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Why we are losing the battle?
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State of Practice
Applications

Antivirus

Operating System

Hardware

Hypervisor

• Software-based antivirus runs 
above the O/S, hypervisor and 
hardware

• Operating systems and hypervisors 
have exploited bugs

• Software antivirus is vulnerable and 
can’t help it!
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Proposed Solution

Applications

Operating System

Hardware Antivirus

Hypervisor

• Hardware-based 
antivirus not susceptible 
O/S bugs

• Hardware tends to have 
fewer bugs & exploits
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Outline

• Detecting malware with performance counters

• ... using machine learning 

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems
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How do we build hardware A/V?
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Software Hardware

Primitives

How it works

Files, Downloads,
File Systems,

Registry Entries,
System Calls

Memory,
Dynamic Instructions,

uArch Events,
System Calls

Scans downloads for 
static signatures ?
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Programs have Unique µArch Signatures
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Can µarch footprints 
uniquely identify 
malware during 

execution?

Could we build a 
database of malicious 

µarch signatures?
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Outline

• Detecting malware with performance counters

• ... using machine learning 

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems
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Machine Learning: Classifiers
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• Microarchitectural event 
counts yield 
performance vectors 
over time

• Feed each vector into 
classifier, results in 
p(malware) over time

• Average over time, 
decide if malware or not 
with threshold
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Machine Learning on µArch Events
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Outline

• Detecting malware with performance counters

• ... using machine learning 

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems
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Android Malware Detection

• 17x increase malware 
detections in 2012 (“Trends for 2013” ESET 
Latin America’s Lab)

• Android 4.1 mobile O/S

• ARM/TI PandaBoard

• 6 performance counters
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Malware Families & Variants

• Family of variants which 
all do similar things

• Usually packaged with 
different host software

• Expectation: similar 
malicious code, different 
host code
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Can we detect new variants after 
seeing only old ones?

17

GPS 
Logger GPS 

Logger
GPS 

Logger

GPS 
LoggerGPS 

Logger

Train classifier on 
these malware apps

Evaluate our classifier 
with different variants in 
the same family
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Experimental Setup
• 503 Malware apps

• 37 families

• Taken from internet repository [1] 
and previous work [2]

• 210 Non-malware apps

• Most popular apps on Google 
play

• System applications (ls, bash, 
com.android.*)

• 3.68e8 data points total

[1] http://contagiominidump.blogspot.com/
[2] Y. Zhou and X. Jiang, “Dissecting android malware: 
Characterization and evolution,” in Security and Privacy (SP), 
2012 IEEE Symp. on, pp. 95 –109, may 2012.18

•Tapsnake
•Zitmo
•Loozfon-android
•Android.Steek
•Android.Trojan.Qic

somos
•CruseWin
•Jifake
•AnserverBot
•Gone60
•YZHC
•FakePlayer
•LoveTrap
•Bgserv
•KMIN
•DroidDreamLight
•HippoSMS
•Dropdialerab
•Zsone

•Endofday
•AngryBirds-Lena.C
• jSMSHider
•Plankton
•PJAPPS
•Android.Sumzand
•RogueSPPush
•FakeNetflix
•GEINIMI
•SndApps
•GoldDream
•CoinPirate
•BASEBRIDGE
•DougaLeaker.A
•Newzitmo
•BeanBot
•GGTracker
•FakeAngry
•DogWars
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Very Realistic, Noisy Data
• Network connectivity allowed:

• Malware could phone home

• Additional noise introduced

• Input bias allowed:

• Multiple users conducted 
data collection

• Environmental noise allowed:

• Malware ran with system 
applications, not isolated

• Contamination between 
training & testing data 
prevented:

• Non-volatile storage wiped, 
eliminating ‘sticky’ malware

• Training/testing split before 
data collection

• Makes our task harder, better 
feasibility study

19
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Outline

• Detecting malware with performance counters

• ... using machine learning 

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems
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Experiments in Paper

• Detection of malicious packages on Android

• Detection of malicious threads on Android

• Linux rootkit detection

• Cache side-channel attack detection

21
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Rootkit Detection
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Result Summary
• Detection of malicious packages on Android

• 90% accuracy

• Detection of malicious threads on Android

• 80% accuracy

• Linux rootkit detection

• About 60% accuracy

• Difficult problem; rootkits are tiny slices of execution

• Cache side-channel attack detection

• 100% accuracy, no false positives

25
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One Way to Improve Results

• Malware writers package 
with non-malware.

• Problem: what’s actually 
malware?

• Our (bad) solution: all of it

• Raises false-positives

26

MalwareNon-Malware
(e.g. Angry Birds, Pandora)

Android Software Package
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Outline

• Detecting malware with performance counters

• ... using machine learning 

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems
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Recommendations for 
Hardware A/V System Design
1. Provide strong isolation mechanisms to 

enable anti-virus software to execute 
without interference.

2. Investigate both on-chip and off-chip 
solutions for the AV implementations.

3. Allow performance counters to be read 
without interrupting the executing 
process.

4. Ensure that the AV engine can access 
physical memory safely.

5. Investigate domain-specific 
optimizations for the AV engine.

6. Increase performance counter coverage 
and the number of counters available.

7. The AV engine should be flexible 
enough to enforce a wide range of 
security policies.

8. Create mechanisms to allow the AV 
engine to run in the highest privilege 
mode.

9. Provide support in the AV engine for 
secure updates.

28
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Strong isolation mechanisms enable anti-virus 
software to execute without interference

• Non-interruptable

• A/V requires data from 
cores

• Starvation == exploit

• A/V uses off-die 
memory

• Starvation == exploit

30

AV

Strongly 
Isolated 

Core

NOC: Rx for 
performance cntr. data, 
Tx: security exceptions

Isolated 
Secure Bus
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Allow Secure System Updates

31

Update Package
(Encrypted & signed)

Trained Classifier

Action Program

Revision Number

• Update protocol:

• Decrypt

• Verify signature

• Check revision number

• Disallows access to 
classifiers & action 
programs
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Outline

• Detecting malware with performance counters

• ... using machine learning 

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems
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Contributions
(1) First hardware-based antivirus detection

• Promising results, reasons to believe results will improve

• First branch predictors started at 80% accuracy...

(2) Dataset available: http://castl.cs.columbia.edu/colmalset

 Much to follow on: 0-day exploit detection, attacks,
counterattack malware detection, better machine learning, 

precise training labels, ML accelerators, prototypes, etc.
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