very different

from HITS. The richer heterogeneous graph structure that we use in EVA also makes the

computation itself more demanding.

The authorities of pages and ontology nodes AP and AO can be iteratively computed by

the Orthogonal Iteration method [Kempe and McSherry, 2004]. In linear algebra notation,

the two equations for AP and AO can be rewritten as follows. Let ~P be a vector of the

pages’ AP values and ~X be a vector of the ontology nodes’ AO values. Suppose there are

m pages and n ontology nodes in the underlying graph. Now let PP be an m×m matrix,

PX an m× n matrix, XP an n×m matrix, and XX and n× n matrix with the following

entries:

PPij = w(i→ j) for pages i, j with i 6= j

= 0 for i = j

PXij = w(i→ j) for page i and ontology node j

XPij = w(i→ j) for ontology node i and page j

XXij = w(i→ j) for ontology nodes i, j with i 6= j

= 0 for i = j

Then the equations for AP and AO given above can be phrased in vector form as:

~P = XP × ~X + PP × ~P (4.1)
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~X = PX × ~P + XX × ~X (4.2)

The computation is initialized by choosing arbitrary start vectors for P and X that are

not linearly dependent on the eigenvectors of the matrices in Equations 4.1 and 4.2. It is

not difficult to satisfy this start condition; for example, it is satisfied by choosing uniform

start values in all but degenerate situations. Then we evaluate each of the two equations by

substituting the current values of the two vectors in their right-hand side; the new values

for the left-hand side then become the values for the right-hand side of the next iteration.

Iteration repeats until the changes of the two vectors, as reflected either by their L1 norms,

or by the relative ranking of their top-100 elements, drop below some threshold and become

negligible. After each iteration step, the two vectors are re-scaled (i.e., multiplied by a

normalization factor) so that their L1 norms become equal to one. This final step ensures

convergence and result uniqueness for the Orthogonal Iteration method.

4.3.3 Untyped Authority

The PIA model computes a global authority score of an entity based on global authority

of the page(s) from which the entity was extracted. In contrast, EVA models mutual

reinforcement between pages and entities on the graph.

For completeness we also present a third ranking method, which we call Un-Typed Au-

thority, or UTA. UTA serves as the middle-ground between PIA and EVA. Like EVA, UTA

will operate over all nodes and edges of the GDG, or over the query specific QRG. However,

unlike EVA, UTA simply runs an edge-weighted version of a standard ranking algorithm

(e.g. PageRank or HITS) on this graph, ignoring node types.

We will compare the effectiveness of PIA, UTA, and EVA in Section 4.5.

4.4 System Implementation

This section describes the system architecture of our prototype implementation. Our pro-

totype was evaluated on a part of the English-language Wikipedia.

4.4.1 Building the Generalized Data Graph

We use several existing tools to build the Generalized Data Graph, and while information

annotation and extraction is not a major contribution of this work, we gained some insight

into performing these tasks on a fairly large scale. We used the GATE/ANNIE toolkit to

identify entities of types Location, Person and Organization in the corpus, and were able

to automatically extract over 1.2 million annotations as InfoUnits. Entity annotation was

time-consuming, forcing us to limit our experimental evaluation to a relatively small corpus.
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However, while extraction may be a bottleneck in an academic setting, this process can be

parallelized, and can be done on a large scale if enough hardware is available.

As the next step we group together InfoUnits that refer to the same real-life entity. For

example, we would unify two occurrences of the same string (e.g. “Michael Jordan”) into

a single entity. We also attempt to identify InfoUnits that do not match literally, but are

nonetheless likely to refer to the same real-life entity, e.g. “Michael Jordan” and “Mike

Jordan”. We rely on a combination of heuristics to identify groups of InfoUnits with high

degree of string similarity. We consider strings that are at least 4 characters in length, and

that match according to the SecondString[Cohen et al., 2003] JaroWinkler-TFIDF metric,

with a similarity of at least 0.95 out of 1.0. Additionally, we use the highly-accurate means

relationship in YAGO [Suchanek et al., 2007] to identify pairs of synonymous strings. Using

these simple and efficient heuristics we map 1.2 million InfoUnits to 240 thousand entities.

Finally, we use the same string-based heuristics to map discovered entities to nodes in

YAGO. If an entity maps to one or several nodes in the ontology, we add the appropriate

mapping edges to the GDG (these are the solid arrows from InfoUnits to ontology nodes in

Figure 4.1). If no node in the Onto Graph is identified as a target for mapping, we add

discovered entities to the OntoGraph, placing them directly under Person, Organization or

Location.

During the initial stages of this project, we considered more sophisticated (and less

restrictive) ways of grouping together similar InfoUnits and of mapping such groups to on-

tology nodes. We eventually found that these techniques introduced a considerable amount

of noise, causing topic drift. We conclude that more sophisticated context-aware tools are

required to reliably match strings that do not pass the 0.95 similarity threshold. Using such

tools (once they become available and are efficient enough to operate on the large scale)

would benefit our method.

4.4.2 Query Processing

Our system processes keyword queries, and returns both pages and entities as query results.

In this work we focus primarily on the construction of the data graph and on ranking,

not on query processing, and we use a simple query processing method in our prototype

implementation.

We store the Generalized Data Graph in an Oracle 10g RDBMS, and use Oracle Text

to identify relevant pages and entities at query time. Matches are identified using a tf-

idf-based algorithm that incorporates stemming and word proximity information. Relevant

entries receive a non-zero relevance score from Oracle, and we normalize this score to the

(0, 1] range.

A page is considered relevant to a query if its body contains all words present in the

query. The final score of a page is the product of its authority and relevance scores.
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We identify entities that are relevant to a query using the OntoGraph built from YAGO.

An entity is considered relevant to a query if at least one of the following conditions is met:

• The entity matches the query by name;

• The entity has strong string similarity with an ontology node that matches the query;

• The thematic neighborhood of the entity matches the query. Thematic neighborhoods

are formed by combining all parents of an entity or concept, i.e. by following is-a and

instance-of ontology edges.

Consider for example the Serbian basketball player Vlade Divac. YAGO assigns Vlade

to several categories, including Serbian basketball players, LA Lakers players, and Olympic

competitors for Yugoslavia. Vlade’s thematic neighborhood includes all these category

names. For this reason the entity Vlade Divac will be returned as a match for queries

like ”Serbian LA Lakers players” and ”Olympic basketball competitors”. Relevant entities

are ranked according to their authority scores; the relevance score of the query with respect

to the thematic neighborhood is discarded.

The identified relevant pages and entities are added to the Query Result Graph. The

graph is then expanded by including predecessors and successors. The entire QRG is used

for ranking, but only the relevant pages and entities are returned as the query result.

4.5 Experimental Evaluation

4.5.1 Experimental Setup

We evaluate the performance of our system on a subset of the English-language Wikipedia;

we focus on two thematic slices: Serbia and basketball. Pages were included into the respec-

tive slice based on whether they contain the words “Serbia” and “basketball”. The slices

are comparable in size, and together include about 7800 Wikipedia articles.

We selected 20 keyword queries, 10 queries per slice, for our experimental evaluation.

Queries ranged between 1 and 6 words in length. Some examples of queries are lake,

politician, physics, living writer prize winner on the Serbia slice, and NBA venue, college

basketball, African American basketball player Olympic competitor on the basketball slice.

Queries were selected so as to have non-trivial recall in the ontology with respect to the

slice: query terms had to match thematic neighborhoods of at least a few ontology nodes

relevant to the slice. We allowed for significant variation in ontology recall: for some queries,

hundreds of ontology nodes matched, while for others there were only a handful of matches.

In the most extreme case, only one ontology node matched the query.

We compare four ranking methods in our experiments: one query-independent and three

that re-rank results at query time. These are query-independent PageRank (PR) for pages,
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and the corresponding Page-Inherited Authority (PIA) for entities. Query-time re-ranking

methods include Un-Typed Authority with PageRank (UTA-PR) and with HITS (UTA-

HITS), and Entity-Derived Authority (EVA). We consider top-20 pages and top-20 entities

returned by each ranking method in our evaluation.

For a given query, top-ranking results were collected and pooled. The quality of each re-

sult was then evaluated by two of the co-authors of this work. Evaluators had no knowledge

either of the method that retrieved the result, or of the result’s rank. We used a simple

goodness metric, a value between 0 and 2, in our evaluation, and averaged the goodness

scores if there was disagreement. Goodness scores were assigned as follows: 0 for irrelevant,

1 for somewhat relevant or relevant but not very important, and 2 for very relevant. To

judge goodness of an entity, the evaluator was asked to identify a Wikipedia page that was

most relevant to the entity, and use the contents of the page to guide the evaluation. We

also considered using a combination of metrics, such as coverage and specificity, to evaluate

the results. However, these metrics were designed with documents (or parts of documents)

in mind, and it was not clear how to apply them to entities and concepts.

We use four metrics to assess the performance of the ranking methods: discounted

cumulated gain (DCG) [Järvelin and Kekäläinen, 2002], normalized discounted cumulated

gain (NDCG) [Järvelin and Kekäläinen, 2002], precision, and recall. All metrics were applied

at top-20. DCG and NDCG are described in detail in Section 1.1.3.2. Recall that DCG is

a cumulative metric that weighs goodness scores by rank, penalizing entries that appear at

later ranks. NDCG is an average metric that normalizes each entry in the DCG vector by

the corresponding value in the ideal vector. We report DCG in addition to NDCG because

it incorporates recall (a low-recall method may have a perfect NDCG score, but it will not

have a perfect DCG score). As suggested in [Järvelin and Kekäläinen, 2002], we use b = 2

as the discount factor. For recall, we consider an entry to be relevant to a query if at least

one of the two evaluators considered the entry relevant (goodness score ≥ 0.5). Precision

is calculated with respect to the ideal: we pool together the relevant entries retrieved by

all methods, order them by descending goodness scores, and calculate recall at top-20.

Precision of a ranking method is then calculated as recallmethod/recallideal.

4.5.2 Results and Discussion

Results of our experimental evaluation are summarized in Tables 4.1 and 4.2. All methods

that involve query-time re-ranking operate on the Query Result Graph: a query-dependent

subset of the Generalized Data Graph. Each entry represents an average among 20 queries

in our experiments. We view results obtained by query-independent PageRank (PR entry

in Table 4.2) as the base-line for our experiments. Note that NDCG, precision, and recall

are normalized, and that perfect DCG is 15.63 in our setting.

We make the following observations from these results.
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Method DCG NDCG Recall Precision

PIA 12.73 0.91 0.88 0.97

UTA-PR 12.67 0.91 0.88 0.96

UTA-HITS 11.17 0.78 0.82 0.91

EVA 11.95 0.86 0.90 0.99

Table 4.1: Ranking on entities.

Method DCG NDCG Recall Precision

PR 4.14 0.34 0.42 0.59

UTA-PR 2.90 0.26 0.35 0.53

UTA-HITS 2.62 0.24 0.30 0.47

EVA 7.61 0.60 0.67 0.89

Table 4.2: Ranking on pages.

• For the chosen queries, the set of highly ranked entities consistently and significantly

outperforms highly ranked pages, according to all used metrics.

• EVA significantly outperforms other methods according to all metrics with respect to

highly ranked pages.

• No conclusion can be drawn about the relative performance of ranking methods with

respect to entities. All methods produce high-quality results.

Wikipedia contains a significant number of hubs (list pages that link to pages relevant

to a topic) and super-authorities (e.g. country and major city pages). Such pages attain

high query-independent PageRank scores, and appear in very high ranks in response to

most queries. So, for the query basketball on the Serbia slice, query-independent PageRank

returns the following pages in the top-20: “1977”, “1990s”, “Greece”, and “Belgrade”. Re-

ranking on the combined page-entity graph with UTA leads to page matches that still have

high global authority, but are more focused on the query: “List of athletes by nickname”,

“August 2004 in sports”, and even a high-quality match “Basketball at the 2004 Summer

Olympics (team squads)”. Re-ranking with EVA returns pages that are very specific both

to the query and to the slice: “Basketball in Yugoslavia”, “Vlade Divac”, “Basketball

World Championship” and “National pastime”. Entity matches are even better, and include

“Michael Jordan”, “LA Lakers”, “NBA”, “Madison Square Garden”, “Belgrade Arena”, and

“Predrag Danilovic”. The name “Vlade Divac” was not recognized by GATE, and we miss

out on an entity that corresponds to this Serbian national hero in the top-20.

Our novel ranking technique, EVA, is not realizing its full potential when ranking on

entities, most importantly because our current extraction and mapping techniques do not
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allow us to include inter-entity edges into the QRG, limiting the flow of authority, particularly

for entities.

The choice of relatively small thematic slices for our experiments makes the size of the

Generalized Web Graph more manageable, but confines us to working with only a small

subset of the ontology, limiting the recall of entity-based methods in some cases. For

example, the query “orthodox monastery” on the Serbia slice was able to identify a single

entity as a match – the monastery Hilandar. This happened because the ontology contained

a limited amount of information relevant both to the query and to the thematic slice. The

situation was further aggravated by the fact that the GATE/ANNIE Toolkit was not very

successful when mining foreign-language names, and so many InfoUnits that could have

been matched to relevant Onto Graph nodes went unnoticed.

4.6 Related Work

Link Analysis: Link analysis has come a long way since the seminal articles by Klein-

berg [Kleinberg, 1999] and Page et al. [Page et al., 1998] were published. These early

approaches and their extensions, overviews of which are given in [Borodin et al., 2005;

Langville and Meyer, 2004], are based on a simple directed graph model. More sophisti-

cated (e.g., weighted, multi-type, and labeled) graph models were considered in [Bhalo-

tia et al., 2002; Chitrapura and Kashyap, 2004; Geerts et al., 2004; Guo et al., 2003;

Xi et al., 2004]. More recently, the paradigm of link analysis has been carried over to graphs

other than the Web graph, namely, relational databases with records and foreign-key re-

lationships constituting the nodes and edges of the graph, and entity-relationship graphs

that capture, for example, bibliographic data such as DBLP or Citeseer. Such settings have

led to new forms of ObjectRank, PopRank, or EntityRank measures [Anyanwu et al., 2005;

Balmin et al., 2004; Chakrabarti, 2007; Cheng and Chang, 2007; Nie et al., 2005]. Objec-

tRank [Balmin et al., 2004] resembles our approach because it is also inspired by HITS, but

it does not address Web data at all. EntityRank [Cheng and Chang, 2007] addresses the

ranking of entities extracted from Web pages, but its focus is on frequency-based content

strength and it does not consider the graph structure of the Web and its embedded entities.

PopRank [Nie et al., 2005] is closest to our framework; it uses a “random object finder”

model on an object-relationship graph and combines this with a prior popularity derived

from pages’ PageRank values (the latter is similar to our PIA method). Our approach is

more powerful because we treat both pages and entities as first-class citizens in ranking,

and because we also consider ontological relationships and confidence values from extraction

and disambiguation.

Entity Search: Searching the Web at the finer and semantically more expressive

granularity of entities (Web objects) and their relationships, instead of the coarser page

granularity prevalent today, has been pursued in different variants like faceted search,
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vertical search, object search, and entity-relationship search (e.g., [Chakrabarti, 2004;

Chang, 2006; Doan et al., 2006a; Hearst, 2006; Madhavan et al., 2007; Nie et al., 2005].

The approaches most closely related to our work are the Libra system [Nie et al., 2007;

Nie et al., 2005], the EntitySearch engine [Cheng and Chang, 2007], and the ExDB system

[Cafarella et al., 2007]. All three systems extract entities and relations from Web data

and provide ranked retrieval. Libra uses a variety of techniques for ranking, including the

PopRank model mentioned above and a record-level statistical language model; the Enti-

tySearch engine mostly relies on occurrence-frequency statistics; ExDB factors extraction

confidence values into its ranking but does not consider any link information. None of these

ranking models considers the mutual authority propagation between entities and pages that

we exploit in our Generalized Data Graph.

4.7 Conclusions

In this chapter we developed an entity-aware ranking framework, and presented a novel

ranking algorithm, EntityAuthority, that models the mutual reinforcement between pages

and entities. We demonstrated how an ontology can be used for query processing and

ranking in this setting. We presented a prototype implementation of our system, and

experimentally demonstrated the improvement in query result quality.

EntityAuthority is an example of a search and ranking framework that can be used in

a heterogeneous setting, where relevance and quality of a result is determined based on

ontological relationships, link structure of page graph, etc. Techniques of this chapter may

be combined with the similarity measures of Chapter 3, making the ontology-based portion

of the ranking more sophisticated in presence of a scoped polyhierarchy. For example, an

iterative authority propagation mechanism may be developed for PubMed, in which scores

of documents would be initialized with similarity scores of Chapter 3, and documents and

MeSH terms would then be re-ranked with EntityAuthority. Such re-ranking would operate

over a linked graph of documents, with semantics of the links capturing the semantics of

quality, or authority. For example, links between documents may be established based on

co-authorship, citations, publication venues, or authors’ affiliations.
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Chapter 5

Rank-Aware Clustering of

Structured Datasets

This chapter presents joint work with Sihem Amer-Yahia [Stoyanovich and Amer-Yahia,

2009]. We would like to thank Duncan Watts and Jake Hofman for their help and valuable

discussions.

5.1 Introduction

In Chapter 2 we explored how semantics of social connections may be used for information

discovery. In Chapters 3 and 4 we considered how semantics of an ontology may be used for

search and ranking. In the present chapter we explore how semantic relationships among

item attributes may be used for rank-aware information discovery.

In online applications that involve large structured datasets, such as Yahoo! Personals

and Trulia.com, there are often thousands of high-quality items, in this case, persons and

apartments, that satisfy a user’s information need. Users typically specify a structured

target profile in the form of attribute-value pairs, and this profile is then used by the

system to filter items. On dating sites, a target profile may specify the age, height, income,

education, political affiliation, and religion of a potential match. In real estate applications,

a profile describes a user’s dream home by its location, size, and number of bedrooms.

The number of matches to a specific profile is often very high, making data exploration an

interesting challenge.

Typically users also specify ranking criteria that are used to rank matches. For example,

in Yahoo! Personals, potential matches can be ranked by decreasing income or increasing

age, while in Trulia.com, available houses may be ranked by increasing price or decreasing

size. Ranking helps users navigate the set of results by limiting the number of items that

they see at any one time, and by making sure that the items users see first are of high

quality (according to the ranking criteria). However, ranking also brings the disadvantage
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of match homogeneity: the user is often required to go through a large number of similar

items before finding the next different item. This is illustrated in the following fictional

example inspired by Yahoo! Personals.

Example 5.1.1 User Mike is looking for a date. Mike specifies that he is interested in

women who are 20 to 30 years old and who have some college education, and requests that

results be sorted on income in descending order. When inspecting the results, Mike notices

that the top ranks are dominated by women in their late-twenties with a Master’s degree. It

takes Mike a while to scroll down to the next set of matches that are different from the top-

ranking ones. In doing so, he skips over some unexpected cases such as younger women with

higher education and income levels, or women with high income who did not graduate from

college. After additional data exploration, Mike realizes that there is a correlation between

age, education (filtering), and income (ranking). Such correlations would have been obvious

if data were presented in labeled groups such as [20-24] year-olds with a bachelor’s

degree, [25-30] year-olds who make more than 75K, etc.

A key point that arises from this example is that a user who is browsing a result set

sequentially, item by item, is only able to infer some trends and correlations in the data after

seeing a significant number of items. Sequential presentation is not very helpful if the user

is trying to understand general properties of a dataset, i.e., explore the data, particularly

if the dataset is large.

The complexity of manual data exploration increases with more sophisticated ranking.

For example, Mike’s profile could provide a custom scoring function that computes a score

which is inversely proportional to the distance from his geographic location to the location

of his match, and directly proportional to the match’s income. Helping the users better

understand the results, which enables easier navigation and profile refinement, is even more

important in this case, given that correlations between item attributes and the ranking

function are less obvious.

5.1.1 Motivating User Study

In order to better understand the challenges of ranked data exploration, we interviewed

six potential users. All users were male, and they were all members of Yahoo! Research.

Users were asked to specify a realistic Yahoo! Personals profile, and to discuss their data

exploration experience with us during the course of the interview. We conducted free-form

interviews and did not use a questionnaire so as not to influence the users’ statements by a

limited menu of options. Users were allowed to select among a pre-specified set of ranking

attributes.

User profiles were evaluated by our prototype implementation, against the Yahoo! Per-

sonals dataset. Profile matches were presented in two ways: ranked list and clustered items.
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Three users were shown the ranked list first, followed by clustered items; the order was

reversed for the other three users.

As the users were interacting with the ranked list interface, they noted that results are

homogeneous: there was little variation in attribute values among top-ranked items. As a

result, item attributes were ignored by most users, and the decision of whether to further

explore a particular profile was based solely on the photo. All six users explicitly stated

result homogeneity as a concern. The other key observation was that ranking is opaque.

Indeed, item ordering was not considered helpful in data exploration and was not well-

understood by some users. Even for single-attribute ranking, some users wanted to see

items with a variety of values for the ranking attribute. Two users explicitly stated this

limitation.

During their interaction with the clustered items interface users noted that diverse re-

sults were more easily accessible, and that clustered items helped them refine their search

preferences. Three out of six users decided to refine their query moments after seeing clus-

ters of results. Two of the three explicitly commented that the presentation enabled them

to quickly understand the result set and to refine their query more effectively.

5.1.2 Limitations of Clustering Algorithms

Clustering is an effective data exploration method that is applicable to structured, semistruc-

tured, and unstructured data alike. Clustering algorithms assign N items to K � N groups,

where K is either known in advance or discovered by the algorithm. To be useful for data

exploration, the algorithm must produce meaningful descriptions for the clusters. There

are many families of clustering algorithms that can be used for this task. Some algorithms

partition the dataset, while others assign each point to zero, one, or several clusters. Some

algorithms operate over all item attributes, while others attempt dimensionality reduction

techniques. In domains like Yahoo! Personals, where datasets are large and all items are

described by a large number of attributes, it is intuitive to use subspace clustering.

Subspace clustering is an extension of traditional clustering that seeks to find clusters

in different subspaces of a dataset [Parsons et al., 2004]. Clusters of items are high-quality

regions identified in multiple, possibly overlapping, subspaces. Many subspace clustering

algorithms use the density of a region as a quality measure. In the simplest case, density is a

percentage of data points that fall within a particular region, and the algorithm aims to find

all regions that have density higher than a pre-defined threshold. We give an overview of one

of the first subspace clustering algorithms, CLIQUE [Agrawal et al., 1998], in Section 5.3.1,

and we illustrate it here with an example.

Example 5.1.2 Consider a fictional real estate example in Table 5.1: a database of 300

rental apartments, listing the number of bedrooms, number of bathrooms, size in ft2, monthly

rental price, and the number of such apartments currently on the market. Mary is looking
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# beds # baths size (ft2) price ($) # apts

1 1 600 1800 5

1.5 700 2100 55

1 750 2900 25

2 1.5 700 2200 30

1 800 2400 60

2 800 2850 10

2 950 3500 100

3 1.5 950 2900 5

2 1000 3200 10

Table 5.1: A fictional real estate database.

for an apartment that is at least 600-ft2 in size and has at least one bedroom, and she wants

the matches sorted on price in increasing order. All apartments in Table 5.1 match Mary’s

profile.

Assume a density threshold θ = 0.1. A typical density-based subspace clustering al-

gorithm starts by dividing the range of values along each dimension (attribute) into cells,

and by computing the density in each cell. For example, each distinct value of #beds,

size, and #baths may correspond to a cell, and price may be broken down into intervals

(1500, 2000], (2000, 2500], (2500, 3000], and (3000, 3500]. Cells that do not pass the density

threshold are pruned at this stage. The algorithm immediately prunes 600-ft2 apartments

( 5
300 < θ), 750-ft2 apartments ( 25

300 < θ), 1000-ft2 apartments ( 10
300 < θ), and apartments in

the (1500, 2000] price range ( 5
300 < θ). Given Mary’s interest in cheaper apartments (price

is her ranking condition), it is problematic that the cheapest apartments in the dataset, the

600-ft2 apartments that cost $1800, are pruned.

Next, the algorithm progressively explores clusters in higher dimensions by joining lower-

dimensional ones. For example, the 1-dimensional cluster of 800-ft2 apartments (70 items)

can be joined with the 1-dimensional cluster of apartments in the (2000, 2500] price range

(145 items). The result of this join is a region with 60 800-ft2 2-bedrooms at $2400 per

month, which qualifies as a cluster since it passes the density threshold. However, the

region that results from joining the 950-ft2 apartments (105 items) with apartments in the

(2500, 3000] price range (40 items) does not qualify as a cluster (it contains only 5 items) and

is pruned, losing the potentially interesting 3-bedrooms for a relatively low price ($2900).

Density decreases in higher dimensions and the algorithm stops when there are no more

clusters to explore.
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5.1.3 Challenges of Rank-Aware Clustering

A lower density threshold would evidently guarantee that some of the regions pruned using

a higher threshold would be preserved. However, if the threshold is set too low, the al-

gorithm would keep merging neighboring cells, ultimately identifying much larger clusters,

and possibly one cluster containing the entire dataset. Moreover, not all regions that pass a

typical clustering quality metric, e.g., density or entropy, are equally interesting to the user.

Indeed, given a scoring function, some items, and hence some clusters, are more desirable

than others (e.g., Mary has little interest in the 2-bedroom apartments that cost $3500, but

would like to see the 1-bedrooms that cost $1800). Even when the density of a region is

high, as is the case with 2-bedroom apartments for $3500, Mary would probably have less

interest in them than in cheaper apartments. Therefore, we propose to explore rank-aware

clustering quality measures which account for item scores and ranks in assessing cluster

quality.

5.1.4 Chapter Outline

In the remainder of this chapter we present BARAC: a Bottom-up Algorithm for Rank-

Aware Clustering of structured datasets. We start by formalizing new clustering quality

measures for rank-aware data exploration in Section 5.2, and develop an adaptation of a

bottom-up APRIORI-style subspace clustering algorithm for this setting in Section 5.3. In

Section 5.4 we present an extensive evaluation of the efficiency of BARAC on datasets from

Yahoo! Personals, and show that our algorithm is efficient and scalable. We experimentally

validate the effectiveness of our approach in Section 5.5, using both qualitative analysis,

and results of a large-scale user study with a subset of Yahoo! Personals users.

5.2 Formalism

In this section we formalize rank-aware data exploration for structured datasets. We start by

introducing the notion of a clustering quality measure, and then give the problem statement.

5.2.1 Regions and Clusters

We are given a dataset D where items are described by attribute-value pairs, including a

special attribute id which uniquely identifies each item. Attributes belong to a set A.

Definition 5.2.1 (Regions) A region G is a set of items labeled with a conjunction of

predicates over attributes in A, which, if evaluated on the dataset D, results in all items in

the region. The dimensionality of a region is simply the number of predicates that describe

that region.
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A predicate specifies a value, or a range of values, for an attributes. Note that a region

may be described by the predicate P = >, in which case it evaluates to the entire dataset.

The predicates that describe a region are the region description. We will often use region

and region description interchangeably. The following conjunction of predicates specifies a

two-dimensional region:

G : age ∈ [25, 30] ∧ education = Bachelor ′s

Any subset of predicates that define a region G is a sub-region of G (G is a super-region

of its sub-regions.) A cluster is a region that satisfies a clustering quality measure.

Definition 5.2.2 (Clustering Quality Measure) A clustering quality measure Q is a

predicate over the distribution of items in a region G that makes G interesting to a user for

the purpose of data exploration.

In this chapter we consider clustering quality measures that compare some statistic

associated with the region to a threshold θ. Let us now give some examples of measures

that were developed in data mining. Given a region G = P1 ∧ . . . ∧ Pn, we denote by p(Pi)

the proportion of items satisfying Pi with respect to the entire dataset D, i.e. |Pi|/|D|.

A clustering quality measure may be stated with respect to the number of items in the

region, as is the case with the density measure in CLIQUE [Agrawal et al., 1998], e.g., “a

cluster is a region that contains at least θ% of the total number of items”:

QDENSE : p(G) ≥ θ (5.1)

A clustering quality measure may encode attribute correlation,1 i.e., higher-than-expected

density of points, where the fraction of the observed number of items to the expected number

is compared to a threshold θ.

QCORR :
p(P1 ∧ . . . ∧ Pn)

p(P1)× . . .× p(Pn)
≥ θ (5.2)

A clustering quality measure may specify entropy, with the intuition that regions with

lower entropy have higher density and higher attribute correlation, as was shown in EN-

CLUS [Cheng et al., 1999]:

QENT : H(G) = H(P1, . . . Pn) ≤ θ (5.3)

Given a dataset D, a clustering algorithm returns a set of regions that satisfy a clustering

quality measure.

1Here and in the remainder of this chapter we use “correlation” loosely, in the sense of “departure from

independence” (http://en.wikipedia.org/wiki/Correlation); we do not account for the direction of the

relationship between random variables.
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5.2.2 Rank-Aware Clusters

In an on-line data exploration scenario, a user specifies a profile composed of filtering and

ranking criteria. We assume that the user’s filtering conditions result in a dataset D (and

can thus take users out of the notation since we are interested in one user at a time).

Ranking is expressed by a scoring function S that assigns a score i.score to each item

i ∈ D. We denote by S(D) the set of all items from D augmented with i.score. Typically,

items are presented to the user as a single ranked list sorted by score.

We first argue that rank-unaware clustering measures (see Section 5.2.1) are inappro-

priate when users are interested in exploring ranked datasets.

Example 5.2.1 Consider user Mary from Example 5.1.2. Mary is interested in seeing

apartments ranked by price in increasing order. Ann, another user who shares Mary’s filter-

ing conditions, may be interested in seeing the same apartments sorted by size in decreasing

order. Which clusters are best for which user depends on the user’s ranking preferences.

One reasonable option is to cluster apartments based on the scoring attribute. In particular,

Ann may appreciate seeing the 950-ft2 apartments which cost $2900 in the same cluster

as the same-size apartments for $3500, while Mary may prefer to see 950-ft2 apartments

grouped together with the same-priced 750-ft2 apartments. A subspace clustering measure

that does not account for item scores would not distinguish between these two users, and

would therefore be inappropriate for rank-aware data exploration.

The score of each item can be treated as an additional attribute and can thus be used

for clustering. Items can be clustered using a quality measure of the kind described in

Section 5.2.1. However, as we argue in the following example, using scores as an additional

clustering dimension still fails to effectively address data exploration for ranked datasets.

Example 5.2.2 Consider again Example 5.1.2, where Mary wants to sort apartments by

price. If item price is used as a clustering dimension, in the same way as other attributes,

then Mary may see a high number of clusters, not all of which are of potential interest to

her: e.g. a cluster of expensive 2-bedroom apartments may appear alongside a cluster of

cheap 2-bedrooms. If many clusters are discovered by the algorithm, the potentially more

interesting ones may go unnoticed. Worse yet, the algorithm may decide to merge together

intervals that are of high interest to Mary with those of low interest, resulting in a potentially

large heterogeneous cluster with homogeneous results dominating the top ranks.

Hence, we explore new clustering quality measures that use item scores and ranks to

assess region quality.

Definition 5.2.3 (Rank-Aware Clustering Quality) A rank-aware clustering quality

measure is a predicate over S(G) for a region G and a scoring function S.
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Here, S(G) denotes the set of all items from G augmented with i.score. We explore

different types of rank-aware quality measures, building on the assumption that users are

more interested in clusters that contain items with high scores, and that they will only

explore the best items in those clusters. We use S(G, N) to denote N highest scoring

items in S(G). N is a parameter in our formalism that models the user’s attention span –

the number of items the user is likely to explore sequentially [Manber et al., 2000]. This

parameter can be customized per user, or it can be set to reflect the preferences of an

average user.

The first measure, QtopN , states that a multi-dimensional region G is a cluster if it

contains enough items that are in the top-N of each of its one-dimensional sub-regions.

QtopN :
|S(G, N) ∩ S(P1, N) ∩ . . . ∩ S(Pm, N)|

|N |
≥ θ (5.4)

QtopN aims to discover attribute correlations among the high-scoring items in the dataset.

We illustrate how this measure compares to density using Example 5.1.2. Recall that user

Mary specified price as the ranking condition.

The join of the 700-ft2 cluster with the (2000, 2500] price range cluster preserves the

lower-priced 1-bedrooms, since the top-N items in the join correspond to the high-scoring

items in the (2000, 2500] cluster (one of the sub-regions) and to the high-scoring items

in the 700-ft2 cluster (its other sub-region). On the other hand, the join of 2-bathroom

apartments with 950-ft2 apartments would not contain any of the cheapest 2-bathroom

apartments in its top-N and would thus not qualify as a cluster.

QtopN is a generalization of density from CLIQUE [Agrawal et al., 1998], where N is

substituted by |D|, making the numerator equal to |S(G)|, or simply |G|.

The next measure, QSCORE , states that a region is interesting if it contains high-scoring

items in its top-N . G will have the highest-scoring items in its top-N if the same high-scoring

items are present in the top-N lists of all of its one-dimensional sub-regions P1 . . . Pk. In

the best case, the top-N of the intersection of these regions will coincide with the top-N of

their union, which gives rise to the formula:

QSCORE :
Σi∈S(G,N)i.score

Σi∈S(∪kPk,N)i.score
≥ θ (5.5)

QSCORE can be used to compare regions with a different number of items in their top-

N lists: a region with few high-scoring items in the top-N may be of equal interest to

the user as one with many lower-scoring items. Suppose that Mary’s scoring function is

SMary : i.score = 3500−i.price
3500−1800 . Then, under QSCORE, the region formed by the five 600-ft2

1-bedrooms has a quality score of five and is more interesting than the region formed by

the ten 1000-ft2 3-bedrooms with a score of 1.76.

Finally, we present a measure that models the relationship between item scores and

ranks. The intuition is that a region with exceptionally high-scoring items in high ranks
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may be just as interesting to the user as a region in which items have intermediate scores.

We define this measure using NDCG (Normalized Discounted Cumulated Gain) [Järvelin

and Kekäläinen, 2002], with S(∪kPk, N) as the ideal vector. NDCG is described in detail

in Section 1.1.3.2.

QSCORE&RANK : AV Gr≤NNDCG(S(G, N),S(∪kPk, N))[r] (5.6)

Consider again Example 5.1.2 and Mary’s scoring function SMary, and let us take N = 5.

Let us compute the NDCG for the 1.5-bathroom apartments with the size of 950-ft2. The

ideal gain vector consists of scores of the 5 best items that either have 1.5 bathrooms or

are 950-ft2 in size, namely, the 1.5-bath 700-ft2 apartments that cost $2100 per month

(i.score = 0.82). With b = 2 we derive: DCGIdeal = [0.82 1.64 1.55 1.64 1.77].

Let us now compute the NDCG for the 950-ft2 1.5-bath apartments. The top-5 list

of this region consists of five 3-bedroom apartments at $2900 (i.score = 0.35). We de-

rive DCG = [0.35 0.7 0.66 0.7 0.75]. We now normalize each position in DCG by the

corresponding position in DCGIdeal, average the values, and arrive at NDCG = 0.43.

5.2.3 Problem Statement

Definition 5.2.4 (Rank-Aware Clustering) Given a dataset D, a scoring function S,

a rank-aware clustering quality measure Q and an integer N , find all clusters in D, i.e.,

regions of any dimensionality that satisfy Q.

5.3 Rank-Aware Subspace Clustering

In this section, we give a brief overview of subspace clustering, formalize properties of our

rank-aware subspace clustering algorithm, and finally present the algorithm.

5.3.1 Overview of Subspace Clusterings

We now give a general description of density-based bottom-up subspace clustering algo-

rithms. The reader is referred to [Parsons et al., 2004; Kriegel et al., 2008] for comprehensive

surveys.

Subspace clustering is a feature selection technique that aims to uncover structure in

high-dimensional datasets [Parsons et al., 2004]. Unlike Principal Component Analysis

(PCA), where the goal is to identify the single best subset of features in which the dataset

is then clustered, subspace clustering looks for multiple, possibly overlapping, subsets of

features that are used to cluster different portions of the dataset.

Subspace clustering algorithms use several related quality measures, also referred to

as clustering objectives, to guide the search. CLIQUE [Agrawal et al., 1998], one of the

first algorithms in this family, relies on a global notion of density, which is simply the
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percentage of the overall dataset that falls within a particular region. A later algorithm,

ENCLUS [Cheng et al., 1999], uses information entropy as the clustering objective.

CLIQUE operates in three steps to which we refer as BuildGrid, Merge and Join.

1. BuildGrid builds a histogram in each dimension, counting the number of points that

fall within each bucket. For example, if the dimension is age, the outcome of this

phase is a set of non-overlapping age intervals and the number of matches in each

interval.

2. Merge neighboring histogram buckets (within the same dimension) that pass the

density threshold; discard buckets that do not pass the threshold.

3. Join dimensions APRIORI-style. This step computes clusters in higher dimensions by

joining lower-dimensional clusters (e.g., age ∈ [25− 30] with income ∈ [50K − 80K]),

and only keeping higher-dimensional clusters that pass the density threshold. This

step relies on the downward closure property of the clustering quality metric to prune

the search space.

Several extensions of the original algorithm were developed: MAFIA [Nagesh, 1999]

creates an adaptive grid that takes into account the data distribution, CLTree [Liu et

al., 2000] uses a decision-tree approach to identify high-density regions, while Cell-Based

Clustering (CBF) [Chang and Jin, 2002] improves scalability by partitioning the data so as

to produce fewer clusters.

5.3.2 Algorithm Properties

The Merge phase of our algorithm is different from the corresponding phase of density-

based algorithms, and it relies on the notion of interval dominance with respect to a scoring

function.

Definition 5.3.1 (Interval Dominance) Given a scoring function S, an integer N , an

attribute ai, and any two consecutive value intervals I1 and I2 in the set of values from

domain(ai), we say that I1 dominates I2 with respect to S at top-N if and only if S(I1, N) =

S(I1 + I2, N). We denote this as I1 ≺S,N I2.

Here, + is simply the concatenation of two consecutive intervals. The intuition is that

the top-N items from the dominating interval are strictly better, with respect to the scoring

function S, than the items in the the top-N of the dominated interval. For example, if S

ranks items in increasing order of age, then I1 : age ∈ [25, 29] dominates I2 : age ∈ [30, 34].

We refine this definition further. We say that I1 dominates I2 up-to a factor θ ∈ (0.5, 1],

with respect to S at top-N if and only if

|S(I1, N) ∩ S(I1 + I2, N)|

N
≥ θ
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We denote this by I1 ≺S,N,θ I2.

Consider again the intervals I1 : age ∈ [25, 29] and I2 : age ∈ [30, 34], and a scoring

function that orders items on a combination of income and education: S = 0.25 ∗ income+

0.75 ∗ education (higher values of attributes income and education correspond to higher

income and education levels, respectively). Because age positively correlates with income

and with education, it is likely that I1 ≺S,N=10,θ=0.75 I2.

We are interested in bottom-up clustering algorithms which build clusters in higher

dimensions from lower-dimensional clusters. Such algorithms rely on the downward clo-

sure property, which allows for pruning of the search space, resulting in better runtime

performance.

Definition 5.3.2 (Downward Closure) We say that downward closure holds for a clus-

tering quality metric Q if and only if, for any region G, if Q holds over G, then it also holds

over every sub-region of G.

The fact that downward closure holds for QtopN follows directly from the definition of

QtopN and from set properties, namely, that |A∩B| ≤ min(|A|, |B|). For a one-dimensional

group Pk with N or more items, QtopN = 1. As dimensionality of the group increases, new

sets are added to the intersection in the numerator of the expression. Thus the value of Q

is strictly non-increasing with increasing dimensionality.

Downward closure holds for QSCORE and QSCORE&RANK . This is because the top-N of

any region S(G, N) consists of items that are either in the top-N of all its one-dimensional

sub-regions (i ∈ ∩kS(Pk, N)), or of items that have lower scores (j ∈ ∩k(S(Pk)\S(Pk, N))).

The portion of ∩kS(Pk, N) in S(G, N) does not increase as more one-dimensional groups are

added to the intersection. Thus, the value of the numerator of the QSCORE expression, and

the DCG values in QSCORE&RANK are non-increasing in dimensionality of the group. At

the same time, the denominator ofQSCORE , and the values of DCGIdeal forQSCORE&RANK

are non-decreasing in the size of the union. Thus the values of QSCORE and QSCORE&RANK

are strictly non-increasing with increasing dimensionality.

5.3.3 Our Approach

Our proposed algorithm BARAC, Bottom-up Algorithm for Rank-Aware Clustering, is

an APRIORI-style algorithm with a flow that is similar to CLIQUE (Algorithm 6).

The procedure BuildGrid (Algorithm 7) starts by computing a score for each item

i ∈ D, and then sorts the items in decreasing order of score. As the dataset is scanned, all

distinct values for each attribute ai ∈ A are recorded as domain(ai). Next, we consider each

attribute ai with a corresponding domain(ai), and compute a grid data structure that is an

array of one-dimensional histograms. If ai is a categorical attribute with no natural ordering

on its values (e.g. religion), a histogram bucket is created for each value vj ∈ domain(ai).
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Algorithm 6: BARAC: Bottom-up Algorithm for Rank-Aware Clustering

Require: dataset D, scoring function S, N , θQ, θdom, maxBuckets

1: grid = BuildGrid(S,D, N,maxBuckets);

2: mergedGrid = Merge(grid,N,S, θdom);

3: clusters = Join(mergedGrid,N,S, θQ);

4: return clusters

If ai is numerical (e.g., age) or ordinal categorical (e.g., body type), domain(ai) is broken

down into at most maxBuckets intervals of consecutive values. Bucket j for attribute i is

denoted by grid[i][j]. Having established interval boundaries for attribute ai (lines 3-12),

we assign to each interval the best N items in S(D) from among those that fall within the

range of the interval (lines 13-15).

Algorithm 7: Procedure BuildGrid

Require: S(D), S,N,maxBuckets

1: compute a list of items S(D), sorted by i.score;

2: init grid, a matrix with one row per attribute ai ∈ A;

3: for ai ∈ A, where |domain(ai)| > 1 do

4: if ai is an unordered categorical attribute then

5: for valj ∈ domain(ai) do

6: {allocate 1 column in grid[i] per value valj}

7: grid[i][j].range = [valj , valj ];

8: end for

9: else

10: divide domain(ai) into at most maxBuckets consecutive intervals;

11: set grid[i][j].range per interval;

12: end if

13: for each interval j do

14: grid[i][j].items = S(σgrid[i][j].range(D), N);

15: end for

16: end for

17: return grid

Merge runs multiple passes of the procedure OnePassMerge (Algorithm 8). OnePass-

Merge takes the grid as input and expands the search space of the algorithm by consider-

ing, and possibly merging, runs of neighboring histogram buckets along the same dimension.

Once the first run of OnePassMerge is done, it is invoked again on the output grid, and

explores merging additional intervals.
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The idea is that, for an attribute ai, if neither of the two neighboring one-dimensional

intervals grid[i][j] and grid[i][k] dominates the other (Definition 5.3.1), then it may be

beneficial to consider their concatenation in the subsequent Join phase, in addition to

considering both of them separately. This is because the top-N items of the concatenated

interval are sufficiently different from the top-N items of the individual intervals, presenting

additional clustering opportunities. If, however, one of the intervals dominates the other,

then, by definition, the set of top-N items of the concatenated interval is very similar

(or exactly the same) as the top-N items of the dominating interval, and so adding the

concatenated interval to the search space is not helpful. We make two observations about

Merge. First, the output grid is typically much larger than the original grid since all input

intervals are also preserved in the result. Second, the lower the threshold θdom, the fewer

intervals are generated. We explore the impact of θdom on efficiency in Section 5.4.

Algorithm 8: Procedure OnePassMerge

Require: grid,N,S, θdom

1: mergedGrid = cloneGrid(grid);

2: for ai ∈ A do

3: for j = 1 to grid[i].length − 1 do

4: {Check dominance among consecutive intervals.}

5: k = j + 1;

6: if not (grid[i][j] ≺S,N,θdom grid[i][k]) ∧ not (grid[i][k] ≺S,N,θdom grid[i][j]) then

7: {+ denotes interval concatenation.}

8: grid[i][j+k].items = S(grid[i][j].items ∪ grid[i][k].items,N);

9: addToGrid(mergedGrid[i], grid[i][j + k];

10: end if

11: end for

12: end for

13: return mergedGrid

The procedure Merge returns the mergedGrid, which contains all one-dimensional

clusters. The procedure Join, which is invoked next, computes clusters in higher dimensions

by progressively joining together lower-dimensional clusters. This procedure is the same as

the corresponding procedure in CLIQUE [Agrawal et al., 1998], and we describe it here for

completeness using our terminology.

Join repeatedly invokes the sub-routine doJoin and terminates when no more clusters

are identified. Procedure doJoin, presented in Algorithm 9, takes (k − 1)-dimensional

clusters and a quality threshold as input, and returns a set of k-dimensional clusters. This

is done by first identifying a candidate set of k-dimensional regions (lines 2-8), and then

pruning the set by removing all regions that do not pass the quality threshold θQ (line 9).
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Algorithm 9: Procedure doJoin

Require: ClustersK−1, θQ

1: RegionsK = ∅;

2: for C1 ∈ ClustersK−1 do

3: for C2 ∈ ClustersK−1 do

4: if compatible(C1, C2) then

5: append(RegionsK , joinClusters(C1, C2));

6: end if

7: end for

8: end for

9: ClustersK = prune(RegionsK , θQ);

10: return ClustersK;

We omit pseudo-code for some of the subroutines, but describe them verbally below.

Assume that the relation < represents a lexicographic ordering on attribute names.

Assume also that a cluster C is represented by a set of intervals, with the number of intervals

in the set corresponding to the dimensionality of the cluster. Each interval records the

attribute name (e.g., age or income), and the low and high values that specify the range.

So, an interval age ∈ [25, 29] has attribute = age, low = 25, and high = 29. Two intervals

are considered equal if they reference the same attribute name and the same range of values.

Two (k−1)-dimensional clusters C1 and C2 are said to be compatible if they contain k−2

equal intervals, and if the (k−1)st interval of C1 is lexicographically lower than the (k−1)st

interval of C2. The result of joinClusters(C1, C2) is a k-dimensional region described by

the union of the intervals of C1 and C2.

The quality measure Q can be any one of the measures defined in Definition 5.2.3.

During the Join step, all measures are applied to S(G, N), the top-N items of each region

G. We compute the top-N lists for each grid interval in line 14 of Algorithm 7. As intervals

are merged, and as clusters are joined to produce higher-dimensional clusters, top-N lists

are re-computed (line 9 of Algorithm 8).

In the worst case Join will explore all combinations of dimensions. However, this worst

case is very coarse. Actual run-time performance is highly data-dependent, as we show in the

next section. Join terminates when there are no more pairs of compatible clusters which

satisfy the quality threshold. This is guaranteed by the downward closure property (see

Definition 5.3.2). The lower the value of θQ, the higher the number of clusters generated

by our algorithm. We explore the impact of different threshold values on the run time

performance in the next section.
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5.4 Experimental Evaluation of Performance

We implemented BARAC with our three clustering quality measures (Section 5.2.2.)

Since QSCORE behaved similarly to QtopN , we only report results with the latter and

QSCORE&RANK . Our prototype is implemented in Java and operates on memory-resident

data. All experiments were executed on a 64-bit machine with two Intel Xeon 2.13GHz

processors and 4GB of RAM, running RedHat EL AS 4.

5.4.1 The Yahoo! Personals Dataset

Dataset. We evaluated the performance of BARAC on a dataset from a leading on-

line dating service with millions of registered users. Users of the service create a personal

profile in which they describe themselves using 30 structured attributes, e.g., age, height,

occupation, education, income, etc. Users also commonly store one or several target profiles,

expressed in terms of the same structured attributes. When specifying that profile, users

designate attributes as required and desirable. Required attributes are used as filtering

conditions for exact matching against personal profiles, while desirable attributes are used

for ranking exact matches.

For the purpose of our experiments we focus on computing matches for male users,

as there are at least one order of magnitude more males searching for females. We store

a snapshot of target profiles of male users whom we call seekers, and of personal profiles

of female users. The snapshot is as of a recent month in 2008, and contains all profiles

that were registered with the dating service up to and including that month. We use

19 of the total 30 attributes, because there was no meaningful correlation between the

ignored attributes (e.g. astrological sign) and other attributes, making them less suitable

for clustering. Two of the 19 attributes, has photo and gender, have only two distinct values,

and we use them for filtering, but not for clustering. So, there are 19 filtering attributes

and 17 clustering attributes in our dataset. Therefore, for any given query, the number of

clustering dimensions is at most 17.

User Sampling. We evaluated the performance for 100 target profiles. We chose

a representative sample of profiles that cover a range of filtering and ranking attributes,

as well as different number of matches. The chosen target profiles specify between 3 and

15 filtering attributes (median 5), and between 1 and 6 ranking attributes (median 3).

Because data exploration is most meaningful for large datasets, we selected profiles with at

least 1,000 matches for our evaluation. Our prototype operates on memory-resident data,

and does all processing in memory. Due to a limitation in available RAM, we restrict our

attention to users whose target profiles match up to 500,000 profiles. The chosen target

profiles generated between 1,107 and 489,090 matches (median 102,492). Note that the size

of the result set will often be reduced in practice by applying additional filtering criteria

such as geographic distance between the seeker and the match, the freshness of the profile
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filtering numerical: age, height.

ordinal categorical: body type, education level,

income, religious services (attendance frequency).

categorical: gender, sexual orientation, ethnicity,

eye color, hair color, smoking, drinking,

marital status, have kids, want more kids,

employment status, profession, personality type,

religion, political views.

ranking age, height, body type, education level, income,

religious services.

ignored location, living situation, social personality,

TV watching habits, languages, sense of humor,

interests, love style, astrological sign.

Table 5.2: Structured attributes in the dating dataset.

of the match etc.

Ranking. The ranking functions we consider use 6 attributes: age, height, body type,

education, income, and religious services (the frequency with which the user attends reli-

gious services). We chose these attributes because they are either continuous or ordinal

categorical, thus inducing a natural order on their values. Which of the 6 attributes are

included in the scoring function depends on which attributes are marked as desirable in the

target profile.

The first scoring function we used, attribute-rank, assigns equal weights to each ranking

attribute, and computes the score of an item as the sum of distances between the item and

the ideal item along each attribute dimension. Here, an ideal item has the best possible value

for each ranking attribute from among items in the filtered dataset. Distances along each

dimension are normalized by the difference between extreme values for the corresponding

attribute found in the filtered dataset. Note that this function is personalized in two ways.

First, the user specifies which attributes are included in the scoring function. Second, the

value of each ranking attribute contributes to the score based on how it compares to the

best and worst values for that attribute, from among items that pass the filtering conditions

of the target profile.

The second function, geo-rank, scales the value returned by attribute-rank by the geo-

graphic distance between the seeker and his match.

geo rank =
attribute rank

1 + (geo distance/100)
(5.7)

We will discuss in detail in Section 5.5.2 that, because the clustering outcome depends
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Execution time(ms)

med avg min max

BuildGrid 1756 2317 336 7814

Merge 13 23 6 119

Join 862 2912 258 37442

Total 3102 5499 600 40015

Table 5.3: Median, average, max and min processing times for QtopN for 100 users, with

θdom = θQ = 0.5.

on the combination of a user’s filtering condition and the distribution of scores imposed

by a particular scoring function, it is not always possible to find a meaningful clustering.

The intuition is that rank-aware clustering does not apply if ranking does not discriminate

well between high-quality and low-quality results, that is, if all, or most, of the items in

the result set are tied for the same score. For example, selecting users with income = 50K,

and then ranking on income, is not helpful, since all users will share the same score. Users

whose scoring function assigned the top score to more than 30% of their profile matches

were excluded from our evaluation.

5.4.2 Scalability

In the first part of our experiments, we study the behavior of BARAC with the QtopN

quality measure, and the attribute-rank scoring function. We analyze performance in terms

of three distinct stages: BuildGrid, Merge, and Join. See Section 5.3.3 for a description

of these stages.

BARAC takes several parameters as input. The parameter N models the user’s at-

tention span – the number of items the user is likely to explore sequentially [Manber et al.,

2000]. We used N = 100 for all experiments in this section. maxBuckets, used by the pro-

cedure BuildGrid (see Algorithm 7), specifies an upper bound on the number of intervals

per dimension. We set it to 5. This value is chosen according to age, the attribute with

highest cardinality, and is set so that the values falling into a particular age interval are

perceived as similar by a typical user. For most other dimensions, the domain cardinality is

lower than 5, and so the upper bound is never reached, and the actual domain cardinality

is used instead. We study the scalability of BARAC as a function of the dominance and

quality thresholds θdom and θQ. There are no additional parameters in our formalism.

In the first experiment, we ran BARAC for 100 users in the full space of 19 filtering

attributes and 17 clustering attributes. Values of the dominance and quality thresholds were

fixed at θdom = θQ = 0.5 for this experiment. Table 5.3 summarizes the median, average,

minimum, and maximum run times of BARAC, with all times listed in milliseconds.
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Figure 5.1: Performance of BARAC as percentage of cases that completed under a certain

time limit.

According to Table 5.3, the median run time of BARAC is 3.1 seconds, and the average

run time is 5.5 seconds. The run time of BARAC is dominated by BuildGrid and

Join, while the execution time of Merge is negligible even in the worst case. While the

maximum value for Join is quite high, motivating future performance optimizations, the

run time reported in Table 5.3 may be unrealistically high. This is because, as discussed in

Section 5.4.1, the actual clustering dimensionality is far lower than 17 for specific queries.

Figure 5.1 presents the run time of BARAC as the percentage of cases that completed

under a certain time limit. BARAC completes in under 5 seconds in most cases, and

takes longer than 10 seconds in only a handful of cases. In the remainder of this section

we analyze the factors that contribute to the performance of BuildGrid and Join, and

explore scalability as we vary the size of the dataset and the clustering dimensionality.

5.4.2.1 Varying Dataset Size

Figure 5.2 shows the performance of BuildGrid for 100 users as a function of dataset size

– the number of items that pass the filtering conditions of the target profile. The data

presented in this figure is the same as was used in Table 5.3 and Figure 5.1. Each data

point corresponds to a particular target profile, and thus to a particular dataset size. All

time measurements are in milliseconds. As before, the dominance and quality thresholds

θdom and θQ were both set to 0.5.

During BuildGrid, the seeker’s filtering conditions are applied to memory-resident data

in a single linear scan of the data, matches are identified, and a score is computed for every

match. Items are then sorted on score in decreasing order. Finally, a data grid of matches

is computed. We determined experimentally that score computation is the dominant factor

in the execution time of BuildGrid. As Figure 5.2 demonstrates, the execution time of

this stage increases linearly with the number of matches.
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Figure 5.2: Execution time of BuildGrid as a function of dataset size.

5.4.2.2 Varying Clustering Dimensionality

We now explore the impact of dimensionality on the performance of Join. For this experi-

ment, we fix θdom = θQ = 0.5 and vary the dimensionality of the clustering space from 3 to

17. The first 3 clustering attributes are selected, and attributes are added one at a time in

subsequent rounds. Attributes are added in the same order for all users, but this order was

chosen randomly. We have attempted several orders of adding attributes, and noticed no

difference with respect to the performance trends of Join. We thus report our results with

one particular order of adding attributes. Note that the filtering criteria and the scoring

function are specified by the user’s target profile, and are applied as before.

Figure 5.3 presents the execution time of Join as a function of clustering dimension-

ality. Each point is an average of execution times for the fixed dimensionality across all

users. We observe that the average execution time of Join increases as the dimensionality

increases, but that it increases more significantly in some cases than in others. The general

trend, with the exception of attributes 12, 13, and 17, which we discuss below, seems to

be that the execution time on Join increases approximately quadratically with increasing

dimensionality.

Adding a clustering dimension to the set of dimensions for a particular user may or

may not have an effect on the run time of the algorithm. For example, if we are adding the

dimension drinking, but the user’s filtering conditions are specifying a single value for this

attribute, drinking = no, the attribute will not be added to the data grid, and so clustering

will proceed as it did before the dimension was added. Attributes 12, 13 and 17 happen to

be marital status, wants more kids, and drinking. These are all low-cardinality attributes,

which users commonly restrict to a single value in their filtering conditions.
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Figure 5.3: Execution time of Join as a function of clustering dimensionality.

Figure 5.4: Execution time of Join as a function of θdom.

5.4.2.3 Varying Parameters of the Algorithm

Let us now see how the dominance and quality thresholds impact runtime performance. The

dominance threshold θdom is used in Merge; the lower the threshold, the fewer intervals

will Merge produce, and pass along to Join. Consequently, the run time of Join should

increase as θdom increases. Figure 5.4 demonstrates that this trend holds for datasets of

different dimensionality. Here, we fix θQ = 0.5, and report the average run time of Join for

each value of θdom, and for most dimensionality settings.

Varying the quality threshold θQ has the opposite effect on the run time of Join. This is

because the higher the threshold, the fewer clusters are generated by Join, and the sooner

it terminates. This intuition is supported by our experimental findings in Figure 5.5. Here,

we set θdom = 0.5 and present the average run time of Join for each value of θQ, and for

most dimensionality settings.

In fact, for higher values of the quality thresholds it is often the case that no clusters at all



CHAPTER 5. RANK-AWARE CLUSTERING OF STRUCTURED DATASETS 143

Figure 5.5: Execution time of Join as a function of θQ.

Figure 5.6: Percentage of users for whom BARAC identified clusters, as a function of θQ.

exist of sufficiently high quality. When this happens, Join terminates after its initial round

of processing, in which it attempts to join 1D intervals into 2D clusters. In Figure 5.6 we

plot the percentage of users for whom clusters were identified, as a function of the quality

threshold θQ. We plot the same data here as in Figure 5.5, with the same dominance

threshold setting, θdom = 0.5.

All experiments so far dealt with the attribute-rank scoring function, and clustered items

according to QtopN . In the following section, we explore the interplay between the quality

thresholds, the distribution of scores induced by the ranking function, and the choice of a

clustering quality measure.
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5.5 Effectiveness of Rank-Aware Clustering: A Qualitative

Analysis

5.5.1 Clustering Quality

We now give a qualitative intuition of the kinds of clusters that are discovered by BARAC.

We use the QtopN quality metric, and the attribute-rank ranking function for the purpose of

this evaluation. We focus our attention on the following set of filtering conditions that are

in-line with our motivating example in Section 5.1: age ∈ [25,35], height ∈ [160cm, 175cm],

education ≥ Bachelor’s, ethnicity = Caucasian, body type ∈ {slim, slender, average, athletic,

fit}.

This set of filtering conditions returns over 30,000 matches. We rank the matches on

a combination of income and education, both from higher to lower. There are about 100

top-matches: women with post-graduate education who make more than $150K. About two

thirds of the top matches are over 29 years old, and so younger matches would not be easily

accessible if results were returned as a ranked list.

Let us now cluster the results of BARAC, using the QtopN quality metric. The following

are some of the clusters that are returned and that deal directly with the correlation between

income and age, and income and education:

• age ∈ [25, 27] ∧ income ∈ [$35K, $75K]

• age ∈ [28, 33] ∧ income ∈ [$75K, $150K]

• age ∈ [28, 33] ∧ income ≥ $150K

• age ∈ [31, 35] ∧ income ≥ $75K

• age ∈ [28, 33] ∧ education = post graduate

• age ∈ [31, 35] ∧ education = post graduate

Note that two clusters are returned that contain different sets of matches with age

between 28 and 33. Note also that the younger matches, aged between 25 and 27, are

returned as a cluster with relatively lower income. These matches would not have been

easily accessible in a single ranked list. BARAC also returned several clusters that are

not directly related to the ranking conditions, but for which a correlation was detected

among attributes at top ranks. So, there was a cluster of matches who are politically very

conservative or conservative and who attend religious services more than once a week or

weekly. Another cluster consisted of matches who are politically middle of the road or

liberal and who attend religious services no more often than monthly.

Recall that BARAC does not partition the dataset. That is, an item may be returned as

part of one or several clusters. This is a feature of our approach that bears some similarity to
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faceted navigation [Wynar, 1992], a popular browsing and information discovery paradigm.

In rank-aware clustering and in faceted navigation alike, the user may encounter the same

item through different paths, with each path describing a particular aspect of the item that

the user may find interesting.

As we illustrated, the clustering outcome depends on the ranking attributes, and how

they correlate with other attributes in the data. We now explore the effect of different

quality measures on the clustering outcome.

5.5.2 Choosing a Clustering Quality Metric

We now demonstrate the qualitative difference between two proposed quality measures,

QtopN and QSCORE&RANK . We use the profile of one particular user, whom we call user1,

as an example in this section. user1 is a representative user with about 60,000 profile

matches.

As we discussed in Section 5.2, QtopN favors regions that contain many items that are

in the top-N lists of their sub-regions, irrespective of the scores and ranks of those items in

top-N lists of the sub-regions. Conversely, QSCORE&RANK assigns a higher quality score

to a region in which top-N lists of the sub-regions intersect at top ranks, particularly if

top-ranked items have significantly higher scores.

Ideally, a rank-aware clustering quality measure should be rich enough to capture the

distribution of scores imposed by the scoring function. QtopN treats all items with N highest

scores equally, and is thus appropriate for scoring functions where the best N items have

higher scores than the rest of the items, but where there is no significant variability in scores

among the top-N . The scoring function attribute-rank is one such function.

Conversely, QSCORE&RANK is most meaningful if there is a significant variability in

scores among items in the top-N . For example, for N = 100 it should hold that the first

10 items have much higher average scores than the following 10 items etc. The scoring

function geo-rank is one such function. We plot the distribution of the top-100 scores of

user1’s items for the two ranking function in Figure 5.7.

We now demonstrate that QSCORE&RANK is more appropriate to use in conjunction

with the geo-rank scoring function for user1. We fix θdom = 0.5 and θQ = 0.7, and compare

the sets of clusters that were identified by QtopN and QSCORE&RANK . QtopN identified

11 clusters, while QSCORE&RANK identified 33 clusters. One of the clusters returned by

QtopN was not returned by QSCORE&RANK , we call it GtopN . QSCORE&RANK found 23

clusters that were not found by QtopN . We refer to the highest- and lowest-quality clusters

from this set as G+
SCORE&RANK and G−SCORE&RANK . We summarize some properties of

GtopN , G+
SCORE&RANK and G−SCORE&RANK in Table 5.4, where we compare the top-N list

of each cluster to the ideal top-N list in terms of ranks and scores. The value in the column

“score loss at 10” contains the difference between the total scores of the top-10 items from

the ideal (the union of top-N items of the individual predicates forming each cluster), and
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Figure 5.7: Top-100 scores for attribute-rank and geo-rank for user1.

Figure 5.8: Top-100 scores for geo-rank for three users.

the top-10 items for the cluster.

GtopN is a two-dimensional cluster on attributes height and income. The top-N list of

GtopN contains items that were in ranks 1 through 47 in the top-N list on height (median

rank 27), but in ranks 8 through 100 on income (median rank 70). So, while the intersection

happens at the top of the top-N on height, it is closer to the bottom of the top-N on income.

This cluster seems less valuable than the other two clusters in the table, based on both the

lower score loss, and the lower (worse) median rank.

QSCORE&RANK is sensitive to the distribution of scores. The same scoring function, e.g.

geo-rank, may not generate a distribution of scores that is appropriate for QSCORE&RANK

for all users because their filtering conditions may differ. For users who live in sparsely-

populated areas this function may produce very few high-scoring items. Consider the dis-

tribution of top 100 scores for three users in Figure 5.8. Users user1 and user2 have similar

distributions, while user3 only has four high-scoring items in his top-100, followed by 96

items with similar low scores. user3 is not a good candidate for QSCORE&RANK , and a
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best worst median score

rank rank rank loss at 10

GtopN 8 100 70 1.77

G+
SCORE&RANK 1 98 40 5.61

G−SCORE&RANK 1 99 40 5.42

Table 5.4: Characteristics of some groups identified by QtopN and QSCORE&RANK .

score-insensitive quality measure like QtopN should be used instead.

5.6 Related Work

Clustering Web Documents: The motivation for this work is similar to ours, namely,

that grouping results and generating descriptions for these groups greatly improves the

user’s ability to understand vast datasets. Clustering of text documents has been explored

extensively in Information Retrieval [Leuski, 2001; Dakka and Gravano, 2007; Bonchi et

al., 2008]. Leuski [Leuski, 2001] experimentally demonstrates that presenting clusters of

documents can be significantly more effective than presenting a ranked list. He also shows

that clustering can be as effective as the interactive relevance feedback approach based on

query expansion. In [Dakka and Gravano, 2007] the authors combine an offline (query-

independent) document clustering method and an online (query-dependent) method to

generate multi-document summaries of clustered news articles. Bonchi et al [Bonchi et

al., 2008] use search query logs to cluster search results into coherent well-separated sets for

presentation purposes. In contrast, our work focuses on the interaction between structure

and ranking in clustering.

Clustering Relational Data: Li et al. [Li et al., 2007] argue for native support of

clustering and ranking operators in relational databases. The authors demonstrate how

clustering can be implemented by means of a bitmap index over a summary grid. In their

framework, the grouping (clustering) and ordering attributes, as well as the number of

clusters, are specified by the user, and the focus of the work is on efficiency. The focus

of our work is, in addition to efficiency, on automatically determining which clustering

attributes are meaningful given a scoring function.

Faceted Navigation: This methods facilitates information discovery over large datasets.

Faceted classification defines items using mutually exclusive, collectively exhaustive prop-

erties [Wynar, 1992], and has been used in faceted navigation, where items are classified

simultaneously along multiple facets, and item counts are presented per facet. A strong

limitation is that a facet is a single attribute, and no attribute correlations are captured.

Several extensions of the faceted data model were proposed. Ross and Janevski [Ross and

Janevski, 2004] developed entity algebra, a faceted query language that supports operators
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such as selection and semi-join. Ben-Yitzhak et al. [Ben-Yitzhak et al., 2008] extended

faceted navigation to include quantitative summary information other than item counts,

such as average price and rating, and developed methods for efficient computation of such

statistics over correlated facets.

Roy et al. [Roy et al., 2008] proposed techniques that dynamically suggest facets for

database exploration, with the goal of minimizing navigation time. At every step, the

system asks the user a set of questions about his information need, and dynamically fetches

the next most promising set of facets. In [Dash et al., 2008], the authors extend Solr, a

popular search engine, with dynamic faceted search for exploring data with both textual

content and structured attributes. Given a keyword query, the system selects a small set of

interesting attributes, where interestingness measures the difference between expected and

actual attribute values.

Our work is complementary to faceted navigation. While we focus on attribute correla-

tions, our analysis can be used to propose to the user which, among many attributes, may

be more interesting to explore in a particular dataset.

The Many-Answers Problem: In [Chaudhuri et al., 2004] the authors state the

Many-Answers Problem and show how correlations among attribute values in a structured

datasets can be used to automatically derive a suitable ranking function. To this end,

the authors develop a comprehensive probabilistic information retrieval ranking model and

present efficient processing techniques. A related Empty-Answers Problem is discussed

in [Agrawal et al., 2003]. Here, the authors present an adaptation of inverse document

frequency (IDF) that is used for automatic ranking of results. The authors also propose to

incorporate workload information into the ranking.

Rank Aggregation: Fagin et al. [Fagin et al., 2003b] propose rank aggregation, in

which ranked exploration of large high dimensional datasets is viewed as a similarity search

problem. Given a ranking function on d attributes, the algorithm considers d ranked lists,

and aggregates these lists using a variant of the threshold algorithm [Fagin et al., 2003c].

An approximation based on dimensionality reduction is also proposed, in which projections

along random lines in the d-dimensional space are taken, and the computation is carried

out on the projection.

Our work differs from [Fagin et al., 2003b] in that we consider non-ranking attributes

in addition to the ranking attributes. Rather than computing a global aggregate rank or

similarity score, we consider the correlations that hold among attributes of the data in

various projections of the space, and identify items, or groups of items, that are best from

among comparable, given the ranking function.

Skyline Operator: A alternative result presentation method in presence of multi-

dimensional ranking functions is the skyline [Börzsönyi et al., 2001]. A point in multi-

dimensional space is said to belong to the skyline if it is not dominated by any other point,

i.e., if no other point is as good or better in all dimensions, and strictly better in at least
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one dimension. In Chapter 3 we presented a skyline visualization of ranked results in a

two-dimensional space. Skylines are a valuable data visualization tool, however, the results

of this visualization are difficult to interpret for datasets of high dimensionality. The notion

of dominance may be applicable to other aspects of our work, such as cluster selection, and

we plan to consider this direction in the future.

Integrating Ranking with Clustering: Sun et al. [Sun et al., 2009] recently pre-

sented RankClus, a framework that integrates ranking with clustering in a heterogeneous

information network such as DBLP. RankClus is based on a mixture model that uses mutual

reinforcement between clustering and ranking. Our high-level motivation is also to treat

clustering and ranking as parts of a unified framework. However, our application domain

(structured datasets with user-defined ranking functions) and technical approach are very

different.

5.7 Conclusion

In this chapter we introduced rank-aware clustering, a novel result presentation method

for large structured datasets. We developed rank-aware clustering quality measures, and

proposed BARAC: a Bottom-up Algorithm for Rank-Aware Clustering, an Apriori-style

algorithm geared specifically at such quality measures. We presented an extensive exper-

imental evaluation of scalability, and gave an intuition of the effectiveness of BARAC on

Yahoo! Personals datasets. A large-scale user study is currently underway in scope of the

Yahoo! Research Sandbox project. The goal of the study is to ascertain the effect of our

result presentation method on the user experience. We look forward to reporting these

results in a subsequent study. In the future we will consider performance optimizations,

and will explore the applicability of our methods to other large structured datasets. We

will also explore user interface design issues such as cluster selection.
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Chapter 6

Other Contributions

This chapter summarizes some work that is not directly related to the main theme of this

thesis, but that was carried out as part of the doctoral research.

6.1 Data Modeling in Complex Domains

6.1.1 Schema Polynomials and Applications

This section is based on joint work with Kenneth A. Ross and appeared in [Ross and

Stoyanovich, 2008].

Conceptual complexity is emerging as a new bottleneck as database developers, appli-

cation developers, and database administrators struggle to design and comprehend large,

complex schemas. Applications in domains as diverse as medicine, archaeology, and astron-

omy often rest on database schemas with hundreds of relations and thousands of columns.

The schema design and maintenance, as well as application development, are all extremely

challenging for schemas of this size.

The conciseness of a schema depends critically on the idioms available to express the

schema. As an analogy, consider the class of boolean expressions with conjunction and

disjunction. It is well known that there are formulas that are compact in one representation

(say disjunctive normal form) but exponentially bigger in another (say conjunctive normal

form), and vice versa.

Three well-known formalisms for writing schemas are the relational, the object-oriented,

and the faceted approaches. Each of these is very good at expressing certain classes of

schema, but poor at expressing certain other classes of schema. Object-oriented schemas

allow the factorization of common attributes into an inheritance hierarchy. Faceted schemas

allow the orthogonal composition of many independent attributes; in an e-commerce appli-

cation, for example, a product may be independently classified by size, by brand, and by

color. Traditionally, one has been limited to just one of these design methodologies when
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creating schemas. However, even if part of the schema is compactly represented using that

methodology, other parts may not be.

We define a higher-level conceptual data representation language that allows the schema

to be manipulated in ways that expose the strengths of each of these data modeling ap-

proaches. If a schema has parts that are compact when expressed according to one approach,

then that part of the schema should be expressed using that approach, even if other parts

of the schema use a different approach. We propose a formal language for representing

schemas, and derive a set of properties that allow one to manipulate schema expressions

while preserving the set of representable tuples. We propose that standard design method-

ologies such as entity-relationship modeling [Ramakrishnan and Gehrke, 2003], modeling

in UML [Booch et al., 2005], faceted modeling [Wynar, 1992], and relational normaliza-

tion [Ramakrishnan and Gehrke, 2003], produce outputs in this framework rather than

going directly to a physical relational schema, with the following advantages:

• One can explore a variety of physical representations obtained using different equiva-

lent expressions for a schema.

• One can derive an unambiguous logical representation that allows transformations,

such as attribute factorization and subtraction, that are not straightforward for sets

of physical tables.

• Different users can orient the schema to their own points of view. One user may

impose an inheritance hierarchy (e.g., factoring out the location of manufacture) while

another may impose an alternative hierarchy (e.g., factoring out the product-type).

These conceptual views are compatible, and can be automatically translated into the

chosen physical representation.

• Users can project out parts of the schema that they are not interested in. The remain-

ing portion can be simplified using various equivalences, leading to a description that

is much easier to understand than a schema with hundreds of tables and thousands

of columns.

Our novel schema modeling framework, which we call schema polynomials, reasons over

schema expressions. The basic notion in describing schemas is the attribute: a label, along

with a data type, that represents an aspect of a concept. Examples of attributes are “age”,

“height”, “company-name”, etc. We use attributes to define tuple-descriptors:

Definition 6.1.1 A tuple-descriptor T is defined recursively with the context free grammar:

T ::= 0 | 1 | A | B | C | . . . | TT | T + T | T − T

We will describe the concatenation TT as multiplication. A, B, C, . . . are the attribute

names, 1 is a special symbol denoting an empty product (i.e., the empty set of attributes),

and 0 is a special symbol denoting an empty sum. �
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In [Ross and Stoyanovich, 2008] we demonstrate how tuple-descriptors may be used to

concisely represent schemas, and we illustrate this here with an example. Consider the

following schema expression.

ABCD + ABG + ACD + AG + BCH (6.1)

When we write ABCD in Expression 6.1 we mean that tuples with attribute names A,

B, C, and D are valid for this schema. When we write S1 +S2 we mean that a tuple is valid

for either S1 or S2. Our schema could be mapped to a collection of five stored tables ABCD,

ABG, ACD, AG, and BCH. We use bold script to describe physical level structures such

as tables, and math script for conceptual level expressions. We could alternatively factorize

the schema into the representation:

A(B + 1)(CD + G) + BCH (6.2)

This representation has fewer syntactic elements than Expression 6.1. Common occur-

rences of some attributes have been factored out. The B + 1 subexpression allows tuples

having either a valid or a null value for attribute B. Expression 6.2 does not have a direct

relational interpretation, since there is no relational construct to express CD + G. Never-

theless, one can map this expression to a set of tables for storage as follows: Add a new

unique identifier column (say I) to represent the link between the A(B + 1) subexpression

and the (CD + G) subexpression, to yield tables ABI, ICD, IG and BCH, where B can

be null in ABI. This transformation is correct only with constraints on the new attribute

I. The constraint for I in ABI says that the value of I must appear in exactly one of ICD

and IG. There must also be foreign key constraints on I into ABI from both ICD and IG.

An alternative rewriting of Expression 6.2 is:

A(B + 1)[(CD + 1)(G + 1)− CDG− 1] + BCH (6.3)

The subtractions in Expression 6.3 can be interpreted as constraints stating that (a) C,

D, and G cannot all be non-null, and (b) C, D, and G cannot all be null. This expression can

be mapped to a physical schema ABCDG, BCH, where ABCDG has various null/not-

null constraints on B, C, D, and G. If one cared only about attributes A, B, and C in

this schema, one could project out the other attributes to obtain from Expresssion 6.1 the

simpler expression ABC + AB + AC + A + BC, which could again be factorized in various

ways. Yet another factorization of Expression 6.1 is:

C(ABD + AD + BH) + ABG + AG (6.4)

This would be a natural factorization in a hierarchical or object-oriented view in which C

is the primary dimension of classification and is inherited from a higher-level entity. Unlike

traditional object-oriented data modeling that imposes a single hierarchical structure, our
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approach allows different users with different points of view to “orient” the schema according

to the dimensions they are most interested in. In such a case, the measure of simplicity

for a user might give added weight to the absence of redundancy for the C attribute in

Expression 6.4, since the user cares more about C than the other attributes.

In [Ross and Stoyanovich, 2008] we present rewrite rules that generate efficient physical

representations of schema expressions. We develop several schema factorization heuristics,

and present an experimental evaluation on a large real-life relational schema, demonstrating

a significant improvement in schema compactness. Finally, we introduce an application of

schema polynomials to the representation of relationships with constraints.

6.1.2 Symmetric Relationships and Cardinality-Bounded Multisets

This section is based on joint work with Kenneth A. Ross and appeared in [Ross and

Stoyanovich, 2004].

Complex application domains often require the modeling of relationships, some of which

are symmetric. In a binary symmetric relationship, A is related to B if and only if B is

related to A. Symmetric relationships between k participating entities also arise naturally

in real-world applications, and can be represented as multisets of cardinality k. For exam-

ple, in a law-enforcement database recording meetings between pairs of individuals under

investigation, the “meets” relationship is symmetric. This relationship can be generalized

to allow meetings of up to k people. The k-ary meeting relationship would be symmetric in

the sense that if P = (p1, . . . , pk) is in the relationship, then so is any column-permutation

of P .

As another example consider a database recording what television channel various view-

ers watch most during the 24 hourly time-slots of the day. For performance reasons, the

database uses a table V (id, date, C1, . . . , C24) to record the viewer (identified by id), the

date, and the twenty-four channels most watched, one channel for each hour of the day.

(A conventional representation as a set of slots would require a 24-way join to reconstruct

V .) This table V is not symmetric, because Ci is not interchangeable with Cj: Ci reflects

what the viewer was watching at time-slot number i. Nevertheless, there are interesting

queries that could be posed for which this semantic difference is unimportant. An example

might be “Find viewers who have watched channels 2 and 4, but not channel 5.” For these

queries, it could be beneficial to treat V as a symmetric relation in order to have access to

query plans that are specialized to symmetric relations.

Sets and multisets have a wide range of uses for representing information in databases.

Bounded cardinality multisets would be useful for applications in which there is a natural

limit to the size of multisets. This limit could be implicit in the application (e.g., the

number of players in a baseball team), or defined as a conservative bound (e.g., the number

of children belonging to a parent).

Storing a symmetric relation in a conventional database system can be done in a number
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of possible ways. Storing the full symmetric relation induces some redundancy in the

database: more space is required (up to a factor of k! for k-ary relationships), and integrity

constraints need to be enforced to ensure consistency of updates. Updates need to be aware

of the symmetry of the table, and to add the various column permutations to all insertions

and deletions. Queries need to perform I/O for tuples and their permutations, increasing

the time needed for query processing.

Alternatively, a database schema designer could recognize that the relation was sym-

metric and code database procedures to store only one representative tuple for each group

of permuted tuples. A view can then be defined to present the symmetric closure of the

stored relation for query processing. The update problem remains, because updates through

this view would be ambiguous. Updates to the underlying table would need to be aware of

the symmetry, to avoid storing multiple permutations of a tuple, and to perform a deletion

correctly. For symmetric relations over k columns, just defining the view using standard

SQL requires a query of length proportional to k(k!).

For both of the above proposals, indexed access to an underlying symmetric relationship

would require multiple index lookups, one for each symmetric column.

A third alternative is to model a symmetric relation as a set [Date, 2003] or multiset.

Instead of recording both R(a, b, c, d, e) and R(b, a, c, d, e), one could record R ′(q, c, d, e),

S(a, q), and S(b, q), where q is a new surrogate identifier, and R ′ and S are new tables. The

intuition here is that q represents a multiset, of which a and b are members according to table

S. Distinct members of the multiset can be substituted for the first two arguments of R. To

represent tuples that are their own symmetric complement, such as R(a, a, c, d, e), one inserts

S(a, q) twice. This representation uses slightly more space than the previous proposal, while

not resolving the issue of keeping the representation consistent under updates. Further,

reconstructing the original symmetric relation requires joins.

In [Ross and Stoyanovich, 2004] we argue that none of these solutions is ideal, and that

the database system should be responsible for providing a symmetric table type. We propose

techniques to enable such a table type, and provide:

• An underlying abstract data type to store the kernel of a symmetric relation, i.e.,

a particular non-redundant subset of the relation. We show how updates on this

data type would be handled by the database system. We describe how relational

normalization techniques should take account of symmetric relations during database

design. Both normalization and the proposed representation of symmetric relations

aim to remove redundancy, so combining these two approaches should be beneficial.

• An extension of the relational algebra with a symmetric closure operator γ. We show

how to translate a query over a symmetric relation into a query involving γ applied to

the kernel of the relation. We provide algebraic equivalences that allow the rewriting

of queries so that work can be saved by applying γ as late as possible.
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• A method for inferring when a view is guaranteed to be symmetric. By using this

method, the database system has the flexibility to store a materialized view using the

more compact representation.

• A syntactic extension to SQL that allows the succinct expression of queries over sym-

metric relations.

6.1.3 A Faceted Query Engine Applied to Archaeology

This section is based on joint work with Kenneth A. Ross and Angel Janevski, and appeared

in [Ross et al., 2005; Ross et al., 2007].

A number of application domains require the modeling of complex entities within classi-

fication hierarchies. For many of these domains, the hierarchy and the entity structure are

the main sources of complexity, while other features of the domain, such as relationships

between entities, are relatively simple. In such domains it is natural to make the set of

entities the basic conceptual structure.

Faceted classification was introduced by an Indian librarian and classificationist S.R.

Ranganathan, and was first used in his Colon Classification in the early 1930s. Faceted clas-

sification treats entities or groups of entities as collections of clearly defined, mutually exclu-

sive, and collectively exhaustive aspects, properties or characteristics, called facets [Wynar,

1992]. For example, in an archaeology domain, we may classify artifacts along multiple

orthogonal dimensions: by time period, by culture, by material, or by geographic location.

Recent work, see for example flamenco.berkeley.edu and facetmap.com, proposes

search facilities for hierarchical data using faceted hierarchies. Ross and Janevski [Ross

and Janevski, 2004] developed a faceted data model, and proposed a query language, called

Entity Algebra, that is appropriate for faceted domains. The primary goal of their work was

to create a data model and a query language that is understandable to non-technical users,

while still allowing one to compose complex queries from simple pieces.

Building on the work of [Ross and Janevski, 2004] we developed the Faceted Query En-

gine. Our work was part of an inter-disciplinary project that aims to apply computational

tools from Robotics, Virtual Environments, and Databases to modeling, visualizing, and

analyzing historical and archaeological sites (see www.learn.columbia.edu/nsf). We col-

laborated with archaeologists to create a collection of orthogonal hierarchical classifications

of finds from two archaeological excavations: a large-scale dig of ancient artifacts in Mem-

phis, Egypt [Giddy, 1999], and a medium-scale dig of iron-age finds from Thulamela, South

Africa. Our system provides a web-based user interface, and allows one to query thousands

of objects from the two locations with respect to any of the facets, and to perform spa-

tial and temporal analysis of the data. Users of our system can access text, images, and

multimedia data related to the finds.

Figure 6.1 provides a screenshot of our system with data from the Thulamela excavation.
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Figure 6.1: A screenshot of the Faceted Query Engine.

Our system implements the full Entity Algebra [Ross and Janevski, 2004] and supports the

following operators: selection, union, intersection, set difference, and semi-join.

6.2 ReoptSMART: a Learning Query Plan Cache

This section is based on joint work with Kenneth A. Ross, Jun Rao, Wei Fan, Volker Markl,

and Guy Lohman. It appeared in [Stoyanovich et al., 2008b].

6.2.1 Introduction

Query optimization is central to the efficient operation of a modern relational database

system. The query optimizer is typically invoked every time a new query enters the system.

The optimizer identifies an efficient execution plan for the query, based on available database

statistics and cost functions for the database operators. In commercial systems, great care

has been taken to reduce the overhead of query optimization. However, the task of the

optimizer is complex, and the join ordering problem alone has complexity that is exponential

in the number of tables [Ioannidis et al., 1997]. As a result, the cost of optimization may

represent a significant fraction of the elapsed time between query submission and answer

generation.
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If identical queries are submitted, the database system can cache the optimizer’s plan the

first time, and avoid re-optimization for subsequent query invocations. The query processor

merely has to check for syntactic identity of the query with the cached query. This idea can

be generalized to queries with parameters. Constants in the query are replaced with “bind

variables” to generate a query template, in which the bind variables are parameters. The

query processor can then cache a plan for a query template rather than for a query. As

a result, frequently-submitted queries that differ only in the constants can avoid the cost

of query optimization. Oracle provides such a facility, as do IBM DB2 and Microsoft SQL

Server.

There is a potential problem with this approach. A single plan is chosen for all instances

of a query template. This plan, while optimal in a particular region of the parameter space,

may be sub-optimal in another region. Savings achieved by not invoking the query optimizer

may be nullified by the choice of a sub-optimal execution plan. In fact often the difference

in cost between the optimizer’s plan and the cached plan exceeds the optimization time.

Modern transaction processing systems are often required to handle thousands of trans-

actions per second. Consider for example a web-based OLTP application, such as an on-line

book store described by the TPCW benchmark (www.tpc.org/tpcw). The system executes

canned queries that share a small number of pre-defined templates, such as queries gen-

erated by the same HTML form, but differ in parameter values. An interactive system is

expected to complete query processing and return results to the user in a short amount of

time, often less than a second. A single user’s queries may exhibit locality in the values of

the submitted parameters, in which case a single query execution plan may be good enough.

However, this locality is lost when many users interact with the system at any given time.

Therefore, to ensure that an optimal plan is chosen for every query invocation, every in-

stance of the query must be optimized anew. Many of these queries involve joins of several

database tables and are thus non-trivial to optimize. In this setting, query optimization

may add significant overhead to the overall execution time.

Parametric query optimization (PQO) models the distribution of plans chosen in differ-

ent regions of the parameter space of a query template [Hulgeri and Sudarshan, 2003], or of

a set of templates [Ghosh et al., 2002]. A PQO system is trained off-line using a number of

invocations of the query optimizer on instances of the query template. The result of such

training is a function that, given an instance of the query parameters, identifies a plan that

is likely to be the optimizer’s choice. To be useful, this function must execute quickly, much

faster than the optimizer itself. The function must also have a compact representation, so

that a collection of such functions can be managed in memory by the database system.

In [Stoyanovich et al., 2008b] we present ReoptSMART, a parametric query optimization

framework that uses machine learning techniques to analyze the training set, and to generate

a set of classifiers that map parameter instances to plans.

Compared with earlier geometric approaches [Hulgeri and Sudarshan, 2003], machine
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Select i_title, a_lname, i_publisher

From Author, Item

Where a_id = i_a_id And i_stock < :b1 And i_page < :b2

Figure 6.2: The query template for TPCW-1.

learning techniques that we use have the advantage of being effective with much less training

data, and of automatically handling non-linear boundaries in plan space. Due to the com-

pactness of the models, our classifiers have modest space requirements linear in the number

of classes, and typically on the order of 10 KB per class. Our techniques apply for both

qualified and categorical attributes of any data type. We demonstrate experimentally that

our methods accurately predict plans for uniform as well as for skewed data distributions.

We demonstrate that the testing functions (i.e., identifying a plan given parameter values)

can be performed in less than a millisecond per query. This is typically much cheaper than

the cost of query optimization.

We apply two state-of-the-art ensemble methods, AdaBoost [Freund and Schapire, 1999]

and Random Decision Trees [Fan et al., 2005], to the problem of Parameteric Query Opti-

mization, and we review each of these in turn.

6.2.2 AdaBoost

Boosting is a general and provably effective method for improving the accuracy of any

learning algorithm. AdaBoost [Freund and Schapire, 1999] is a widely accepted boosting

algorithm that can improve the accuracy of a collection of “weak” learners and produce an

arbitrarily accurate “strong” learner. The weak learners are only required to be slightly

better than random guessing, i.e., more than 50% accurate in the case of binary classifica-

tion.

AdaBoost is a binary classifier, while PQO is a multi-class problem. Rather than opting

for the “one-vs-all” approach, which does not provide a measure of classification confidence,

we use AdaBoost in scope of error-correcting output codes [Dietterich and Bakiri, 1995].

A critical modeling question that must be answered in order to apply AdaBoost to a

particular application domain, in this case PQO, is what is the right choice for a weak

learner. Our choice of a weak learner was guided by the observation that the selectivity of

a single parameter can be used to discriminate between an optimal and a sub-optimal plan

for a query in a particular selectivity region.

Consider the query in Figure 6.2 based on the TPCW benchmark. The plan space for

this query according to the DB2 Universal Database version 8.2 optimizer is represented in

Figure 6.3. In this example the optimizer chooses the optimal plan based on the product

of the selectivities of the two parameters. Plan 1 executes a nested loops join with the
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Figure 6.3: Optimal plan space for query TPCW-1.

relation Item as the outer, and is chosen by the optimizer when the product of selectivities

of b1 and b2 is very low. This happens when one or both of the selectivities are close to

0, and their product does not exceed 0.01. Plan 2 performs a hash join with Item as the

build input. This plan is chosen for intermediate values of the two selectivities, with their

product between 0.01 and 0.13. Plan 3 utilizes a hash join between the two relations with

Author as the build input. This plan is optimal when both selectivities are higher than 0.2

and their product is above 0.13.

For queries with d parameters, the optimizer chooses a query execution plan based on

individual selectivities and/or on products of any subset of the d selectivities. Products of

selectivities naturally correspond to estimates of the relative size of intermediate or final

results during plan execution. Explicit enumeration of all possible products (i.e. of all

possible subsets of parameters) is exponential. We design our weak learners to avoid the

exponential explosion and consider the selectivity of one parameter at a time. For Plan 1

we observe that the product of the selectivities is low if either one of the selectivities is less

than 0.004, in which case the selectivity of the other parameter is immaterial, or if both

selectivity(b1)ε[0, 0.06] and selectivity(b2)ε[0, 0.05].

The design of our weak learners is based on the above observation. Each weak learner is

a discrete vector of weighted probabilities. The probabilities represent the likelihood that

a particular plan is chosen by the optimizer when the selectivity falls within each bucket.

The weights are adjusted over time by the AdaBoost meta-learner. A weak learner of this

kind is defined for each parameter, and for each plan.
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6.2.3 Random Decision Trees

A decision tree is a classifier with a hierarchy of decisions made at each node of the tree.

One traverses the tree from root to leaf, choosing the appropriate child based on the decision

criterion coded into each node. For example, a node might have children for different ranges

of the selectivity of the first predicate of a query template.

The Random Decision Tree (RDT) method constructs multiple decision trees randomly.

The construction selects a feature (in our case a predicate selectivity) at random from

among those features not yet used in higher levels of the tree. A partitioning value for

that feature is also selected at random from some distribution. Training data points from

the node are then distributed to the node’s children. Construction stops when the depth

reaches a certain limit, when the number of data points in a node is sufficiently small, or

when all points in a node have the same label (pure node).

During the on-line phase, each tree is traversed using the actual query selectivities, to

arrive at a leaf node L containing a number of plans. A posterior probability is calculated

for each plan P . This probability is simply the proportion of the training points in L that

are labeled with P . The posterior probabilities are averaged across all trees, and the plan

with the highest average is output. RDT has been shown to reliably estimate probabilities,

closely approximate non-linear boundaries, and reduce variance when the number of training

examples is small [Fan et al., 2005].

To adapt RDT for query plan prediction, we make one important improvement based

on our knowledge about the behavior of the optimizer. While predicates are still chosen

at random, the decision threshold is no longer chosen at random. Instead, for a randomly

chosen predicate, we compute a threshold with the highest information gain [Mitchell, 1997].

This way we are more likely to generate pure nodes, which leads to smaller trees.

6.2.4 Results

Figures 6.4 and 6.5 present the decision boundary learned by AdaBoost and RDT, respec-

tively, for query TPCW-1. The color of a region indicates the learned plan for that region.

In [Stoyanovich et al., 2008b] we present an experimental evaluation of ReoptSMART on

the DB2 Universal Optimizer over selected queries from two workloads: the TPCW and the

Dutch DMV. Our results demonstrate a new win over the baseline methods, and indicate

that Random Decision Trees outperform AdaBoost in our framework.

6.3 Estimating Individual Disease Susceptibility Based on

Genome-Wide SNP Arrays

This section presents MutaGeneSys, and is based on joint work with Itsik Pe’er that ap-

peared in [Stoyanovich and Pe’er, 2007].
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Figure 6.4: AdaBoost decision boundary for TPCW-1.
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Figure 6.5: RDT decision boundary for TPCW-1.

6.3.1 Introduction

Availability of genetic information continues to revolutionize the way we perceive medicine,

with an ever stronger trend towards personalized diagnostics and treatment of heritable

conditions. One challenge towards this goal is per-patient evaluation of susceptibility to

disease and potential to gain from treatment based on single nucleotide polymorphisms

(SNPs) – DNA sequence variations occurring when a single nucleotide in the genome dif-

fers between individuals. Significant attention of the research community is devoted to

determining direct causal association between the genotype and the phenotype, and many

interesting associations have already been reported. The Online Mendelian Inheritance

in Man (OMIM) database (www.ncbi.nlm.nih.gov/omim) is currently the most complete

source of such associations. A text search of OMIM yields, for example, a correlation be-

tween a C/T SNP (rs908832) in exon 14 of the ABCA2 gene and Alzheimer disease and a
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connection between a SNP in the IFIH1 gene, rs1990760, and type-I diabetes.

Much individual genetic data is now being collected in the context of association stud-

ies, typing thousands of individuals for millions of variants. Yet, fully exploiting genetic

information for disease prediction is difficult for two reasons. First and foremost, genetic in-

formation remains expensive to collect, and it is currently economically prohibitive to make

a complete set of an individual’s genotypes of SNPs available for analysis. Cost-effective

methods such as SNP arrays currently exist, and are used for collecting genetic data from

1-5% of all 11 million human SNPs. This calls for the development of techniques that can

effectively utilize partial genetic information for disease prediction. The second reason that

makes personalized disease prediction difficult is the limited amount of cross-referencing be-

tween OMIM and other NCBI databases. This motivates the development of an integrated

framework geared towards personalized genome-wide disease prediction. In this section we

describe MutaGeneSys, a system that can be seen as a first step towards such a framework.

Several studies, culminating with the International HapMap project [HapMap, 2005],

report on a significant amount of correlation among markers in the genome [Pe’er et al.,

2006]. This genomic redundancy enables one to experimentally type an incomplete set of

SNPs, and to expand this set by including correlated proxies. Indirect association between

proxy genotype and phenotype thus facilitates effective and efficient association analysis.

In the simplest case, SNPs are correlated pairwise, and one of them may be predicted by

the other; such correlations are referred to as single-marker predictors. Many two-marker

and three-marker predictors are also known. Correlations between causal SNPs and their

proxies are associated with a coefficient of determination (squared Pearson’s correlation

coefficient) r2ε[0, 1]. Marker correlation is population-dependent [de Bakker et al., 2006]; the

typed SNPs, and hence, the allowed predictors also depend on the genotyping technology.

For example, according to our marker correlation dataset [Pe’er et al., 2006], we can best

predict the minor allele T of rs1205 on chromosome 1 based on the the Affymetrix GeneChip

500K genotyping technology, and the prediction accuracy is r2 = 0.733 (in the Japanese

and Chinese population). OMIM links the predicted SNP rs1205 with Systemic Lupus

Erythematosus (SLE) and antinuclear antibody production.

Genome-wide correlation can be used to augment an individual’s genetic information,

greatly enhancing its diagnostic value. In the example above, if rs1205 was not typed, but

rs12076827 and rs1572970 were, probabilities for the presence of the SLE-associated variant

may be estimated. Our project is the first step in this direction. Our goal is to stream-line

the process of correlating SNP information with heritable disorders, and to enable real-time

retrieval of disease susceptibility hypotheses on genome-wide scale.

6.3.2 Methods

We integrate three datasets: the International HapMap project [HapMap, 2005], Online

Mendelian Inheritance in Man (www.ncbi.nlm.nih.gov/omim), and a dataset of marker
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correlations [Pe’er et al., 2006]. We use HapMap – a comprehensive repository of SNP

genotypes, to compile population-specific lists of SNP alleles and frequencies. Our prediction

dataset consists of single-marker and two-marker correlations; consequently, these are the

types of correlation that our system supports.

Both HapMap and marker correlation datasets are clean, non-redundant, and available

in machine-processable form. The challenge with these datasets is the sheer volume of

data. However, while there is a lot of information regarding correlations along the genome

(the marker correlation dataset is large), relatively little is still known about correlations

between SNPs and heritable disorders. We observe that our system can take advantage of

marker correlations only if they ultimately lead to a hypothesis of disease susceptibility,

and so we use available marker-to-disorder data as the limiting factor. In other words, a

correlation between SNP1 and SNP2 is only useful in our processing if at least one of these

SNPs is associated with a heritable disorder.

We currently use OMIM, a repository of publications about human genes and genetic

disorders, as our data source for marker to disorder associations. Associations between

SNPs and diseases are not readily available in machine-processable form, and we resort to

parsing this information from the text. We process OMIM record by record, looking for

occurrences of rs numbers (cross-references from OMIM to dbSNP). We then assume that

the mentioned SNP is associated with the heritable trait to which the current OMIM record

pertains.

6.3.3 Results

Our database contains a significant amount of SNP and marker correlation data, but only a

limited number of SNP to OMIM associations. Across all populations and platforms we store

over 10 million SNPs, close to 50 million single correlations, and over 20 million two-marker

correlations. OMIM contains about 18,000 scientific articles, many of which are not relevant

to association studies. However, we still identify 187 articles that mention associations

between heritable disorders and SNPs, with 133 unique participating SNPs. Combining

OMIM with marker correlation data, we are able to estimate disease susceptibility for

additional 328 unique single-marker pairs, and 396 double-marker sets. The dataset is

enriched with a total of 1,312 population-specific correlations. The number of susceptibility

hypotheses will grow as more information about direct associations between SNPs and

heritable disorders becomes available.

For an example of the effectiveness of MutaGeneSys, consider age-related macular degen-

eration (ARMD). According to OMIM, two SNPs are implicated in this disorder: rs3793784

in the ERCC6 gene and rs380390 in the CFH gene. MutaGeneSys associates 72 additional

SNPs with ARMD. As another example, Systemic Lupus Erythematosus (SLE) is associ-

ated with two CRP polymorphisms in OMIM; MutaGeneSys uses 15 additional SNPs to

indicate potential susceptibility to SLE.
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Figure 6.6: Results of MutaGeneSys in scope of the HapMap genome browser.

The complete version of our system is available at maget.c2b2.columbia.edu/mutagenesys.

The web interface accepts genotype queries specific to an individual, and estimates potential

disease susceptibility by looking for population-specific disease associations that also meet

the specified correlation coefficient cut-off. The system reasons with both single-marker and

two-marker correlations. Results include the causal and the proxy SNPs, the correlation

coefficient, and provide a link to the relevant OMIM record and to the portion of the genome

in HapMap GBrowse. The system generates HTML and XML output.

Our findings have also been incorporated directly into the HapMap genome browser and

into James Watson’s personal genome sequence browser, as the OMIM disease association

track. These sites only use single-maker correlations, and display links to potentially rele-
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vant OMIM records irrespective of the population and of the coefficient of determination.

Figure 6.6 presents a view of our findings for a particular region on Chromosome 1, as part

of the HapMap genome browser.

6.3.4 Discussion

MutaGeneSys cannot yet be considered a source of diagnostic predictions, because of a num-

ber of uncertainties involved in going from a specific marker to disease. Given the available

data, we made our best effort to control for population and correlation-specific effects:

marker associations are computed separately for different populations, and susceptibility

results include correlation parameters. For lack of information, we make two assumptions

about OMIM markers: that they are causal, and that they correspond to the minor allele.

(We incorporate allele frequencies from HapMap to determine which allele to consider as

minor in a particular population.) Another source of uncertainty is that specific markers

may have different levels of penetrance, and therefore have different value as diagnostic

predictors. Because of these factors we are currently only able to estimate, not diagnose,

individual disease susceptibility.
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Chapter 7

Conclusion

In this thesis we proposed novel search and ranking techniques that improve the user expe-

rience and facilitate information discovery in several semantically rich application domains.

We showed how the social context in social tagging sites can be used for user-centric in-

formation discovery. We proposed novel ontology-aware search and ranking techniques,

and applied them to scientific literature search and to ranking in Wikipedia. We addressed

data exploration in ranked structured datasets, and proposed a rank-aware clustering algo-

rithm that uses semantic relationships among attributes of high-quality items to facilitate

information discovery.

7.1 Summary of Contributions

We now elaborate on our technical contributions and outline some promising future direc-

tions.

In Chapter 2 we described the goals and challenges of context-aware ranking on the

Social Web. We showed how a user’s social behavior in a collaborative tagging site can

be used to improve the quality of content recommendation. We presented network-aware

search, a novel search paradigm where the score of an item is computed based on a user’s

social network. We showed how the standard top-K processing algorithms can be used for

network-aware search, and presented performance optimizations that explore the trade-off

between query processing time and space overhead. We provided an extensive experimental

evaluation of our techniques on a dataset from Delicious, a leading social tagging site.

Our techniques improve the current state of the art in search and ranking on the So-

cial Web, but also reach beyond social tagging sites, and towards incorporating the social

dimension into general Web search.

In Chapter 3 we tackled the challenge of enhancing relevance ranking in scientific lit-

erature search. We describe PubMed, the largest bibliographic source in the domain of

life sciences, and consider how a large high-quality ontology of Medical Subject Headings
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(MeSH) can be used to relate a user’s query to the annotations of a document. We ob-

served that the MeSH hierarchy is scoped, i.e., terms may appear in multiple places in the

hierarchy, and the meaning of a term depends on its position. This observation challenges

most past work which has been developed assuming that a term has a unique node in the

generalization hierarchy.

We developed several relevance measures appropriate for ranking in the domain at hand,

and proposed efficient evaluation algorithms for computing relevance on the scale of PubMed

and MeSH. We have demonstrated that our measures can be computed in interactive time

using score upper-bounds. We presented a two-dimensional Skyline visualization of query

results that facilitates data exploration, and demonstrated that it, too, can be computed

efficiently on the scale of PubMed and MeSH.

We also presented results of a preliminary user study that evaluates the effectiveness

of our techniques. The small scale of our study and the complexity of evaluation do not

allow us to draw statistically significant conclusions about the relative performance of our

methods and baselines. In the future we plan to make our software available to the scientific

community. This will increase the practical impact of our research and will allow us to gather

more information about the effectiveness of our methods.

In Chapter 4 we developed an entity-aware ranking framework, and presented a novel

ranking algorithm, EntityAuthority, that models the mutual reinforcement between pages

and entities. We demonstrated how an ontology can be used for query processing in this set-

ting. We presented a prototype implementation of our system, and experimentally demon-

strated the improvement in query result quality.

In Chapter 5 we introduced rank-aware clustering, a novel result presentation method

for large structured datasets. We developed rank-aware clustering quality measures, and

proposed a Bottom-up Algorithm for Rank-Aware Clustering (BARAC), an Apriori-style

algorithm geared specifically at such quality measures. We presented an extensive exper-

imental evaluation of scalability, and gave an intuition of the effectiveness of BARAC on

Yahoo! Personals datasets.

A large-scale user study is currently underway in scope of the Yahoo! Research Sandbox

project. The goal of the study is to ascertain the effect of our result presentation method

on the user experience. In the future we will consider performance optimizations, and will

explore the applicability of our methods to other large structured datasets. We will also

explore user interface design issues such as cluster selection.

7.2 Future Research Directions

7.2.1 Combining Different Types of Semantic Context

Using semantic context for search and ranking has potential for high impact, both in terms

of scientific advances in Data Management and by enabling end-users. An important ques-
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tion that I will address in the future is how to combine various types of context into a

single model, achieving higher expressive power, and ultimately supporting a better user

experience.

The techniques described in this thesis can be extended and applied to the domain of life

sciences, with the goal of facilitating customized content recommendation and scientific col-

laboration. In a hypothetical system called PubMed Social, a scientist’s profile may include

ontology terms that describe his research interests. The scientist may establish a network

of collaborators, and may choose to customize his search and information discovery experi-

ence by incorporating his semantic (ontology-based) or social (network-based) context. In

addition to consuming available content, the scientist may use the system to disseminate

his findings. He will do so by annotating results, and by sharing them with other members

of his network. Depending on the stage of the project, the scientist may choose to share

results with a small group of collaborators, or with the scientific community at large.

In certain situations, the quality of ranking in search and in content recommendation

may be improved by incorporating the user’s mental context, or intent, into the model.

This is based on the observation that the information need may be different for the same

user in different situations: I may ask my mother’s advise on cooking, and my academic

adviser’s opinion on research. Likewise, a user of PubMed Social who participates in inter-

disciplinary research, or who is active in multiple research areas, may need help from the

system when choosing and aggregating information from multiple sources. To this end, I

will explore how structured contextual information about the user, about a particular task,

and about the nature of the user’s relationship with the content, can be used to better

organize information feeds.

The paradigm of an information feed, or channel, has emerged as the de-facto stan-

dard for information aggregation and sharing in syndicated and collaborative environments.

Some examples include the use of RSS for blog aggregation, Facebook’s news feed function-

ality, and status updates on Twitter. Feeds are typically used to aggregate and serve recent

information, and are well-suited for accessing information in order of publication time, from

more to less recent. However, important information that was published outside the most

recent visible time window may be missed. Further, while organizing information solely

by time is appropriate for time-centered tasks in information discovery, such as follow-

ing breaking news, upcoming events, and status updates, it is less appropriate for more

semantically-centered tasks. In my future work I plan to build on and extend the ideas of

this thesis to combine the time dimension with context-aware semantic relevance.

Using context, and particularly intent, in data management applications, brings about

new challenges with respect to privacy. I will consider the privacy implications of explicitly

modeling intent, and will explore the privacy vs. expressiveness trade-offs in this setting.
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7.2.2 Semantics of Provenance

An important type of context that arises in biological data management is the provenance of

schema and data. In addition to recording the history of data and operations that led to the

creation of a particular data product, provenance often contains semantic annotations that

are either automatically derived or assigned by a user. Beyond data provenance, we may

think about schema provenance, i.e. a record of schema creation and evolution. Both data

and schema provenance can give important insights into the phenomenon being modeled,

and hence can be used to improve queries on data and schema as well as the ranking of

results.

A particular kind of schema that is widely used in scientific applications is a workflow

schema. A workflow is a procedural schema that describes both the data that it admits and

the order of operations over that data. Scientific workflows are complex, and it is therefore

essential to enable sharing and re-use of existing workflows in collaborative environments. I

plan to build on the insights of Chapters 3 and 4 and explore how semantic annotations that

are part of data and schema provenance can be used to improve the quality of similarity

search in this domain. A PubMed Social user may, for instance, have a file that contains

a set of typed single nucleotide polymorphisms (SNPs), which he needs to transform into

hypotheses of susceptibility to a particular family of genetic disorders. A novice user may

not know which processing modules to invoke, and in which order, and how to format the

input data. The user may have an easier time searching for an existing workflow that was

designed for similar types of input and output data, and had similar goals. Whether an

existing workflow is a likely match can be determined based on the semantic annotations

of the match, and on other provenance information, such as its source and recency of use.

Provenance information can also be used to compare workflows, and to summarize a

single workflow, or a workflow repository, using a hierarchical view. In Section 6.1.1 we

show how complex relational, object-oriented and faceted schemas can be summarized in

multiple alternative ways, making the schemas more concise and easier to understand, while

also reflecting the user’s perspective regarding which elements of the schema are central,

and which are subsidiary. In the future I plan to explore an application of this work to the

summarization of workflows.
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[Börzsönyi et al., 2001] Stephan Börzsönyi, Donald Kossman, and Kondrad Stocker. The

skyline operator. In ICDE, 2001.

[Brin and Page, 1998] Sergey Brin and Lawrence Page. The anatomy of a large-scale hy-

pertextual Web search engine. Computer Networks, 30, 1998.

[Cafarella et al., 2007] Michael J. Cafarella, Christopher Re, Dan Suciu, and Oren Etzioni.

Structured querying of Web text data: a technical challenge. In CIDR, 2007.

[Canny, 2002] John F. Canny. Collaborative filtering with privacy. In IEEE Symposium on

Security and Privacy, 2002.



BIBLIOGRAPHY 173

[Carey and Kossmann, 1997] Michael J. Carey and Donald Kossmann. On saying “enough

already!” in SQL. In SIGMOD, 1997.

[Chakrabarti, 2004] Soumen Chakrabarti. Breaking through the syntax barrier: searching

with entities and relations. In ECML, 2004.

[Chakrabarti, 2007] Soumen Chakrabarti. Dynamic personalized PageRank in entity-

relation graphs. In WWW, 2007.

[Chang and Jin, 2002] Jae-Woo Chang and Du-Seok Jin. A new cell-based clustering

method for large, high-dimensional data in data mining applications. In SAC, 2002.

[Chang et al., 2006] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-

rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.

BigTable: a distributed storage system for structured data. In OSDI, 2006.

[Chang, 2006] Kevin Chen-Chuan Chang. Large-scale Deep Web integration: exploring

and querying structured data on the Deep Web. In SIGMOD, 2006. Tutorial.

[Chaudhuri et al., 2004] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard

Weikum. Probabilistic ranking of database query results. In VLDB, 2004.

[Chaudhuri et al., 2006] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A

primitive operator for similarity joins in data cleaning. In ICDE, 2006.

[Chen et al., 2007] Pei-Yu Chen, Samita Dhanasobhon, and Michael Smith. All reviews are

not created equal: the disaggregate impact of reviews and reviewers at Amazon.com. In

ICIS, 2007.

[Cheng and Chang, 2007] Tao Cheng and Kevin Chen-Chuan Chang. Entity search engine:

towards agile best-effort information integration over the Web. In CIDR, 2007.

[Cheng et al., 1999] Chun Hung Cheng, Ada Wai-Chee Fu, and Yi Zhang. Entropy-based

subspace clustering for mining numerical data. In KDD, 1999.

[Chevalier and Mayzlin, 2006] Judith A. Chevalier and Dina Mayzlin. The effect of word

of mouth on sales: online book reviews. Journal of Marketing Research, August 2006.

[Chitrapura and Kashyap, 2004] Krishna Prasad Chitrapura and Srinivas R. Kashyap.

Node ranking in labeled directed graphs. In CIKM, 2004.

[Chu-Carroll et al., 2006] Jennifer Chu-Carroll, John M. Prager, Krzysztof Czuba, David A.
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