
Increasing Reconfigurability with
Memristive Interconnects

John Demme∗, Bipin Rajendran†, Steven M. Nowick∗, Simha Sethumadhavan∗

∗Columbia University, Dept. of Computer Science, NY, USA
†IIT Bombay, Dept. of Electrical Engineering, Mumbai, India

jdd@cs.columbia.edu, bipin@ee.iitb.ac.in, {nowick, simha}@cs.columbia.edu

Abstract—The design of on-chip interconnects is largely gov-
erned by the size and power of the devices being connected.
While large components like memory controllers, video decode
accelerators, and cores can afford the overhead of a large
packet switching NoC router, smaller components like adders
or other ALUs cannot. Instead, they are typically connected via
simple wires, limiting their runtime reconfigurability. The notable
exception – FPGAs – use an interconnect which allows extreme
reconfigurability, but the FPGA pays for it in area, power, and
latency costs. Less costly reconfigurable interconnects, therefore,
could allow hardware designers to expose more reconfigurability
while limiting area and power costs.

This paper presents the design of a high-radix circuit switch-
ing crossbar design using memristors. This design utilizes Phase
Change Memory (PCM), overcoming some of its limitations such
as leakage power and low voltage operation. The very small size of
memristors shrinks the area, power, and latency of crossbars by
up to 16x, 4.4x, and 2.4x, respectively, leaving little interconnect
overhead but wiring overhead. As a tool for designers, memristive
interconnects offer significant potential to increase runtime design
flexibility.

I. INTRODUCTION

What is the correct granularity for accelerators? Should
accelerators be large, super-specialized blocks or small, re-
configurable computational elements which are dynamically
composed? Currently, both styles exist though in different
contexts. In the mobile space where energy efficiency trumps
runtime configurability, large monolithic blocks are common.
On the other end of the spectrum, FPGAs are becoming more
popular in settings where reconfigurability matters more than
energy. Ideally this dichotomy would not exist and accelerators
could be both efficient and flexible.

One of the major reasons for fixed function hardware’s
efficiency and lack of configurability is its use of fixed connec-
tivity wires. Dynamically configurable alternatives to simple
wires like multiplexers, crossbars, or networks afford runtime
flexibility in dataflow but consume both significant area and
power. As a result, designers must trade off reconfigurabil-
ity for efficiency and cost. If interconnection switches were
smaller and more energy efficient, however, accelerators could
be designed which have greater breadth while remaining nearly
as energy and area efficient.

The impact of interconnection overhead is a phenomenon
which is readily observed. Figure 1 shows the area of a number
of components. It is interesting to note the position of the NoC
router in this figure relative to other components. Components
smaller than the router are rarely exposed to the NoC intercon-
nect – at best they are connected via multiplexers, but typically
connected via fixed wires. Many of the components larger than
the NoC router are generally exposed to the NoC, allowing
programmers to use them to accelerate a broader computation.

Inverter (a)
Latch (a)

Ripple adder (a)
64 bit barrel shifter (a)

ARM A9 global branch predictor (c)
Integer ALU (b)

Smallest Q100 Tile (d)
Integer Divider (b)

FP Divide (b)
FP Add/Sub (b)

Integer Multiplier (b)
Single precision FP (e)

FP Multiplier (b)
Router, 5 port (a)

Double precision FP (e)
Widx (Single Unit) (g)

AES Accelerator (k)
Average C-Core (h)

64 1mm buffered wires (a)
Average Q100 Tile (d)

ARM A9 register file (2x 64 entry) (c)
ARM A9 E1000 Interface (c)

ARM A9 PCIe interface (c)
H.264 Accelerator (f)

ARM A9 memory controller (c)
Neural Network Accelerator (j)

Largest Q100 Tile (d)
ARM A9 Core (c)
Niagara 2 Core (c)

RegX (i)
Xeon Core (c)

Xeon L3 16MB (c)
Xeon (c)

10-6

10-5

10-4

10-3

10-2

10-1

1

10 1

10 2

Computational Element Area

Wires

Wires or muxes

Network

Device typically
connected via

mm2

(Areas which were
reported in processes
other than 32nm have
been naïvely scaled
for this approximation.)

(a) DSENT 5-port router[1]
(b) “Dynamically Specialized Datapaths for energy efficient computing” [2]
(c) McPAT [3]
(d) “Q100: the architecture and design of a database processing unit” [4]
(e) “Energy-Efficient Floating-Point Unit Design” [5]
(f) “Understanding sources of inefficiency in general-purpose chips” [6]
(g) “Meet the Walkers: Accelerating Index Traversals for In-Memory Databases” [7]
(h) “Conservation cores: reducing the energy of mature computations” [8]
(i) “Designing a programmable wire-speed regular-expression matching accelerator” [9]
(j) “DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning” [10]
(k) “53 Gbps Native GF(24)2 Composite-Field AES-Encrypt/Decrypt Accelerator for

Content-Protection in 45 nm High-Performance Microprocessors” [11]

Fig. 1: The approximate area of some devices in 32nm. We
note that while the larger devices are often connected together
via dynamic networks, small devices are typically connected
via wires or simple interconnection devices like multiplexers
or crossbars.

To enable systems which are both reconfigurable and
efficient, this paper discusses the design of crossbar switches
built using memristors like Phase Change Memory (PCM).
Compared to traditional CMOS pass gate crossbars, memristor
crossbars are physically smaller, more power efficient, and
efficiently scale to larger radices. To our knowledge, we are
the first to propose high-radix memristive crossbars. These
memristive crossbars are up to 16x smaller, 4.4x more power

P
G

P
G

P
G

P
G

P
G

P
G

P
G

P
G

P
G

DQ
Q

Fig. 2: A CMOS pass gate crossbar

efficient, and 2.4x faster than pass gate crossbars. As a result,
designers using memristive crossbars can implement signifi-
cantly more reconfigurability with far less area, power, and
latency overheads than was previously possible.

The remainder of this paper is structured as follows: First,
in Section II we detail the design of memristor crossbars
circuits as compared to traditional CMOS passgate crossbars.
Section III presents a detailed evaluation of their area, power,
and latency. We review potential pitfalls in this paper’s mod-
eling methodology in Section IV. We discuss related work in
Section V and conclude in Section VI.

II. MEMRISTIVE CROSSBARS

Crossbars are one of the core components in many in-
terconnects. This section briefly reviews a CMOS crossbar
design which serves as a baseline, provides an overview of
memristors, and then details the design of a memristor based
crossbar.

A. CMOS Crossbars

Figure 2 shows the design of a pass gate crossbar. Each of
M inputs drives a column wire which is connected to N output
wires through N complimentary pass gates. In order to route
signals, the pass gates are selectively enabled. For instance, if
output j is to be driven by input i, then the pass gate at row
j, column i is enabled and all other pass gates in that row are
disabled. Each pass gate is driven by a latch, the set of which
store the crossbar’s routes.

One significant problem with all crossbars is that the
number of pass gates scales quadratically with inputs and
outputs so the area required to build high radix crossbars
becomes prohibitive. Additionally, each pass gate adds source
and drain capacitance to both the row and column to which it is
connected. As a result, the energy required to transmit a single
bit through the crossbar grows linearly with size, so maximum
total power increases quadratically. Generally speaking, these
phenomena limit the practical radices of crossbars.

B. Memristors

A new set of emerging technologies may soon fill the role
of storage class memories. Chief among them are resistive

0 1 1

1 0 0
a b c

a

b

Fig. 3: In a naı̈ve memristive crossbar implementation, sneak
paths cause power and correctness issues. This figure shows
the correct current path in green and sneak paths in red.
These red paths lead to static leakage and voltage drop on
the transmission line.

memories.1 These memory cells work by switching between
high or low resistance states (HRS and LRS, respectively)
in response to programming. As an ideal model, memristors
can connect two wires (with their low resistance state) or
disconnect them (with their high resistance state). In this ideal
model, memristors can directly replace both the pass gates and
controlling latches in a crossbar to create an extremely small,
efficient crossbar, as shown in Figure 3.

Unfortunately, actual devices are not ideal. There are two
major problems with using them in this context:

a) Read Disturbance: Memristor state is generally pro-
grammed by exposing a cell to a “high” programming voltage.
This programming voltage, however, is often quite low – for
some technologies it can be as low as 0.3V, though it can be
as high as 0.7V for others. As a result, if one were to pass
a typical logic voltage (32nm VDD is about 0.9V) through
them, the programmed state would be lost and the crossbar
would not operate correctly.

b) Low HRS/LRS Ratio: Real memristors have finite
resistances in their HRS and non-zero resistances in their
LRS. In fact, LRS resistances of more than several kΩ are
typical and high resistances range from only a single order of
magnitude higher to 7 orders of magnitude higher depending
on the technology. Realistic HRS and LRS resistances lead to
two issues in crossbars, as demonstrated in Figure 3.

The first problem is correctness. Assume the leftmost input
is set to 0 and the rest 1, yielding 1 Volt from input inverter ‘a’
and 0V from the rest (assuming a VDD of 1V). Ideally, output
inverter ‘a’ would also see 1V, however even though the other
memristors in its row are set to their high-resistance state, they
still conduct at least a little, pulling down the voltage. Worse
yet, in this case they all pull down in parallel. In fact, this input
pattern (and its inverse) represent worst case scenarios in terms
of pulling rows’ voltages from their correct value. To quantify
the problem, if there are n+1 inputs and the HRS/LRS ratio is

1The original definition of “memristor” does not include resistive memories.
However, it has been more recently argued [12] that the definition can be
generalized to include them.

r, then the inverter will see a voltage of approximately r
n+r .2

Thus, if the crossbar size (n) is too large and the HRS/LRS
ratio (r) too low, an incorrect bit will be transmitted.

Power is second problem with the sneak paths illustrated
in Figure 3. Even if the HRS/LRS ratio is high enough to
ensure correct operation, current is constantly leaking through
the memristor array through the dashed red path and many
others (not shown) in the array. As a result, this memristor
crossbar has extremely high static power dissipation.

C. A Dual Array Memristor Crossbar

The problems with using memristors in crossbars can be
mitigated to some extent. Figure 4 shows a design which fixes
the read disturbance problem and mitigates power leakage due
to low HRS/LRS ratios. This crossbar differs in two important
ways: first, it integrates a latch into the output. This allows
us to activate the array for only short bursts at the end of
each clock cycle, reducing the amount of static leakage power.
Second, it uses two arrays instead of one (shown overlaid atop
one another in Figure 4). One of the arrays is responsible
for conducting VDD and the other responsible for conducting
VSS. The advantage of this scheme is twofold: it reduces
the voltage across each memristor (helping with the read
disturbance problem) and it also reduces power loss through
sneak paths.

a) Operation: Memristors’ states are set with the same
pattern in each array: one in each row is set to a low resistance
state (the one corresponding to the column from which that row
is to be driven) and the rest are set to high resistances. During
each cycle, inputs arrive on each input pin. When a zero is
present on a pin, the pMOS in the transmission module is
active and the VDD array is pulled up. When a one is present,
the opposite happens: the nMOS is activated and the VSS array
is pulled down. This operation, however, does not result in any
leakage because the VDD array is only pulled to VDD, the
VSS array to VSS and the two arrays are not connected.

Towards the end of that clock cycle, the values being
transmitted must be read and latched. During this stage, the
dual-rail enable signal is pulsed for a short amount of time
(between 25 and 200 picoseconds). Essentially, these latches
must run on a separate, synchronous clock with a short
duty cycle. When enabled, each receiver’s pair of bridging
transistors connecting the corresponding rows in each array
are activated. They allow current to flow between the VDD
and VSS arrays, forming a voltage divider in the middle of
the bridge. On each side of the bridge, a single memristor in
a low resistance state connects the bridge to the transmission
module from which it is attempting to read. However, only one
of those two memristors is being directly pulled up or down
by its transmission module. As a result, if the HRS/LRS ratio
is high enough, the bridge will output a voltage on the correct
side of VDD/2.

While the enable pulse is asserted, the output latch also be-
comes transparent and captures the value which was transmit-
ted after the enable pulse is de-asserted, allowing subsequent

2Disregarding second order sneak paths and assuming ideal transistors in
the input inverters. This problem actually gets worse when they have high
effective resistance, so in larger memristor crossbars the input inverters’ drive
strength (transistor width) must be increased.

components to continue using the value. While these output
latches increase the area and power dissipation of the crossbar,
a pipelined interconnect must contain latches regardless of
the crossbar technology. Accordingly, this memristor crossbar
design is suited only to pipelined interconnects – which have
become more and more common as wire delays have become
more prominent in smaller processes.

b) Potential Area & Power Advantages: Despite this
new design having two arrays instead of just one, we expect
it to be smaller and more energy efficient than its CMOS pass
gate counterpart. Memristors are extremely small, so the arrays
themselves are extremely small. Pass gate arrays, in contrast,
contain 8 transistors at each junction (2 for the pass gate, 6
for the latch). Additionally, the memristors add little or no
capacitance to the wires to which they are connected. The pass
gates, however, add a source and drain capacitance to each
of the two wires to which they are connected, significantly
increasing the energy required to drive each row and column.

We also expect memristive crossbars to scale to higher
radices better than CMOS pass gate crossbars. While the input
and output circuitry for the memristive crossbar are more
complex than the traditional crossbar, they matter less (in terms
of area and power) as the crossbar scales up since they scale
linearly with its size. The array, however, scales quadratically
with size, so the power and area of its junctions dominate.
Memristors, being smaller than even a single transistor, will
outperform any silicon device, thus the overall memristive
crossbar will be smaller than CMOS when their sizes are
sufficiently large.

D. Memristive Technologies

Thus far the memristor crossbar design has remained
generic, not tied to any particular memristor device technology.
This paper examines one particular device technology: phase
change memory (PCM). PCM is in production with large
companies like Samsung and Micron announcing products
within the last few years [13], [14]. Other memristive mem-
ory technologies are in research and development at various
phases, though none are as far in development as PCM. The
design presented in this section can be applied to other resistive
memories (we have also designed crossbars based on Redox
memory). This paper does not present those results both for
brevity and because other memory technologies showed only
marginal improvement over PCM for crossbar usage while
being less mature.

a) Phase Change Memory: PCM is a resistive memory
element which operates by changing the physical state of a
small volume of an easily melt-able material, most commonly
chalcogenide glass. In other words, the resistivity of the cell is
defined by putting it in either an amorphous or crystalline state.
This state is “programmed” into the cell by heating it (often
with a small Joule heater just below the cell) then cooling
the cell either quickly or slowly, either annealing it into a
conductive crystalline structure or creating a highly resistive
amorphous material. [15]

There are three important characteristics of PCM: their
size, their HRS and LRS resistances, and the way they are
programmed. PCM cells have been fabricated as small as
4F2 [16] (F as a manufacturing process minimum feature

xmit

a

x y

vddvss a

x y

rcvr

en en

a

b
x en

en

a

b

xen

en

xmit xmit xmit

rcvr

rcvr

rcvr

en en

en en

en en

Output latchBridge

Fig. 4: A memristor-based crossbar. The design is shown on the left, transmission module symbol and circuit on the upper right,
and receiver module symbol and circuit on the lower right.

size) and are predicted to stay around that size [17], making
them somewhat smaller than the M1 wire pitch. Next is their
resistance: this paper models nearly linear I-V curves based
on results from Lavizzari et al. [18]. They report HRS/LRS
ratios of about 350 – high enough that one can build large
crossbars, though small enough that leakage is a significant
concern. Finally, programming: PCM cells are programmed
by heating, which is achieved by raising their voltage above
a certain level, which varies a bit from cell to cell. Lavizzari
et al. report, however, that if voltages are kept below 0.77V,
cell failure rates will be about one in 109 over 104 seconds. In
order to reduce this failure rate further, the design ensures that
PCM cells are never exposed to voltages above 0.6V (even
transient spikes) during normal operation.

b) Programming the Memristors: Thus far this paper
has discussed only the normal operation of the proposed
crossbar, but have not discussed how its memristors can be
programmed. It will not be discussed in depth here as existing
work already discusses it in detail [19], [18], [20], including in
passive PCM arrays without selection devices (like ours) [20].
In short, programming the cells involves some selection logic
and programming pulse circuitry which are external to the
array. These signals can then be selectively broadcast into the
array. As a result, the programming circuitry can be amortized
over the entire array or even over many arrays, like multiple
bit-slices of a wide crossbar.

While multiplexing programming signals slows down pro-
gramming considerably, in reconfigurable applications the
routing patterns are changed infrequently – on the granularity
of hours or more is typical for FPGAs – so programming
speed is not an issue. However, adding programming capability
does involve adding a programming transistor to each row and
column in the array, which adds capacitance thus affecting
normal operation performance. These programming transistors
are modeled in the simulations.

III. EVALUATION

In this section we quantitatively measure the advantages
of memristive crossbars. We evaluate memristive crossbars
relative to CMOS pass gate crossbars. In order to compare
functionally equivalent devices, we add output latches to the
CMOS crossbar shown in Figure 2. While these latches are
unnecessary overhead in some situations, in the context of

pipelined networks they are likely to occur after the crossbar
anyway. We determine the power dissipation and area for each
type of crossbar over a range of sizes, 2x2 up to 32x32. As
stated earlier, crossbars are generally kept small, so 32x32
crossbars are unusual. However, if memristors successfully
mitigate the overheads in crossbars of this size, it is likely
they will have interesting applications.

A. Experimental Methodology for Power and Latency

To evaluate the power dissipation of the crossbars, we
build Spice models for each crossbar. We use 32nm high
performance transistor models from the predictive technology
model [21] and Ngspice [22] for simulation. Since PCM does
not have a standard Spice model, we model them as simple
resistors with nonlinear I-V curves from [18]. To reduce power
and area, all nMOS transistors are minimum width (pMOS
transistors are sized to match drive strength) except for power
gating transistors.

Since the wires in a full crossbar could become relatively
large, we model some of the wire parasitics of the wires in the
PCM and CMOS wire arrays. Wire parasitics in other crossbar
structures (like latches and the clock tree) are neglected as they
are assumed to be short wires. In the PCM wire array we use
parasitic values given by PTM [21] to model series resistance,
ground capacitance, and coupling capacitance with adjacent
wires in the same layer. (It should be noted that the values
given by PTM match the parasitics modeled by DSENT [1],
which we use to model area and other circuits in subsequent
sections.) In the CMOS array we model the same parasitics
though coupling capacitance is neglected since array wires
are spaced much further apart – the PCM array wires have
a minimum M1 pitch of 110nm whereas the CMOS array
wire pitch is limited by the pass gate/latch combination at
each crosspoint. Wire parasitic inductance is not modeled as
it hindered Ngspice convergence and we expect its effects to
be minor.

All of the crossbars are clocked at 2GHz and inputs are
randomly generated. We simulate them for 50 cycles at 2ps
timesteps. To ensure that the crossbars operate properly, we
monitor voltages across each memristor to ensure they are not
read disturbed during operation. We also monitor the outputs
to make sure they are correct. Finally, in order to make sure
that the memristor designs do not suffer from HRS/LRS ratio

5 10 15 20 25 30
Crossbar Size (N x N)

0

200

400

600

800

1000
Po

w
er

 (u
W

)

Complimentary Pass Gate
Phase Change Memory

Fig. 5: Comparison CMOS and PCM crossbar power usage as
NxN crossbars increase in radix (N).

correctness issues, we test the two corner case inputs of only
a single input set to 1 and a single input set to 0. All of the
designs evaluated presented here passed all tests.

B. Experimental Methodology for Area

To estimate area, we use DSENT [1]. DSENT has energy,
static power, and area models for common NoC components
and several standard cells (like inverters, latches, and some
gates) which can be composed to obtain estimates for larger
systems.

To model the area for crossbars, we simply use the various
standard cells in DSENT to build the designs and sum the total
area. DSENT, however, cannot model the area of the PCM
array. These areas, however, are easy to calculate since we
know the minimum pitch in these arrays from previous work
(88nm for PCM [19]) is smaller than the M1 pitch modeled by
DSENT in 32nm (110nm). As a result, each of the two PCM
arrays are square with a dimension of the radix multiplied by
the minimum M1 pitch.

a) Results: The results of the power simulations can be
found in Figure 5 and they more or less match expectations.
For every size, memristive crossbars are superior to their
CMOS counterpart in area and power. At relatively small sizes,
however, they do not offer much benefit. This is because for
these small sizes, power is dominated by the input and output
circuitry, which is very similar for both CMOS and memristors.
However, as the area and number of components in the of
the array grows quadratically with size, the CMOS crossbar
rapidly grows beyond ideal, linear scaling. As a result of this
scaling, the power reduction resulting from PCM ranges from
only 1.4x in a small 4x4 crossbar to 4.4x in a 32x32 crossbar.

The PCM crossbar also increases power dissipation very
slightly super-linearly. The reason for this is PCM’s relatively
low HRS/LRS ratio. As the crossbar array increases, so does
the sneak path current as more and more high-resistance state
memristors leak in parallel.

Estimates of area for the crossbars are shown in Figure 6.
All designs scale quadratically, however due to memristors’

5 10 15 20 25 30
Crossbar Size (N x N)

0

100

200

300

400

500

600

700

800

Ar
ea

 (µ
m

2
)

Complimentary Pass Gate
Phase Change Memory

Fig. 6: Comparison of estimated area requirements for different
crossbar types. While both crossbars exhibit quadratic scaling,
the coefficient for the PCM crossbar is radically lower since
the PCM cells are tiny. As a result, they use more than an order
of magnitude less area than CMOS crossbars at high radices.

5 10 15 20 25 30
Crossbar Size (N x N)

50

100

150

200

250

300

350

400

450

500
M

ax
im

um
 L

at
en

cy
 (p

s)

Complimentary Pass Gate
Phase Change Memory

Fig. 7: Comparison of maximum latency through PCM and
Pass Gate crossbar types.

small size, their quadratic coefficient is far smaller than on
the CMOS crossbar. Although these area estimates are based
on standard cells instead of custom layout, it appears likely
that memristors’ area advantage is significant. Here the scaling
trends are quantitatively clearer with the area improvement in a
4x4 crossbar only 3.6x better compared to a 16x improvement
in a 32x32 crossbar.

Finally, Figure 7 shows the maximum observed latency
through each crossbar. As a result of reduced size and thus
capacitance in the array, the PCM crossbar scales much more
gracefully than the CMOS crossbar, which barely operates at a
2GHz clock rate in large radices compared to less than 200ps
latency in the PCM equivalent.

5 10 15 20 25 30
Crossbar Size (N x N)

0

5

10

15

20

25

30
Ar

ea
 (µ

m
2

)

50% Redundancy
40% Redundancy
30% Redundancy
20% Redundancy
10% Redundancy
0% Redundancy

Fig. 8: In order to deal with hard faults and wear out in the
memristor arrays, bypass rows and columns can be added. This
redundancy adds area overhead as shown in this figure of PCM
crossbar area. Even with these overheads, the PCM crossbars
remain far smaller then a pass gate crossbar for which a 32
radix occupies nearly 800µm2.

C. Wear Out and Hard Fault Tolerance

As in CMOS transistor fabrication, some of the memristors
in an array may not operate correctly – some may be stuck
in a high resistance state and some in a low resistance state.
There are two interesting ways around the problem. First, the
application may be able to change signal routing to simply
not use output associated with the broken memristor. For
instance, in a circuit switched network application, whatever
is allocating wires can simply choose not to allocate the wire
to which that memristor is connected. Second, shortly after
fabrication, broken LRS memristors can be “blown out” by
applying an over-current to their junction. Then, bypass con-
nections (several extra rows and columns in the array) can be
used instead of the broken memristors. Figure 8 shows the area
overhead which they would incur, which is relatively minor
with 21% overhead for 50% redundancy in a 32x32 crossbar.
The reason for this relatively smaller overhead is that the PCM
arrays themselves are very small – area overhead is dominated
by input and output circuitry – so adding redundancy to them
does not increase the overall size.

Like Flash, memristors have wear out issues. ITRS projects
that PCM will be able to withstand 109 writes. If the crossbars
are reprogrammed at the granularity of a program context swap
(every 10ms), PCM crossbars are likely to begin breaking in
under a year, though if they are reprogrammed only every
second, they should last as long as the rest of the chip.
Future memristors like Redox memory are projected to support
1016 writes [17], so they will not have wearing issues at
any reasonable reconfiguration interval. Additionally, the fault
tolerance scheme described above could also be used to extend
array lifetimes.

Even without technology or microarchitectural solutions to
wear out, many applications could support limited reconfigura-
tion frequencies. FPGAs, for example, are rarely reconfigured

5.10E&02(

3.51E&02(

5.75E&02(

2.93E&02(

2.06E&02(

2.22E&02(

2.54E&02(

3.18E&02(

2.58E&03(

0.00E+00(2.00E&02(4.00E&02(6.00E&02(

Mul3plexer(

PG(+(Decoders*(

PG(+(Latch(1b(Slices(

PG(+(Latch(2b(Slices(

PG(+(Latch(4b(Slices(

PG(+(Latch(8b(Slices(

PG(+(Latch(16b(Slices(

PG(+(Latch(32b(Slices(

PCM(Single(1b(Slices(

Area%(mm2)%

Area%Comparison%for%32x32x32%%Crossbars%

Fig. 9: In a 32-bit, 32-radix crossbar, alternative CMOS designs
use less area than our pass gate + latch per crosspoint design
unless we route multiple bits in each array, amortizing the
latch overhead. Regardless of these optimizations, however,
the PCM crossbar uses significantly less area than any CMOS
design. *Note: the pass gate + decoder design area estimate
does not include the overhead of routing control wires into the
pass gate arrays. This overhead may be significant.

more often than once an hour and often times programmed
only several times over their entire lifetime. Similarly, accel-
erators often run a single workload at a time and do not support
context swapping. Although context swapping may be desired,
the relatively large architectural state accelerators contain often
make rapid context switching difficult.

D. Alternative CMOS Designs

The CMOS crossbar design we detail and evaluate in this
section is only one of several CMOS designs possible. While
it turns out to be a relatively optimized baseline in terms of
power for our proposed application, alternatives exist and are
sometimes superior. This subsection explores and compares
several alternatives.

a) Multi-bit Crossbars: Although simple, the design
requires a pass gate and latch at each crosspoint, which is area
wasteful in a multi-bit crossbar since the routing information
in those latches is redundant. To evaluate this potential waste,
we summarize and evaluate several alternative designs: two
other popular designs and one variant of our design: (1) When
synthesizing from RTL, a multiplexer-based crossbar often
results. This crossbar uses an N-to-1 crossbar for each of N
outputs, so it too scales quadratically with radix. (2) Instead
of keeping routing information at a latch in each cross point, a
decoder can be used for each output and control signals routed
to each pass gate. This design, however, has significant wire
routing overheads. (3) While we show the design of a single
bit slice crossbar, multiple bits could be routed in the crossbar.
This design amortizes the overhead of the latch in each cross
point, but the increased bit width contributes quadratically to
the area of the crossbar, presenting a trade-off.

Area estimates for the various crossbar designs are shown
in Figure 9. As one would intuitively expect, putting a latch at
each crosspoint is indeed wasteful. If multiple bits are routed
through each array, however, this area is quickly amortized.

We find that 4-bit slices best amortize the latch overhead.
Beyond 4-bit slices, the array’s quadratic scaling overtakes
latch amortization benefits and the overall array size increases.
The 4-bit slice configuration, in fact, is the smallest CMOS
design we have examined. Even with this optimization for
multi-bit crossbars, however, the PCM crossbar remains over
12x smaller.

b) Functionality Comparison: While the multiple bit
pass gate + latch crossbar is smaller than other CMOS designs,
it achieves this area at the expense of functionality. While the
other two CMOS crossbars can be reconfigured (change their
routing) every cycle, the crossbars in this paper cannot. The
reasons are that it lacks a decoder and its latches must be set
via a scan chain. As a result, the routing bit pattern needs
to be computed by software and shifted into the latches, so
reconfiguration takes too long to support dynamic routing or
even time-domain multiplexing. Removing this functionality,
however, is so effective in area reduction that this crossbar
is even smaller than a naı̈vely scaled Swizzle-Switch [23], a
state-of-the-art crossbar. Additionally, for the applications we
are discussing in this paper, dynamic routing is not generally
used so this functionality trade off is appropriate and thus an
aggressive baseline.

E. Conclusions

As we have shown in this circuit study, memristive cross-
bars have significant potential to help build efficient, physically
small routing devices, especially ones with high radices. The
resulting small size and power efficiency yields routing devices
which, compared to the size of typical NoC interconnect wires,
are practically free, enabling larger amounts of reconfigurabil-
ity in future accelerator systems.

IV. THREATS TO VALIDITY

Whenever any new technology is studied it is difficult or
impossible to fully and accurately model all aspects of the
technology. Even ITRS roadmap projections for well-known
transistor devices have been consistently off. Despite these
inevitable inaccuracies in modeling, examining emerging (or
future) technologies for interesting applications is important to
guide implementation of the technology. Since memristor tech-
nology is at an early stage of development, device researchers
have only considered traditional memory based applications
for memristors. This paper motivates another use case (inter-
connects) which may lead to further work from device experts.
For example, PCM programming current and HRS/LRS can be
traded-off. Since memristive crossbars would not reconfigured
often and a higher HRS/LRS ratio is beneficial, interconnect
PCM devices could be built at a different point in the trade-off
space.

This study estimates technology parameters based on pub-
lished devices designed for storage, and build first and second
order models. We list some potential caveats to this paper’s
models:

• This papers does not completely model programming cir-
cuitry – only the programming transistors directly wired to
the arrays since their capacitance affects the energy for each
bit transmission. We make the assumption that previous work

regarding programming of the memristors [20] can be applied
to the memristor models being used.

• Memristors are modeled as non-linear I-V curves in SPICE.
If the memristors have other non-ideal effects on the circuit
(like parasitic capacitance), they are not modeled here. Unfor-
tunately, published work does not include numbers about any
parasitic capacitance which memristors may add. However, if
they do add capacitance, it is likely to be exceedingly small
amounts since the memristors are themselves exceedingly
small.

• This study assumes that it is possible to add an enable
signal (a low duty-cycle clock) which can be generated at sub-
cycle times. Although it models the distribution of the enable
signal (with several clock tree structures, which consume a
large amount of the power in both crossbar designs), this paper
assumes that the overhead in generating the enable signals is
relatively small and amortized over a large number of units.

• The area estimates are primarily summations of standard cell
sizes from DSENT plus wiring area in cases where the paper
describes the wire layout. Place and route and/or custom layout
will produce different results.

In general, this papers attempts to err on the side of an
overly optimistic baseline and create conservative models for
our proposed technology, memristive networks. We have not
laid out and optimized for all of the technologies involved
(as the amount of labor involved would make this study
infeasible). As such, not all of the comparisons this papers
makes are completely fair. Given that our results indicate
order-of-magnitude differences, however, we think this study’s
modeling inaccuracies are sufficiently small so as not to erode
its conclusions.

V. RELATED WORK

Section II discussed background on memristors, in particu-
lar PCM. In addition to previous work on the devices, there is
also some work related to the non-memory use of memristors.

a) Memristors in non-memory applications: As a new
device technology with many interesting potential application,
memristors are becoming a popular subject of study for non-
storage applications. A range of papers examine memristors
to build LUTs, multiplexers, and switchboxes [24], [25], [26],
[27]. This paper confirms previous results for multiplexers and
switchboxes and applies also to higher radix topologies. Guo
et al. [28] have also proposed a memristor based TCAM to
accelerate associative search applications. The same group also
also proposed “resistive computing” to use resistive memory
for general computation, specifically using STT-RAM [29].
Finally, memristors are highly anticipated for use in neuro-
morphic computing [30], [31], [32].

VI. CONCLUSION

This paper examined communication using a new class of
devices: memristors. We found that they have the potential
to significantly reduce the area and power overheads in in-
terconnects and we propose a crossbar design which yields
those benefits. In particular, the interconnect proposed in this

paper opens the possibility of designing networks of fine-
grained microaccelerators instead of coarser designs, allowing
a broader range of applications to take advantage of hardware
acceleration. Our analysis shows that memristive interconnects
can yield over an order of magnitude improvement in area,
several factors in power, and maintains reasonable latency dur-
ing radix scaling. When a technology delivers improvements
on that scale, extensive shifts may be imminent. The use of
memristors for communication has the possibility to shift the
way systems are designed.

REFERENCES

[1] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh,
and V. Stojanovic, “Dsent-a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in Networks
on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on.
IEEE, 2012, pp. 201–210.

[2] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically
Specialized Datapaths for energy efficient computing,”
HPCA, pp. 503–514, Feb. 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5749755

[3] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Microarchitecture,
2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium
on. IEEE, 2009, pp. 469–480.

[4] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross,
“Q100: the architecture and design of a database processing unit,”
in Proceedings of the 19th international conference on Architectural
support for programming languages and operating systems. ACM,
2014, pp. 255–268.

[5] S. Galal and M. Horowitz, “Energy-efficient floating-point unit design,”
Computers, IEEE Transactions on, vol. 60, no. 7, pp. 913–922, 2011.

[6] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in ACM SIGARCH
Computer Architecture News, vol. 38, no. 3. ACM, 2010, pp. 37–47.

[7] K. Lim, B. Falsafi, J. Picorel, B. Grot, P. Ranganathan, O. Kocberber
et al., “Meet the walkers: Accelerating index traversals for in-memory
databases,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, no. EPFL-CONF-190306, 2013.

[8] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing
the energy of mature computations,” in ACM SIGARCH Computer
Architecture News, vol. 38, no. 1. ACM, 2010, pp. 205–218.

[9] J. V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and
K. Atasu, “Designing a programmable wire-speed regular-expression
matching accelerator,” in Microarchitecture (MICRO), 2012 45th An-
nual IEEE/ACM International Symposium on. IEEE, 2012, pp. 461–
472.

[10] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 269–
284. [Online]. Available: http://doi.acm.org/10.1145/2541940.2541967

[11] S. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. Hsu,
H. Kaul, M. Anders, and R. Krishnamurthy, “53 gbps native gf(24)2

composite-field aes-encrypt/decrypt accelerator for content-protection in
45 nm high-performance microprocessors,” Solid-State Circuits, IEEE
Journal of, vol. 46, no. 4, pp. 767–776, April 2011.

[12] L. Chua, “Resistance switching memories are memristors,” Applied
Physics A, vol. 102, no. 4, pp. 765–783, 2011.

[13] Micron. Micron announces availability of phase change
memory for mobile devices. [Online]. Available:
http://investors.micron.com/releasedetail.cfm?ReleaseID=692563

[14] Samsung. Samsung ships industrys first multi-chip package with a pram
chip for handsets.

[15] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P.
Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson,
“Phase Change Memory,” Proceedings of the IEEE, vol. 98,
no. 12, pp. 2201–2227, Dec. 2010. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5609179

[16] Y. Sasago, M. Kinoshita, T. Morikawa, K. Kurotsuchi, S. Hanzawa,
T. Mine, A. Shima, Y. Fujisaki, H. Kume, H. Moriya et al., “Cross-
point phase change memory with 4f2 cell size driven by low-contact-
resistivity poly-si diode,” in VLSI Technology, 2009 Symposium on.
IEEE, 2009, pp. 24–25.

[17] “International technology roadmap for semiconductors,” 2011.
[18] S. Lavizzari, D. Sharma, and D. Ielmini, “Threshold-switching delay

controlled by 1/f current fluctuations in phase-change memory devices,”
Electron Devices, IEEE Transactions on, vol. 57, no. 5, pp. 1047–1054,
2010.

[19] G. De Sandre, L. Bettini, E. Calvetti, G. Giacomi, M. Pasotti, M. Borghi,
P. Zuliani, R. Annunziata, I. Tortorelli, F. Pellizzer, and R. Bez,
“Program circuit for a phase change memory array with 2 mb/s
write throughput for embedded applications,” in Solid-State Circuits
Conference, 2008. ESSCIRC 2008. 34th European, 2008, pp. 198–201.

[20] J. Liang and H.-S. Wong, “Cross-point memory array without cell
selectors: Device characteristics and data storage pattern dependencies,”
Electron Devices, IEEE Transactions on, vol. 57, no. 10, pp. 2531–2538,
2010.

[21] W. Zhao and Y. Cao, “New generation of predictive technology
model for sub-45nm design exploration,” in Quality Electronic Design,
2006. ISQED ’06. 7th International Symposium on, 2006, pp. 6–590.
[Online]. Available: http://ptm.asu.edu

[22] [Online]. Available: http://ngspice.sourceforge.net/
[23] K. Sewell, R. G. Dreslinski, T. Manville, S. Satpathy, N. Pinckney,

G. Blake, M. Cieslak, R. Das, T. F. Wenisch, D. Sylvester et al.,
“Swizzle-switch networks for many-core systems,” Emerging and Se-
lected Topics in Circuits and Systems, IEEE Journal on, vol. 2, no. 2,
pp. 278–294, 2012.

[24] C. Wen, J. Li, S. Kim, M. Brietwisch, C. Lam,
J. Paramesh, and L. T. Pileggi, “A non-volatile look-
up table design using PCM (phase-change memory) cells,”
in VLSI Circuits, 2011, pp. 302–303. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5986431

[25] J. Cong and B. Xiao, “mrfpga: A novel fpga architecture
with memristor-based reconfiguration,” in Nanoscale Architectures
(NANOARCH), 2011 IEEE/ACM International Symposium on. IEEE,
2011, pp. 1–8.

[26] P.-E. Gaillardon, M. H. Ben-Jamaa, G. B. Beneventi, F. Clermidy, and
L. Perniola, “Emerging memory technologies for reconfigurable routing
in fpga architecture,” in Electronics, Circuits, and Systems (ICECS),
2010 17th IEEE International Conference on. IEEE, 2010, pp. 62–65.

[27] P.-E. Gaillardon, D. Sacchetto, S. Bobba, Y. Leblebici, and
G. De Micheli, “Gms: Generic memristive structure for non-volatile
fpgas,” in VLSI and System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP 20th
International Conference on. IEEE, 2012, pp. 94–98.

[28] Q. Guo, X. Guo, Y. Bai, and E. Ipek, “A resistive tcam accelerator
for data-intensive computing,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM,
2011, pp. 339–350.

[29] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: avoiding the
power wall with low-leakage, stt-mram based computing,” in ACM
SIGARCH Computer Architecture News, vol. 38, no. 3. ACM, 2010,
pp. 371–382.

[30] D. Kudithipudi and C. E. Merkel, “Reconfigurable memristor fabrics
for heterogeneous computing,” in Advances in Neuromorphic Memristor
Science and Applications. Springer, 2012, pp. 89–106.

[31] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and
T. Prodromakis, “Integration of nanoscale memristor synapses in neu-
romorphic computing architectures,” arXiv preprint arXiv:1302.7007,
2013.

[32] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale memristor device as synapse in neuromorphic systems,”
Nano letters, vol. 10, no. 4, pp. 1297–1301, 2010.

