
Hardware Malware Detectors
John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang,

Adam Waksman, Simha Sethumadhavan, Salvatore Stolfo

Computer Science Department,
Columbia University

1

Thursday, June 27, 13

2

Worms
Trojan Horses

Spyware
AdwareBotnets

Thursday, June 27, 13

0M

25M

50M

75M

100M

125M

2000 2002 2004 2006 2008 2010 2012

Malware in the Wild

AVTest unique database entries (av-test.org)3

Thursday, June 27, 13

Why we are losing the battle?

100

1,000

10,000

100,000

1,000,000

10,000,000

1985 1991 1997 2003 2009 2015

Li
ne

s o
f C

od
e

DEC Seal

Stalker

Milky Way

Snort

Network Flight
Recorder

Unified Threat
Management

ClamAV (2005)

ClamAV (2012)

Sources: “An analytical
framework for cyber
security” DARPA’s Peter
“Mudge” Zatko 2011 &
Ohloh.net

Malware: 125 lines

Growth of Security
 Code

Expect
ed number

of b
ugs

4

Thursday, June 27, 13

State of Practice
Applications

Antivirus

Operating System

Hardware

Hypervisor

• Software-based antivirus runs
above the O/S, hypervisor and
hardware

• Operating systems and hypervisors
have exploited bugs

• Software antivirus is vulnerable and
can’t help it!

5

Thursday, June 27, 13

Proposed Solution

Applications

Operating System

Hardware Antivirus

Hypervisor

• Hardware-based
antivirus not susceptible
O/S bugs

• Hardware tends to have
fewer bugs & exploits

6

Thursday, June 27, 13

Outline

• Detecting malware with performance counters

• ... using machine learning

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems

7

Thursday, June 27, 13

How do we build hardware A/V?

8

Software Hardware

Primitives

How it works

Files, Downloads,
File Systems,

Registry Entries,
System Calls

Memory,
Dynamic Instructions,

uArch Events,
System Calls

Scans downloads for
static signatures ?

Thursday, June 27, 13

bz
ip

2-
i1

L1 Exclusive Hits Arithmetic µOps Executed

bz
ip

2-
i2

bz
ip

2-
i3

m
cf

hm
m

er
sje

ng
lib

qu
an

tu
m

h2
64

om
ne

tp
p

as
ta

r
as

ta
r

Xa
la

nc

Programs have Unique µArch Signatures

9

Can µarch footprints
uniquely identify
malware during

execution?

Could we build a
database of malicious

µarch signatures?

bz
ip

2-
i1

L1 Exclusive Hits Arithmetic µOps Executed

bz
ip

2-
i2

bz
ip

2-
i3

m
cf

hm
m

er
sje

ng
lib

qu
an

tu
m

h2
64

om
ne

tp
p

as
ta

r
as

ta
r

Xa
la

nc

Time

Thursday, June 27, 13

Outline

• Detecting malware with performance counters

• ... using machine learning

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems

10

Thursday, June 27, 13

Machine Learning: Classifiers

11

Classifier

V
V
V

1

2

3

V
V
V

1

2

3

V
V
V

1

2

3

V
V
V

1

2

3

V
V
V

1

2

3

V
V
V

1

2

3

V
V
V

1

2

3

V
V
V

1

2

3

V
V
V

1

2

3

V
V
V

1

2

3

V
V
V

1

2

3

Malware
Not

Malware

Training
(at A/V Vendor)

Production
(on consumer device)

V1

V
V

2

3

Classifier

Malware?

p(malware)
Thursday, June 27, 13

• Microarchitectural event
counts yield
performance vectors
over time

• Feed each vector into
classifier, results in
p(malware) over time

• Average over time,
decide if malware or not
with threshold

bz
ip

2-
i1

L1 Exclusive Hits Arithmetic µOps Executed

bz
ip

2-
i2

bz
ip

2-
i3

m
cf

hm
m

er
sje

ng
lib

qu
an

tu
m

h2
64

om
ne

tp
p

as
ta

r
as

ta
r

Xa
la

nc

bz
ip

2-
i1

L1 Exclusive Hits Arithmetic µOps Executed

bz
ip

2-
i2

bz
ip

2-
i3

m
cf

hm
m

er
sje

ng
lib

qu
an

tu
m

h2
64

om
ne

tp
p

as
ta

r
as

ta
r

Xa
la

nc

Machine Learning on µArch Events

12

bz
ip

2-
i1

L1 Exclusive Hits Arithmetic µOps Executed

bz
ip

2-
i2

bz
ip

2-
i3

m
cf

hm
m

er
sje

ng
lib

qu
an

tu
m

h2
64

om
ne

tp
p

as
ta

r
as

ta
r

Xa
la

nc

p(malware)

Not malware

Time

Classifier

Thursday, June 27, 13

bz
ip

2-
i1

L1 Exclusive Hits Arithmetic µOps Executed

bz
ip

2-
i2

bz
ip

2-
i3

m
cf

hm
m

er
sje

ng
lib

qu
an

tu
m

h2
64

om
ne

tp
p

as
ta

r
as

ta
r

Xa
la

nc

Malware

• Microarchitectural event
counts yield
performance vectors
over time

• Feed each vector into
classifier, results in
p(malware) over time

• Average over time,
decide if malware or not
with threshold

bz
ip

2-
i1

L1 Exclusive Hits Arithmetic µOps Executed

bz
ip

2-
i2

bz
ip

2-
i3

m
cf

hm
m

er
sje

ng
lib

qu
an

tu
m

h2
64

om
ne

tp
p

as
ta

r
as

ta
r

Xa
la

nc

bz
ip

2-
i1

L1 Exclusive Hits Arithmetic µOps Executed

bz
ip

2-
i2

bz
ip

2-
i3

m
cf

hm
m

er
sje

ng
lib

qu
an

tu
m

h2
64

om
ne

tp
p

as
ta

r
as

ta
r

Xa
la

nc

Machine Learning on µArch Events

13

Time

Classifier

p(malware)

Thursday, June 27, 13

Outline

• Detecting malware with performance counters

• ... using machine learning

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems

14

Thursday, June 27, 13

Android Malware Detection

• 17x increase malware
detections in 2012 (“Trends for 2013” ESET
Latin America’s Lab)

• Android 4.1 mobile O/S

• ARM/TI PandaBoard

• 6 performance counters

15

Thursday, June 27, 13

Malware Families & Variants

• Family of variants which
all do similar things

• Usually packaged with
different host software

• Expectation: similar
malicious code, different
host code

16

GPS
LoggerGPS

Logger

GPS
Logger

GPS
Logger

GPS
Logger GPS

Logger

Thursday, June 27, 13

Can we detect new variants after
seeing only old ones?

17

GPS
Logger GPS

Logger
GPS

Logger

GPS
LoggerGPS

Logger

Train classifier on
these malware apps

Evaluate our classifier
with different variants in
the same family

Thursday, June 27, 13

Experimental Setup
• 503 Malware apps

• 37 families

• Taken from internet repository [1]
and previous work [2]

• 210 Non-malware apps

• Most popular apps on Google
play

• System applications (ls, bash,
com.android.*)

• 3.68e8 data points total

[1] http://contagiominidump.blogspot.com/
[2] Y. Zhou and X. Jiang, “Dissecting android malware:
Characterization and evolution,” in Security and Privacy (SP),
2012 IEEE Symp. on, pp. 95 –109, may 2012.18

•Tapsnake
•Zitmo
•Loozfon-android
•Android.Steek
•Android.Trojan.Qic

somos
•CruseWin
•Jifake
•AnserverBot
•Gone60
•YZHC
•FakePlayer
•LoveTrap
•Bgserv
•KMIN
•DroidDreamLight
•HippoSMS
•Dropdialerab
•Zsone

•Endofday
•AngryBirds-Lena.C
• jSMSHider
•Plankton
•PJAPPS
•Android.Sumzand
•RogueSPPush
•FakeNetflix
•GEINIMI
•SndApps
•GoldDream
•CoinPirate
•BASEBRIDGE
•DougaLeaker.A
•Newzitmo
•BeanBot
•GGTracker
•FakeAngry
•DogWars

Thursday, June 27, 13

http://contagiominidump.blogspot.com
http://contagiominidump.blogspot.com

Very Realistic, Noisy Data
• Network connectivity allowed:

• Malware could phone home

• Additional noise introduced

• Input bias allowed:

• Multiple users conducted
data collection

• Environmental noise allowed:

• Malware ran with system
applications, not isolated

• Contamination between
training & testing data
prevented:

• Non-volatile storage wiped,
eliminating ‘sticky’ malware

• Training/testing split before
data collection

• Makes our task harder, better
feasibility study

19

Thursday, June 27, 13

Outline

• Detecting malware with performance counters

• ... using machine learning

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems

20

Thursday, June 27, 13

Experiments in Paper

• Detection of malicious packages on Android

• Detection of malicious threads on Android

• Linux rootkit detection

• Cache side-channel attack detection

21

Thursday, June 27, 13

RandomPe
rc

en
ta

ge
 o

f M
al

w
ar

e
Id

en
tifi

ed
Detection Rates

22
False Positive Rate

Ideal

Thursday, June 27, 13

Pe
rc

en
ta

ge
 o

f M
al

w
ar

e
Id

en
tifi

ed

23
False Positive Rate

Malware Family Detection

Thursday, June 27, 13

Rootkit Detection

24

Pe
rc

en
ta

ge
 o

f M
al

w
ar

e
Id

en
tifi

ed

False Positive Rate

100

80

60

40

20

0 100806040200

Thursday, June 27, 13

Result Summary
• Detection of malicious packages on Android

• 90% accuracy

• Detection of malicious threads on Android

• 80% accuracy

• Linux rootkit detection

• About 60% accuracy

• Difficult problem; rootkits are tiny slices of execution

• Cache side-channel attack detection

• 100% accuracy, no false positives

25

Thursday, June 27, 13

One Way to Improve Results

• Malware writers package
with non-malware.

• Problem: what’s actually
malware?

• Our (bad) solution: all of it

• Raises false-positives

26

MalwareNon-Malware
(e.g. Angry Birds, Pandora)

Android Software Package

Thursday, June 27, 13

Outline

• Detecting malware with performance counters

• ... using machine learning

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems

27

Thursday, June 27, 13

Recommendations for
Hardware A/V System Design
1. Provide strong isolation mechanisms to

enable anti-virus software to execute
without interference.

2. Investigate both on-chip and off-chip
solutions for the AV implementations.

3. Allow performance counters to be read
without interrupting the executing
process.

4. Ensure that the AV engine can access
physical memory safely.

5. Investigate domain-specific
optimizations for the AV engine.

6. Increase performance counter coverage
and the number of counters available.

7. The AV engine should be flexible
enough to enforce a wide range of
security policies.

8. Create mechanisms to allow the AV
engine to run in the highest privilege
mode.

9. Provide support in the AV engine for
secure updates.

28

Thursday, June 27, 13

Recommendations for
Hardware A/V System Design
1. Provide strong isolation mechanisms to

enable anti-virus software to execute
without interference.

2. Investigate both on-chip and off-chip
solutions for the AV implementations.

3. Allow performance counters to be read
without interrupting the executing
process.

4. Ensure that the AV engine can access
physical memory safely.

5. Investigate domain-specific
optimizations for the AV engine.

6. Increase performance counter coverage
and the number of counters available.

7. The AV engine should be flexible
enough to enforce a wide range of
security policies.

8. Create mechanisms to allow the AV
engine to run in the highest privilege
mode.

9. Provide support in the AV engine for
secure updates.

29

Thursday, June 27, 13

Strong isolation mechanisms enable anti-virus
software to execute without interference

• Non-interruptable

• A/V requires data from
cores

• Starvation == exploit

• A/V uses off-die
memory

• Starvation == exploit

30

AV

Strongly
Isolated

Core

NOC: Rx for
performance cntr. data,
Tx: security exceptions

Isolated
Secure Bus

Thursday, June 27, 13

Allow Secure System Updates

31

Update Package
(Encrypted & signed)

Trained Classifier

Action Program

Revision Number

• Update protocol:

• Decrypt

• Verify signature

• Check revision number

• Disallows access to
classifiers & action
programs

Thursday, June 27, 13

Outline

• Detecting malware with performance counters

• ... using machine learning

• Experimental setup

• Results for Android

• An architecture for hardware antivirus systems

32

Thursday, June 27, 13

Contributions
(1) First hardware-based antivirus detection

• Promising results, reasons to believe results will improve

• First branch predictors started at 80% accuracy...

(2) Dataset available: http://castl.cs.columbia.edu/colmalset

 Much to follow on: 0-day exploit detection, attacks,
counterattack malware detection, better machine learning,

precise training labels, ML accelerators, prototypes, etc.

33

Thursday, June 27, 13

http://castl.cs.columbia.edu/colmalset
http://castl.cs.columbia.edu/colmalset

